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ABSTRACT: Forced penetrations into the ground such as pile driving, cone penetration tests and other activities of 

similar nature can generate significant excess pore pressure. The generated pore pressure can take some time to dissipate 

if the permeability of the medium is low. The generation and dissipation of pore pressure from such types of activities 

may best be formulated in a cylindrical coordinate system. Although consolidation could happen both in the vertical and 

in the radial directions, quite often the consolidation process in the vertical direction is disregarded. This paper aims at 

providing solutions with due consideration for combined radial and vertical consolidation. Finite Difference discretization 

is provided and exact analytical solutions are derived. Then, employing the Gauss divergence theorem, a simplified and 

flexible approach is devised for describing the consolidation process based on predefined pore pressure profiles and av-

erage pore pressures. The simplified approach is further used for taking into account the effect of impermeable boundaries. 

The formulations established may also be useful for interpreting coefficients consolidation from dissipation tests per-

formed in piezocone penetration tests without having to disregard the consolidation in the vertical direction. 
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1. Introduction 

The process of forced penetration, for example, during 

pile driving and Cone Penetration Tests (CPT) into low 

permeable soils such as clays generates excess pore pres-

sure in the vicinity of the penetrating structure. The gen-

eration of excess pore pressure may lead to a decrease in 

the effective stresses and hence a decrease in the bearing 

capacity of the soils. In time, the generated pore pressure 

dissipates. The process is termed as consolidation. The 

consolidation occurs in all directions from areas of high 

excess pore pressure to areas of low excess pore pressure 

as long as boundary conditions allow it. The rate of dis-

sipation depends on the permeability of the material or 

more appropriately the coefficient of consolidation which 

combines the permeability of the medium with the re-

sistance of the material against changes in volume. In the 

cases of piles and CPTs, consolidation in the vertical and 

radial direction can be envisaged. At and around the tip, 

assuming an isotropic material, the consolidation process 

can be assumed to happen spherically. In our next expo-

sition we are going disregard what happens at the tip and 

continue to assume radial symmetry and that consolida-

tion happens in both radial and vertical directions.  

1.1. Differential equation 

The consolidation process in a cylindrical co-ordinate 

system may be described applying the Laplacian 

𝛻2 = 𝜕2𝜕𝑟2 + 1𝑟 𝜕𝜕𝑟 + 1𝑟2 𝜕2𝜕𝜃2 + 𝜕2𝜕𝑧2 (1) 

on the pore pressure and further assuming 𝜕𝑢 𝜕𝜃⁄ =0 and 

radial symmetry of material properties. Accordingly, one 

is led to the ordinary differential equation of consolida-

tion 

 

Figure 1. Schematics of flow and pore pressure distribution around 

driven cylindrical piles 
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where 𝑐𝑟 and 𝑐𝑧 are coefficients of consolidation along 

the radial and the vertical direction. They may be given 

respectively as 

𝑐𝑟 = 𝑘𝑟𝐾𝛾𝑤 , 𝑐𝑧 = 𝑘𝑧𝐾𝛾𝑤 . (3) 

where 𝑘𝑟  and 𝑘𝑧  are the permeability’s of the soil in the 
respective directions, 𝐾 is the bulk modulus of the soil 

and 𝛾𝑤 is the unit weight of water. 

1.2. Boundary conditions 

For solving the differential equation, boundary condi-

tions are specified such that, vertically, the excess pore 

pressure vanishes at the top ground surface and, radially, 

the excess pore pressure vanishes at a distance 𝑟𝑝 from 

the pile center. It is called the plastified radius. It is the 

radial extent at which the penetration is assumed to cause 

plastic deformations. For our case it is sufficient to define 

it as the radial extent outwardly from the periphery of the 

penetrating object where the pore pressure generated is 

insignificant. The extent of the plastified radius has in lit-

erature been related to stiffness, overconsolidation ratio 

and undrained strength of the soil around the penetrating 

object and it has been estimated from cylindrical and spher-

ical cavity analyses [1], Fig.1. 

