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ABSTRACT: Forced penetrations into the ground such as pile driving, cone penetration tests and other activities of
similar nature can generate significant excess pore pressure. The generated pore pressure can take some time to dissipate
if the permeability of the medium is low. The generation and dissipation of pore pressure from such types of activities
may best be formulated in a cylindrical coordinate system. Although consolidation could happen both in the vertical and
in the radial directions, quite often the consolidation process in the vertical direction is disregarded. This paper aims at
providing solutions with due consideration for combined radial and vertical consolidation. Finite Difference discretization
is provided and exact analytical solutions are derived. Then, employing the Gauss divergence theorem, a simplified and
flexible approach is devised for describing the consolidation process based on predefined pore pressure profiles and av-
erage pore pressures. The simplified approach is further used for taking into account the effect of impermeable boundaries.
The formulations established may also be useful for interpreting coefficients consolidation from dissipation tests per-
formed in piezocone penetration tests without having to disregard the consolidation in the vertical direction.
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1. Introduction 29 10 108 | 0°
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_ The process of forced penetration, for example, during on the pore pressure and further assuming du/d6=0 and
pile driving and Cone Penetration Tests (CPT) into low radial symmetry of material properties. Accordingly, one
permeable soils such as clays generates excess pore pres- is led to the ordinary differential equation of consolida-
sure in the vicinity of the penetrating structure. The gen- tion

eration of excess pore pressure may lead to a decrease in
the effective stresses and hence a decrease in the bearing
capacity of the soils. In time, the generated pore pressure
dissipates. The process is termed as consolidation. The
consolidation occurs in all directions from areas of high
excess pore pressure to areas of low excess pore pressure
as long as boundary conditions allow it. The rate of dis-
sipation depends on the permeability of the material or ——
more appropriately the coefficient of consolidation which "
combines the permeability of the medium with the re-

sistance of the material against changes in volume. In the

cases of piles and CPTs, consolidation in the vertical and

radial direction can be envisaged. At and around the tip,

assuming an isotropic material, the consolidation process

can be assumed to happen spherically. In our next expo- H

sition we are going disregard what happens at the tip and

continue to assume radial symmetry and that consolida- Umax (To, H, 1)

tion happens in both radial and vertical directions. — A Z

q1 Umax (10, Z, t)

qz r

1.1. Differential equation

Figure 1. Schematics of flow and pore pressure distribution around
The consolidation process in a cylindrical co-ordinate driven cylindrical piles
system may be described applying the Laplacian
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where ¢, and c, are coefficients of consolidation along
the radial and the vertical direction. They may be given
respectively as

kK kK
¢, =—,Cc, = —. 3
P =T (3)

where k, and k, are the permeability’s of the soil in the
respective directions, K is the bulk modulus of the soil
and ¥, is the unit weight of water.

1.2. Boundary conditions

For solving the differential equation, boundary condi-
tions are specified such that, vertically, the excess pore
pressure vanishes at the top ground surface and, radially,
the excess pore pressure vanishes at a distance 7, from
the pile center. It is called the plastified radius. It is the
radial extent at which the penetration is assumed to cause
plastic deformations. For our case it is sufficient to define
it as the radial extent outwardly from the periphery of the
penetrating object where the pore pressure generated is
insignificant. The extent of the plastified radius has in lit-
erature been related to stiffness, overconsolidation ratio
and undrained strength of the soil around the penetrating
object and it has been estimated from cylindrical and spher-
ical cavity analyses [1], Fig.1.

Furthermore, the boundary conditions
- alongz:atz=0;u=0;atz=H,du/dz=0
and
- alongr:atr=0, du/dr=0;atr =n,,u=0
are considered.
2. Finite Difference discretization

The differential equation, Eq.2, can be solved using
numerical methods in its generality. For instance, it can
be approximated by a Finite Difference discretization as:

w; (64 At) —uy;(t) c 1w () — w54
=, — L U1

At Tij 24r
C.
+A_;z{uij+1(t) — 2u;;(0) + uij_l(t)}

Further rearranging, the pore pressure at time 7+Af at
node i,j can be determined as:

At ujq(8) — Uy -4 (t)
Ar ZTi}-

ui']-(t + At) = ui_]-(t) +

c, At
+ aArz {wgjea(0) = 2u;;(0) + ugj_q (D)}
ZE g5 (0) — 2uy(0) + iy (D), 5)

Az?