Furthermore, the boundary conditions  

- along𝑧: at 𝑧 = 0; 𝑢 = 0; at 𝑧 = 𝐻, 𝜕𝑢 𝜕𝑧 ⁄ = 0  

and 

- along 𝑟: at 𝑟 = 0,  𝜕𝑢 𝜕𝑟⁄  = 0; at 𝑟 = 𝑟𝑝, 𝑢 = 0  

are considered. 

2. Finite Difference discretization 

The differential equation, Eq.2, can be solved using 

numerical methods in its generality. For instance, it can 

be approximated by a Finite Difference discretization as: 𝑢𝑖𝑗ሺ𝑡 + 𝛥𝑡ሻ − 𝑢𝑖𝑗ሺ𝑡ሻ𝛥𝑡 = 𝑐𝑟 1𝑟𝑖𝑗 𝑢𝑖𝑗+1ሺ𝑡ሻ − 𝑢𝑖𝑗−12𝛥𝑟  + 𝑐𝑟𝛥𝑟2 {𝑢𝑖𝑗+1ሺ𝑡ሻ − 2𝑢𝑖𝑗ሺ𝑡ሻ + 𝑢𝑖𝑗−1ሺ𝑡ሻ} + 𝑐𝑧𝛥𝑧2 {𝑢𝑖+1𝑗ሺ𝑡ሻ − 2𝑢𝑖𝑗ሺ𝑡ሻ + 𝑢𝑖−1𝑗ሺ𝑡ሻ}.                       (4) 

Further rearranging, the pore pressure at time t+t at 

node i,j can be determined as: 

𝑢𝑖,𝑗ሺ𝑡 + 𝛥𝑡ሻ = 𝑢𝑖,𝑗ሺ𝑡ሻ + 𝑐𝑟𝛥𝑡𝛥𝑟 𝑢𝑖,𝑗+1ሺ𝑡ሻ − 𝑢𝑖,𝑗−1ሺ𝑡ሻ2𝑟𝑖𝑗  + 𝑐𝑟𝛥𝑡𝛥𝑟2 {𝑢𝑖,𝑗+1ሺ𝑡ሻ − 2𝑢𝑖,𝑗ሺ𝑡ሻ + 𝑢𝑖,𝑗−1ሺ𝑡ሻ} + 𝑐𝑧𝛥𝑡𝛥𝑧2 {𝑢𝑖+1,𝑗ሺ𝑡ሻ − 2𝑢𝑖𝑗ሺ𝑡ሻ + 𝑢𝑖−1,𝑗ሺ𝑡ሻ},                     (5) 

in which i is a node counter in the z direction, j is a node 

counter in the radial direction, and t, r and z are in-

crements in time, in vertical distance and in radial dis-

tance respectively, Fig. 2. 

The scheme together with appropriate boundary con-

ditions and steps handles a consolidation process in a cy-

lindrical coordinate system and it is conditionally stable 

and begins to be unstable when 𝑐𝑖∆𝑡 ∆𝑥2⁄ ≥ 0.5. 

 

Figure 2. Illustration of the Finite Difference discretization 

3. Analytical solution using separation of 

variables 

Next, we proceed with separation of variables to solve 

the differential equation, Eq.2, by considering a solution 

of the form 𝑢ሺ𝑟, 𝑧, 𝑡ሻ = 𝑢ሺ𝑟ሻ𝑢ሺ𝑧ሻ𝑢ሺ𝑡ሻ. (6) 

Well-known solutions exist when the consolidation is 

only radial or when the consolidation is only vertical. 

When consolidation occurs only vertically, i.e., the solu-

tion of the differential equation is that of Fourier’s solu-
tion for the one-dimensional heat flow problem which 

was adopted by Terzaghi [2] in formulating his one-di-

mensional consolidation theory. Say,  

𝑢ሺ𝑧ሻ = 𝑐𝑗𝑓ሺ𝑧ሻ = 𝑐𝑗 𝑐𝑜𝑠 {ሺ2𝑗 − 1ሻ𝜋 𝐻−𝑧2𝐻 } , 𝑗 = 1,2,3, . ..,
                          (7) 

in which 𝑐𝑗 are some constants, which depend on the ini-

tial conditions.  

When the consolidation occurs only in radial direc-

tion, again the solution is the same as that of the solution 

laid down for the propagation of heat in a cylindrical co-

ordinate system of similar boundary conditions [3,4]. In 

fact, the solution is a combination of Bessel functions of 

the first and the second kind.  Say for instance,  𝑢ሺ𝑟ሻ = 𝑐𝑖𝑓ሺ𝑟ሻ = 𝑐𝑖𝐽0ሺ𝜆𝑖𝑟ሻ, (8) 

in which 𝐽0 is Bessel function of the first kind and order 

zero and 𝑐𝑖 are constants dependent on the initial condi-

tion.  



After some manipulations, a general solution is ob-

tained as 

𝑢ሺ𝑟, 𝑧, 𝑡ሻ = ∑ ∑ 𝑐𝑖𝑗𝐽0ሺ𝜆𝑖𝑟ሻ 𝑐𝑜𝑠 {ሺ2𝑗 −∞𝑗=1∞𝑖=11ሻ𝜋 𝐻−𝑧2𝐻 } 𝑓𝑖𝑗 ሺ𝑡ሻ                 (9) 

𝑓𝑖𝑗ሺ𝑡ሻ = 𝑒𝑥𝑝 {−𝑐𝑟𝜆𝑖2𝑡 − 𝑐𝑧 ሺ2𝑗 − 1ሻ24𝐻2 𝜋2𝑡} 

in which the coefficients are found such that the initial 

condition is satisfied as 

𝑐𝑖𝑗 = 4 ∫ ∫ 𝑢ሺ𝑟,𝑧,0ሻ𝑟𝐽0ሺ𝜆𝑖𝑟ሻ 𝑐𝑜𝑠{ሺ2𝑗−1ሻ𝜋𝐻−𝑧2𝐻 }𝑑𝑟𝑑𝑧𝐻0𝑟𝑝𝑟0 (𝑟𝑝2𝐽12ሺ𝜆𝑖𝑟𝑝ሻ−𝑟02𝐽02ሺ𝜆𝑖𝑟0ሻ)𝐻  (10) 

Assuming that 𝑢ሺ𝑟, 𝑧, 0ሻ = 𝑢0𝑓ሺ𝑟ሻ𝑓ሺ𝑧ሻ, 𝑐𝑖𝑗  can also 

be multiplicatively split as 𝑐𝑖𝑗 = 𝑢0𝑐𝑖𝑐𝑗 (11) 

where 

𝑐𝑖 = 2𝑟𝑝2𝐽12ሺ𝜆𝑖𝑟𝑝ሻ−𝑟02𝐽02ሺ𝜆𝑖𝑟0ሻ ∫ 𝑟𝐽0ሺ𝜆𝑖𝑟ሻ𝑓ሺ𝑟ሻ𝑑𝑟𝑟𝑝𝑟0 , (12) 

𝑐𝑗 = 2𝐻 ∫ 𝑐𝑜𝑠 {ሺ2𝑗 − 1ሻ𝜋 𝐻−𝑧2𝐻 } 𝑓ሺ𝑧ሻ𝑑𝑧𝐻0 . (13) 

Similarly, the pore pressure at a given time 𝑡 at the coor-

dinate ሺ𝑟, 𝑧ሻ can be written as: 𝑢𝑤ሺ𝑟, 𝑧, 𝑡ሻ = 𝑢0𝑓ሺ𝑟, 𝑡ሻ𝑓ሺ𝑧, 𝑡ሻ, (14) 

where 𝑓ሺ𝑟, 𝑡ሻ = ∑ 𝑐𝑖𝐽0ሺ𝜆𝑖𝑟ሻ 𝑒𝑥𝑝{−𝑐𝑟𝜆𝑖2𝑡}∞𝑖=1   

and  

𝑓ሺ𝑧, 𝑡ሻ = ∑ 𝑐𝑗 𝑐𝑜𝑠 {ሺ2𝑗 − 1ሻ𝜋 𝐻−𝑧2𝐻 } 𝜔𝑗∞𝑗=1 ; 

𝜔𝑗 = 𝑒𝑥𝑝 {−𝑐𝑧 ሺ2𝑗−1ሻ24𝐻2 𝜋2𝑡}  

In Fig.3 an example normalized pore pressure contour 

generated according to Eq.9 for an initial uniformly dis-

tributed pore pressure is shown.  