+

in which i is a node counter in the z direction, j is a node
counter in the radial direction, and Af, Ar and Az are in-
crements in time, in vertical distance and in radial dis-
tance respectively, Fig. 2.

The scheme together with appropriate boundary con-
ditions and steps handles a consolidation process in a cy-
lindrical coordinate system and it is conditionally stable
and begins to be unstable when ¢;At/Ax? > 0.5.
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Figure 2. Illustration of the Finite Difference discretization

3. Analytical solution using separation of
variables

Next, we proceed with separation of variables to solve
the differential equation, Eq.2, by considering a solution
of the form

u(r,z,t) = u(r)ul(2)u(t). 6)

Well-known solutions exist when the consolidation is
only radial or when the consolidation is only vertical.
When consolidation occurs only vertically, i.e., the solu-
tion of the differential equation is that of Fourier’s solu-
tion for the one-dimensional heat flow problem which
was adopted by Terzaghi [2] in formulating his one-di-
mensional consolidation theory. Say,

H-z
2H

u(z) = ¢;f(z) = ¢jcos {(Zj - Dn },j =123,..,

)

in which ¢; are some constants, which depend on the ini-
tial conditions.

When the consolidation occurs only in radial direc-
tion, again the solution is the same as that of the solution
laid down for the propagation of heat in a cylindrical co-
ordinate system of similar boundary conditions [3,4]. In
fact, the solution is a combination of Bessel functions of
the first and the second kind. Say for instance,

u(r) = cif (r) = cfo(hir), ®)

in which ], is Bessel function of the first kind and order
zero and c; are constants dependent on the initial condi-
tion.



After some manipulations, a general solution is ob-
tained as

u(r,z,t) = Ny £y cyglo(Air) cos {(2) -
D Ef () ©)

(2j —1)?
fl](t) = exp {—Crﬂlzt —Cy Tﬂzt

in which the coefficients are found such that the initial
condition is satisfied as

H . H-
4 f:g’ Jy u@,z,0)rJo(2;r) cos{(Z]—l)nZ—HZ}drdz

C- . =
Y (r3 3 Airp) =13 13 Auro)) H

(10)

Assuming that u(r, z,0) = uyf (1) f(2), ¢;; can also
be multiplicatively split as

Cij = uOCiCj (11)
where
— 2 p
G = rﬁ]f(lzrp)—rglé(/liro) fTo rjo(lir)f(r)dr, (12)
2 (H . H-
¢ =2 cos{(2j - DnTE} f(2)dz. (13)

Similarly, the pore pressure at a given time t at the coor-
dinate (7, z) can be written as:

uy (r,z,t) = uof (r, )f (z, 1), (14)

where

f(r,t) = By cfo(ir) exp{—c, At}

and

f(z,t) = X7, ¢ cos {(Zj -Dn %} wj;

2j-1?
w; = exp {—cz Fnzt}

In Fig.3 an example normalized pore pressure contour
generated according to Eq.9 for an initial uniformly dis-
tributed pore pressure is shown.

The stage of the consolidation process is often inferred
from a single variable called the degree of consolidation.
In this case, the degree of consolidation may be defined
as

) OH frzp u(r,z, t)drdz

U:=1-— TR =
fo fropu(r, z,0)drdz

[P feroar [ fztaz
-7 7 (15)
R roar fy f(z,0)dz

Specifying the initial pore pressure, particular solu-
tions that describe the pore pressure evolution with time
and the corresponding degree of consolidation can be
worked out.
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Figure 3. : An example normailized pore pressure contour generated
according to Eq.9 for an initial uniformly distributed pore pres-
sure.

4. Simplified approach applying the Gauss
divergence theorem
4.1. Single pile, unobstructed radial and

vertical seepage

Consider a volume element, ) with a boundary of
area, S, Fig.4. In the volume element, enclosed by the
boundary surface we will describe the shape of the pore
pressure distribution and assume that the shape will re-
main the same throughout the consolidation process.
Once the pore pressure distribution is set, the average
changes of the pore pressure within the specified volume
enclosed in the boundary can be established by quantify-
ing the seepage through the specified boundary. This is
facilitated by the Gauss divergence theorem as follows.