The stage of the consolidation process is often inferred 

from a single variable called the degree of consolidation. 

In this case, the degree of consolidation may be defined 

as 

𝑈 : = 1 − ∫ ∫ 𝑢ሺ𝑟, 𝑧, 𝑡ሻ𝑑𝑟𝑑𝑧𝑟𝑝𝑟0𝐻0∫ ∫ 𝑢ሺ𝑟, 𝑧, 0ሻ𝑑𝑟𝑑𝑧𝑟𝑝𝑟0𝐻0 = 

1 − ∫ 𝑓ሺ𝑟,𝑡ሻ𝑑𝑟𝑟𝑝𝑟0 ∫ 𝑓ሺ𝑧,𝑡ሻ𝑑𝑧𝐻0∫ 𝑓ሺ𝑟,0ሻ𝑑𝑟𝑟𝑝𝑟0 ∫ 𝑓ሺ𝑧,0ሻ𝑑𝑧𝐻0  (15) 

Specifying the initial pore pressure, particular solu-

tions that describe the pore pressure evolution with time 

and the corresponding degree of consolidation can be 

worked out.  

  

Figure 3. : An example normailized pore pressure contour generated 

according to Eq.9 for an initial uniformly distributed pore pres-

sure. 

4. Simplified approach applying the Gauss 

divergence theorem 

4.1. Single pile, unobstructed radial and 

vertical seepage  

Consider a volume element, Ω with a boundary of 

area, 𝑆, Fig.4. In the volume element, enclosed by the 

boundary surface we will describe the shape of the pore 

pressure distribution and assume that the shape will re-

main the same throughout the consolidation process. 

Once the pore pressure distribution is set, the average 

changes of the pore pressure within the specified volume 

enclosed in the boundary can be established by quantify-

ing the seepage through the specified boundary. This is 

facilitated by the Gauss divergence theorem as follows.  



 

 

Figure 4. Flow through boundary S from an enclosed volume  

(where S1 is an seepage surface and S2 is a closed surface) 

We start with the volume integral of the differential 

equation in Eq.2, 

∫ 𝜕𝑢𝜕𝑡 𝑑𝛺𝛺 = 𝑐𝑟 ∫ 1𝑟 𝛻𝑟𝑢𝑑𝛺𝛺 + 𝑐𝑟 ∫ 𝛻𝑟2𝑢𝑑𝛺𝛺 +𝑐𝑧 ∫ 𝛻𝑧2𝑢𝑑𝛺𝛺 .                 (16) 

Note that 
1Ω ∫ 𝑢dΩ𝑉   is the average pore pressure, say 𝑢. Therefore 

∫ 𝜕𝑢𝜕𝑡 𝑑𝛺𝛺 = 𝛺 𝜕𝑢̄𝜕𝑡 . (17) 

The integral at the left-hand side of Eq.16 can be writ-

ten as 

∫ 𝜕𝑢𝜕𝑡 𝑑𝛺𝛺 = 𝛺 𝜕𝜕𝑡 (1𝛺 ∫ 𝑢𝑑𝛺𝛺 ). (18) 

Next, we consider each volume integral on the right 

side of the equal sign and change them into surface inte-

gral making use of the Gauss divergence theorem. Let us 

begin with the first term at the right side in Eq.16 and 

write 

∫ 1𝑟 𝛻𝑟𝑢𝑑𝛺𝛺 = ∫ 1𝑟 𝑢𝑛𝑑𝑆𝑆 , (19) 

where 𝑛 is a unit normal at the boundary. This integral 

vanishes where 𝑢 vanishes. Such a boundary condition is 

to be considered. Hence, the integral in Eq.19 is disre-

garded. In the same manner, we continue to employ the 

Gauss divergence theorem on the other integrals: ∫ 𝛻𝑟2𝑢𝑑𝛺𝛺 = − 𝛾𝑤𝑘𝑟 ∫ 𝛻𝑟𝑞𝑟𝑑𝛺𝛺 = − 𝛾𝑤𝑘𝑟 ∫ 𝑞𝑟𝑑𝑆⊥𝑆 , (20) 

where 

𝑞𝑟 = − 𝑘𝑟𝛾𝑤 𝛻𝑟𝑢 (21) 

and d𝑆⊥ is the infinitesimal surface area perpendicular to 

flow. In the same manner we have ∫ 𝛻𝑧2𝑢𝑑𝛺𝛺 = − 𝛾𝑤𝑘𝑧 ∫ 𝛻𝑧𝑞𝑧𝑑𝛺𝛺 = − 𝛾𝑤𝑘𝑧 ∫ 𝑞𝑧𝑑𝑆⊥𝑆 . (22) 

Combining Eqs.17, 20 and 22 we have 

𝛺 𝜕𝑢̄𝜕𝑡 = 𝑐𝑟 𝛾𝑤𝑘𝑟 ∫ 𝑞𝑟𝑑𝑆𝑧𝑆 + 𝑐𝑧 𝛾𝑤𝑘𝑧 ∫ 𝑞𝑧𝑑𝑆𝑟𝑆 . (23) 

Considering 𝑑𝑆𝑧 = 2𝜋𝑟𝑝𝑑𝑧, 𝑑𝑆𝑟 = 2𝜋𝑟𝑑𝑟 (24) 

we have 

𝛺 𝜕𝑢̄𝜕𝑡 = 2𝜋𝐾𝑟𝑝 ∫ 𝑞𝑟𝑑𝑧𝐻0 + 2𝜋𝐾 ∫ 𝑞𝑧𝑟𝑑𝑟𝑟𝑝𝑟0 . (25) 

Let us assume a pore pressure distribution in which 

separation of variables according to 𝑢ሺ𝑟, 𝑧, 𝑡ሻ = 𝑢ሺ𝑟0, 𝐻, 0ሻ𝑓ሺ𝑟ሻ𝑓ሺ𝑧ሻ𝑓ሺ𝑡ሻ (26) 

is possible in the same manner as we did earlier while 

formulating the analytical solutions. Only this time, the 

shape of the pore pressure distribution is assumed to re-

main the same throughout the consolidation process. 

Then, we obtain 

𝑞𝑟 = − 𝑘𝑟𝛾𝑤 𝜕𝑢ሺ𝑟,𝑧,𝑡ሻ𝜕𝑟 = −𝑘𝑟𝑢ሺ𝑟0, 𝐻, 0ሻ𝑓ሺ𝑧ሻ𝑓ሺ𝑡ሻ 𝜕𝑓ሺ𝑟ሻ𝜕𝑟 ,  (27) 

𝑞𝑧 = − 𝑘𝑧𝛾𝑤 𝜕𝑢ሺ𝑟,𝑧,𝑡ሻ𝜕𝑟 = −𝑘𝑧𝑢ሺ𝑟0, 𝐻, 0ሻ𝑓ሺ𝑟ሻ𝑓ሺ𝑡ሻ 𝜕𝑓ሺ𝑧ሻ𝜕𝑧  (28) 

and 

𝑢̄ = 1𝛺 2𝜋𝑢ሺ𝑟0, 𝐻, 0ሻ𝑓ሺ𝑡ሻ ∫ 𝑟𝑓ሺ𝑟ሻ𝑑𝑟𝑟𝑝𝑟0 ∫ 𝑓ሺ𝑧ሻ𝑑𝑧𝐻0 . (29) 

Combining Eqs.25, 27, 28 and 29 we have 

𝛺 𝜕𝑢̄𝜕𝑡 = 2𝜋𝑢ሺ𝑟0, 𝐻, 0ሻ ∫ 𝑟𝑓ሺ𝑟ሻ𝑑𝑟𝑟𝑝𝑟0 ∫ 𝑓ሺ𝑧ሻ𝑑𝑧𝐻0 𝜕𝑓ሺ𝑡ሻ𝜕𝑡  (30) 