Figure 4. Flow through boundary S from an enclosed volume Q
(where S; is an seepage surface and S, is a closed surface)

We start with the volume integral of the differential
equation in Eq.2,

fn atd!) = c,f -Voud + ¢, [, VPud +
¢, [, VudQ. (16)

1 .
Note that 5 fv ud( is the average pore pressure, say
u. Therefore

[,5dn =02 (17)

The integral at the left-hand side of Eq.16 can be writ-
ten as

[,3rdn =02 (2 [ udn). (18)

Next, we consider each volume integral on the right
side of the equal sign and change them into surface inte-
gral making use of the Gauss divergence theorem. Let us
begin with the first term at the right side in Eq.16 and
write

/, % VudQ = fsiunds, (19)

where n is a unit normal at the boundary. This integral
vanishes where u vanishes. Such a boundary condition is
to be considered. Hence, the integral in Eq.19 is disre-
garded. In the same manner, we continue to employ the
Gauss divergence theorem on the other integrals:

JoWPud = =3 [ g = =1 [ q,dS,.  (20)
where
4 = —LVu @1

Yw

and dS is the infinitesimal surface area perpendicular to
flow. In the same manner we have

J,VPuda = - [ 7,q,d0 = —% J5 4,45, (22)

Combining Eqgs.17, 20 and 22 we have

ot W w
.(26—1: = crz—r Jsq-dS, + cZ];—Z J5q,dS;. (23)
Considering
ds, = 2nr,dz, dS, = 2nrdr (24)
we have
au H
05 = 21K, [ q-dz + 2nK f:;’ q,rdr. (25)

Let us assume a pore pressure distribution in which
separation of variables according to

u(r,z,t) = u(ro, H,0)f (N f (2)f (1) (26)

is possible in the same manner as we did earlier while
formulating the analytical solutions. Only this time, the
shape of the pore pressure distribution is assumed to re-
main the same throughout the consolidation process.
Then, we obtain

gr = =T 20D = (o, H, 0)f (F (0 57, (27)
2 ou(r,z, af(z
g, = — 220 = —leu(r, HOf (D2 (28)

and

.1 H

u = _2mu(ro, H, 0)f (t) frzp rf(rdr [ f(2)dz.  (29)
Combining Eqs.25, 27, 28 and 29 we have

05 = 2mu(ry, H,0) [P rf (r)dr [, f(2)dz L2 (30)

[y ardz = = Tulro, H,OFOZP| [ f(2)dz
7 31

[Pardr=

= 2ulo HOfO%2]  [Prf(rdr (32)

Eq.30 becomes



[Prf(rydr [ f(2)dz 28 =

ey 5, Jo Fds £ -
S| L mydr (@, (33)
Let
A= [Prf(rydr [} f(2)dz, (34)
p=40 Iy f(@)dz. (35)
and
= @ . [P rfrydr. (36)

Rearranging Eq.34 and making use of Eqgs.34-36, we
obtain

a
O = —{e;1,B + ¢,CH (©). 37)
This gives us the time dependence function

f(6) = exp {— (T2 ). (38)

We have now obtained the desired result, i.e., the func-
tion that describes how the pore pressure filed changes
with time as follows

Uy (r,z,t) =

u(ro, H,0)f(r)f (z) exp {— (222 ¢}, (39)

This result is simple to use and is also flexible to ac-
commodate different pore pressure profiles. A particular
formula is obtained when f(r) and f(z) are specified.

The degree of consolidation may then be defined as in
before as

U=1- u(r,zt) =1—exp {_ (crrp3+cz(:) t}. (40)

u(r,z,0) A

The desired properties le U =1 and limU = 0 are

t—-o

satisfied. We can also solve for the consolidation time as

Fa2
t =110 (41)

Cr

where T is a time factor and given as

- Aln(1-U)
r= roz(rpB+z—iC)‘ (42)

A, B and C are determined once f(r) and f(z) are spec-
ified. Before proceeding to a particular solution, let us
show how A4, B and C are related to each other.

BC = a];(rr) Bf(z) f f(2)dz frp rf(r)ydr (43)
1"=Tp
af(r) df(2)
BC =——= — 44
or r=ry 0z lz=g ( )
BC _ 3f(r) (2
7 - or r:rp 0z z=0 (45)

Note that the righthand terms are the hydraulic gradi-
ents at the boundaries, z = 0 and r = 7,,. We can thus al-
ternatively write

BC PR
o lrp lz=0 (46)

where Iy, is the hydraulic gradient at the boundary r = 1,
and iy is the hydraulic gradient at z = 0.