∫ 𝑞𝑟𝑑𝑧𝐻0 = − 𝑘𝑟𝛾𝑤 𝑢ሺ𝑟0, 𝐻, 0ሻ𝑓ሺ𝑡ሻ 𝜕𝑓ሺ𝑟ሻ𝜕𝑟 |𝑟=𝑟𝑝 ∫ 𝑓ሺ𝑧ሻ𝑑𝑧𝐻0
 (31) ∫ 𝑞𝑧𝑟 𝑑 𝑟𝑟𝑝𝑟0 =− 𝑘𝑧𝛾𝑤 𝑢ሺ𝑟0, 𝐻, 0ሻ𝑓ሺ𝑡ሻ 𝜕𝑓ሺ𝑧ሻ𝜕𝑧 |𝑧=𝐻 ∫ 𝑟𝑓ሺ𝑟ሻ𝑑𝑟𝑟𝑝𝑟0  (32) 

Eq.30 becomes 



S1

S2



∫ 𝑟𝑓ሺ𝑟ሻ𝑑𝑟𝑟𝑝𝑟0 ∫ 𝑓ሺ𝑧ሻ𝑑𝑧𝐻0 𝜕𝑓ሺ𝑡ሻ𝜕𝑡 =−𝑐𝑟𝑟𝑝 𝜕𝑓ሺ𝑟ሻ𝜕𝑟 |𝑟=𝑟𝑝 ∫ 𝑓ሺ𝑧ሻ𝑑𝑧𝐻0 𝑓ሺ𝑡ሻ −𝑐𝑧 𝜕𝑓ሺ𝑧ሻ𝜕𝑧 |𝑧=𝐻 ∫ 𝑟𝑓ሺ𝑟ሻ𝑑𝑟𝑟𝑝𝑟0 𝑓ሺ𝑡ሻ. (33) 

Let  

𝐴 = ∫ 𝑟𝑓ሺ𝑟ሻ𝑑𝑟𝑟𝑝𝑟0 ∫ 𝑓ሺ𝑧ሻ𝑑𝑧𝐻0 , (34) 

𝐵 = 𝜕𝑓ሺ𝑟ሻ𝜕𝑟 |𝑟=𝑟𝑝 ∫ 𝑓ሺ𝑧ሻ𝑑𝑧𝐻0 , (35) 

and 

𝐶 = 𝜕𝑓ሺ𝑧ሻ𝜕𝑧 |𝑧=0 ∫ 𝑟𝑓ሺ𝑟ሻ𝑑𝑟𝑟𝑝𝑟0 . (36) 

Rearranging Eq.34 and making use of Eqs.34-36, we 

obtain 

𝐴 𝜕𝑓ሺ𝑡ሻ𝜕𝑡 = −{𝑐𝑟𝑟𝑝𝐵 + 𝑐𝑧𝐶}𝑓ሺ𝑡ሻ. (37) 

This gives us the time dependence function 

𝑓ሺ𝑡ሻ = 𝑒𝑥𝑝 {− (𝑐𝑟𝑟𝑝𝐵+𝑐𝑧𝐶𝐴 ) 𝑡}. (38) 

We have now obtained the desired result, i.e., the func-

tion that describes how the pore pressure filed changes 

with time as follows 𝑢𝑤ሺ𝑟, 𝑧, 𝑡ሻ =𝑢ሺ𝑟0, 𝐻, 0ሻ𝑓ሺ𝑟ሻ𝑓ሺ𝑧ሻ 𝑒𝑥𝑝 {− (𝑐𝑟𝑟𝑝𝐵+𝑐𝑧𝐶𝐴 ) 𝑡}. (39) 

This result is simple to use and is also flexible to ac-

commodate different pore pressure profiles. A particular 

formula is obtained when 𝑓ሺ𝑟ሻ and 𝑓ሺ𝑧ሻ  are specified.  

The degree of consolidation may then be defined as in 

before as 

𝑈 = 1 − 𝑢ሺ𝑟,𝑧,𝑡ሻ𝑢ሺ𝑟,𝑧,0ሻ = 1 − 𝑒𝑥𝑝 {− (𝑐𝑟𝑟𝑝𝐵+𝑐𝑧𝐶𝐴 ) 𝑡}. (40) 

The desired properties 𝑙𝑖𝑚 𝑈𝑡→0 = 1 and 𝑙𝑖𝑚 𝑈𝑡→∞ = 0 are 

satisfied. We can also solve for the consolidation time as 

𝑡 = 𝑇̄𝑟02𝑐𝑟 , (41) 

where 𝑇 is a time factor and given as 

𝑇̄ = 𝐴 𝑙𝑛ሺ1−𝑈ሻ𝑟02(𝑟𝑝𝐵+𝑐𝑧𝑐𝑟𝐶). (42) 

𝐴, 𝐵 and 𝐶 are determined once 𝑓ሺ𝑟ሻ and 𝑓ሺ𝑧ሻ are spec-

ified. Before proceeding to a particular solution, let us 

show how 𝐴, 𝐵 and 𝐶 are related to each other. 

𝐵𝐶 = 𝜕𝑓ሺ𝑟ሻ𝜕𝑟 |𝑟=𝑟𝑝 𝜕𝑓ሺ𝑧ሻ𝜕𝑧 |𝑧=0 ∫ 𝑓ሺ𝑧ሻ𝑑𝑧𝐻0 ∫ 𝑟𝑓ሺ𝑟ሻ𝑑𝑟𝑟𝑝𝑟0  (43) 

𝐵𝐶 = 𝜕𝑓ሺ𝑟ሻ𝜕𝑟 |𝑟=𝑟𝑝 𝜕𝑓ሺ𝑧ሻ𝜕𝑧 |𝑧=0 𝐴 (44) 

𝐵𝐶𝐴 = 𝜕𝑓ሺ𝑟ሻ𝜕𝑟 |𝑟=𝑟𝑝 𝜕𝑓ሺ𝑧ሻ𝜕𝑧 |𝑧=0 (45) 

Note that the righthand terms are the hydraulic gradi-

ents at the boundaries, 𝑧 = 0 and 𝑟 = 𝑟𝑝. We can thus al-

ternatively write  

𝐵𝐶𝐴 = 𝑖𝑟𝑝𝑖𝑧=0 (46) 

where 𝑖𝑟𝑝 is the hydraulic gradient at the boundary 𝑟 = 𝑟𝑝 

and 𝑖𝐻 is the hydraulic gradient at 𝑧 = 0. 

Now, let us consider functions for 𝑓ሺ𝑟ሻ and 𝑓ሺ𝑧ሻ ac-

cording to parabolic functions given as:  

𝑓ሺ𝑟ሻ = 1 − ( 𝑟−𝑟0𝑟𝑝−𝑟0)2
;𝑓ሺ𝑧ሻ = 1 − (𝑧−𝐻𝐻 )2

. (47) 

It is further assumed that the pore pressure follows the 

same distribution throughout the consolidation process. 

This may not be entirely true but we hold it to be accurate 

enough when we are interested in ranges of higher degree 

of consolidation. If for instance Terzaghi’s [2] solution 

for the differential equation that describes the one-dimen-

sional consolidation is considered, for small time, 𝑡 from 

the start of consolidation, the curve of 𝑓ሺ𝑧, 𝑡ሻ is more ac-

curately described by an error function. The curves be-

come more and more parabolic towards the steady state 

condition as 𝑡 → ∞. For the degree of consolidation 

greater than 25%, the difference between the exact ana-

lytical solution and the approximation with a parabolic 

pore pressure profile is practically small and may hence 

be considered accurate enough.  

For parabolic functions 𝑓ሺ𝑟ሻ and 𝑓ሺ𝑧ሻ  given in Eqs.47 

we obtain 

𝑖𝑧=0 = − 2𝐻 and 𝑖𝑟𝑝 = − 2𝑟𝑝−𝑟0 (48) 

and therefore 

𝐴 = ∫ 𝑟 [1 − ( 𝑟 − 𝑟0𝑟𝑝 − 𝑟0)2] 𝑑𝑟𝑟𝑝𝑟0 ∫ [1 − (𝑧 − 𝐻𝐻 )2] 𝑑𝑧𝐻
0  

= −4𝑟𝑝3𝑟0 + 3𝑟𝑝4 + 12𝑟𝑝𝑟03 − 5𝑟04 − 6𝑟𝑝2𝑟0212ሺ𝑟𝑝 − 𝑟0ሻ2 . 2𝐻3  for 𝑟𝑝 >> 𝑟0, 𝐴 ≈ 16 𝐻𝑟𝑝2, (49) 