Now, let us consider functions for f(r) and f(z) ac-
cording to parabolic functions given as:

o =1-(22) ym=1- (52" @)

It is further assumed that the pore pressure follows the
same distribution throughout the consolidation process.
This may not be entirely true but we hold it to be accurate
enough when we are interested in ranges of higher degree
of consolidation. If for instance Terzaghi’s [2] solution
for the differential equation that describes the one-dimen-
sional consolidation is considered, for small time, t from
the start of consolidation, the curve of f(z, t) is more ac-
curately described by an error function. The curves be-
come more and more parabolic towards the steady state
condition as t — oo. For the degree of consolidation
greater than 25%, the difference between the exact ana-
lytical solution and the approximation with a parabolic
pore pressure profile is practically small and may hence
be considered accurate enough.

For parabolic functions f(r) and f(z) given in Eqs.47
we obtain

2

im0 = —%and irp =— (48)

Tp—To
and therefore
™ r — ro Z —
A= J- f 1-— dz
o rp — ro
—4r3ry + 3n) + 121,15 — 51y — 6rp 3 Z_H

a 12(r, — 19)? "3
forn, >>1, A= %Hrpz, (49)




. (H -H\? 2,
B =1yi,, Js [1 - (ZH ) ]dz = tyip, H, (50)

_ 9@
¢= 0z

. [Prfrydr = iy iy = 1)

Accordingly, u(r, z, t), the degree of consolidation, U,
and the time factor T can be determined making use of
Eqs.39 and 41 respectively. Example plots of the normal-
ized plastified radius versus the time factor is shown in
Fig.5. The solid lines are from the approximate solutions
and the points are from measurements [5].

The pore pressure field equation can now be summa-
rized as

u(r,z,t) = u(, H,0)f(r,t)f (z,t) (52)
in which,

fr,0) = F () exp{~em, 2 ) (53)
and

f@t) = f(@) exp{~¢,5t}. (52)

The solution can be easily adapted for other types of
pore pressure profiles.
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Figure 5. Time factor with normalized plastified radius for different
degrees of consolidation: Theory (lines) and Experiment (points)

4.2. Reduced seepage surface due to multiple
pile neighbors and other impermeable
boundary conditions

There are many conditions in practice where it may be
approperiate to consider portions of the seepage
boundaries as impermeable. For instance, the radial
seepage boundary may get reduced in the case of multiple
piles, if the piles are placed at less than a distance of 27,

from each other. See Fig.6 for the illustration for the case
of two neighboring piles.

Next, we will devise a simple approach for the
consideration of the impermeable portions of the seepage
boundaries. Recall that

ou w w
Qa_t = Crlllc_rfs q-dS; + Cz}]/{_zfs q.dS;. (53)

Let B; be the central angle subtended by the impermeable
portion of the radial seepage surface of radius .
Similarly, let 8; be the central angle subtended by the
impermeable portion of the vertical seepage boundary.
The infinitesimal area of the seepage surfaces in the
respective flow directions are then written as

ds, = 2 — Xp)r,dz, dS, = (2w — 20;)rdr. (54)

The summation implies that all 8;’s and 6;’s are to be
summed in their respective directions. Accordingly,
Equation (53) is written as

n 2—1: = (2w — ZB)Kr, fOH q-dz + (2w —
Z6)K [V q,rdr (55)

which leads us to

af(t)
2nA= == —{(2n - ZB)c,1,B + (2w —

26)c,CIf (1) (56)
and thereby
f(t) = exp {_ ((Zn—):ai)crrz:;:(Zn—Z‘Bi)czC) t}. (57)

The pore pressure field is then given by

u,(r,z,t) =

w(ro, H, 0)f ()f (2). exp {— (

(Zn—EBi)crrpB+(21r—):6i)czC) t}
2mA

(58)

Figure 6. Possible seepage surface reductions due to impermeable
obstructions



where A, B and C are as defined elsewhere. Following
this result, the degree of consolidation may be defined as

1 uy(rzt)
u=1 up(rz,0)
_ (@r-ZBcrrpB+(2m—26;)c,C
exp {~ ( s )t} (59)

We can also solve for the consolidation time as

t= C_r (60)
where,
T — 2nAln(1-U) (61)

rg((Zn—):ﬁi)rpm(2n—):el-)z—ic)’

The higher ) f8; and/or ), 6;, the higher is the
consolidation time required for achieving a given degree
of consolidation. The pore pressure field can also be
written as

U (7,2, £) = u(ro, H, 0)f (r, ) (2, £). (62)
in which

f,6) = f() exp{~(1 — 5= 2B, ot} (63)
and

f(z.t) = f(2) exp {~(1 — = £6,)c, 5 t}. (64)

For long npiles, practically, the predominant
consolidation is radial. Thence,

u(r,z,t) = u(ry, H,0)f(r,t) (65)

may be considered. In that case the time factor will be

- 2min(1-U) A

r= r(f(Zn—XBi)rp E (66)
Let us denote the timefactor, Tp, for the pile whose
seepage surface in radial direction is defined by 2w — X f3;
(2 B; being the sum of all central angles subtended by the
seepage obstractions in the radial directuion). The ratio
of the time factor Tp, to the time factor T is then given by

Tpr 21

(67)

Ty fo = 2m-5p;

ZBi

T

Fig.7 shows the plot of values of f, gainst
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Figure 7. : Modified hydrodynamic period for a pile group with inter-
fering angle X' 3; normalized by a hydrodynamic period for unob-
structed consolidation. Only radial consolidation is considered.

5. Conclusions

We have presented solutions for describing a consoli-
dation processes in a cylindrical coordinate system. We
began with Finite Difference discretization of the differ-
ential equation of consolidation which can be used for
solving the problem numerically for more general condi-
tions when it is not possible to assume a homogeneous
material and simple boundary conditions. We then
looked for possible exact analytical solutions and finally,
we presented simplified approximations by fixing the
shape of the pore pressure profile and the boundary con-
ditions in time and employing the Gauss divergence the-
orem for describing the average consolidation processes.
The solutions so obtained may differ from the exact ana-
lytical solutions at the beginning of the consolidation pro-
cess. The propagation of the pore pressure front in radial
direction is also not considered. However, such solutions
can be employed for simple approximations and elucidat-
ing qualitative aspects of the consolidation process. The
approximate solutions can also be valuable for sharpen-
ing engineering judgement of the process. The approach
can be employed when problems of similar nature are en-
countered. For instance, they can be for approximating
effect of drains on the consolidation processes.

In this paper, we have treated the problem as a decou-
pled problem in such a way it is accessible to analytical
solutions. The problem can be investigated in a more gen-
eral setup using advanced numerical methods, such as
FEM, where coupled flow and deformation phenomena
can be considered.
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Symbols
Variables

i,—¢: Hydraulic gradient at z =0

irp: Hydraulic gradient at r = 1,

n:  Unit normal to the surface area, S

q: Seepage (with sucscrpt r-> radial direction, with
subscript z-in the vertical direction)

Radial distance

Pile radius

Plastified radius

Surface area

pore pressure

Average pore pressure (over a volume)

Degree of consolidation

Time

Time factor

Vertical distance

Volume element

SN AT EE LS

Parameters/coefficients/constants

Bi: Central angle subtended by obstructions in the
radial seepage direction

Cpt Radial consolidation coefficient

Cy: Vertical consolidation coefficient

Yw: Unit weight of water

H: Pile height (length) or half the pile length in
the case of two way drainage

k,: Permeability in the radial direction

k,: Permeability in the vertical direction

¢, ¢j: coefficients that depend on the initial pore
pressure profile

A Eigen values of the Bessel function, Jo
0;: Central angle subtended by obstructions in the
vertical seepage direction
Functions
Jo: Bessel function of the first kind and order zero

f(r): A function that describes the pore pressure
profile in the radial direction
f(z): A function that describes the pore pressure
profile in the vertical (z) direction
Operators
d: Infinitesimal increment
A:  Finite increment
d N . .
Py Partial differential wrt the variable x
d . . . . . .
V= Py Spatial variation (with subscript r-in the r di-
rection, with subscript z, in the z (vertical) di-
rection)

2

a . . . . .
V2= FyeE Laplacian (with subscript r-in the r direc-

tion, with subscript z, in the z (vertical) direc-
tion)
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