 

𝐵 = 𝑟𝑝𝑖𝑟𝑝 ∫ [1 − (𝑧−𝐻𝐻 )2] 𝑑𝑧𝐻0 = 23 𝑟𝑝𝑖𝑟𝑝𝐻, (50) 

𝐶 = 𝜕𝑓ሺ𝑧ሻ𝜕𝑧 |𝑧=0 ∫ 𝑟𝑓ሺ𝑟ሻ𝑑𝑟𝑟𝑝𝑟0 = 𝑖𝑟𝑝𝑖𝐻 𝐴𝐵. (51) 

Accordingly, 𝑢ሺ𝑟, 𝑧, 𝑡ሻ, the degree of consolidation, 𝑈, 

and the time factor 𝑇 can be determined making use of 

Eqs.39 and 41 respectively. Example plots of the normal-

ized plastified radius versus the time factor is shown in 

Fig.5. The solid lines are from the approximate solutions 

and the points are from measurements [5]. 

The pore pressure field equation can now be summa-

rized as  𝑢ሺ𝑟, 𝑧, 𝑡ሻ = 𝑢ሺ𝑟0, 𝐻, 0ሻ𝑓ሺ𝑟, 𝑡ሻ𝑓ሺ𝑧, 𝑡ሻ (52) 

in which, 

𝑓ሺ𝑟, 𝑡ሻ = 𝑓ሺ𝑟ሻ 𝑒𝑥𝑝 {−𝑐𝑟𝑟𝑝 𝐵𝐴 𝑡} (53) 

and 

𝑓ሺ𝑧, 𝑡ሻ = 𝑓ሺ𝑧ሻ 𝑒𝑥𝑝 {−𝑐𝑧 𝐶𝐴 𝑡}. (52) 

The solution can be easily adapted for other types of 

pore pressure profiles. 

 

Figure 5. Time factor with normalized plastified radius for different 

degrees of consolidation: Theory (lines) and Experiment (points) 

4.2. Reduced seepage surface due to multiple 

pile neighbors and other impermeable 

boundary conditions 

There are many conditions in practice where it may be 

approperiate to consider portions of the seepage 

boundaries as impermeable. For instance, the radial 

seepage boundary may get reduced in the case of multiple 

piles, if the piles are placed at less than a distance of 2𝑟𝑝 

from each other. See Fig.6 for the illustration for the case 

of two neighboring piles. 

Next, we will devise a simple approach for the 

consideration of the impermeable portions of the seepage 

boundaries. Recall that 

𝛺 𝜕𝑢̄𝜕𝑡 = 𝑐𝑟 𝛾𝑤𝑘𝑟 ∫ 𝑞𝑟𝑑𝑆𝑧𝑆 + 𝑐𝑧 𝛾𝑤𝑘𝑧 ∫ 𝑞𝑧𝑑𝑆𝑟𝑆 . (53) 

Let  𝛽𝑖 be the central angle subtended by the impermeable 

portion of the radial seepage surface of radius 𝑟𝑝.  

Similarly, let 𝜃𝑖 be the central angle subtended by the 

impermeable portion of the vertical seepage boundary. 

The infinitesimal area of the seepage surfaces in the 

respective flow directions are then written as 𝑑𝑆𝑧 = ሺ2𝜋 − 𝛴𝛽𝑖ሻ𝑟𝑝𝑑𝑧, 𝑑𝑆𝑟 = ሺ2𝜋 − 𝛴𝜃𝑖ሻ𝑟𝑑𝑟. (54) 

The summation implies that all 𝛽𝑖’s and 𝜃𝑖’s are to be 
summed in their respective directions. Accordingly, 

Equation (53) is written as 

𝛺 𝜕𝑢̄𝜕𝑡 = ሺ2𝜋 − 𝛴𝛽𝑖ሻ𝐾𝑟𝑝 ∫ 𝑞𝑟𝑑𝑧𝐻0 + ሺ2𝜋 −𝛴𝜃𝑖ሻ𝐾 ∫ 𝑞𝑧𝑟𝑑𝑟𝑟𝑝𝑟0  (55) 

which leads us to 

2𝜋𝐴 𝜕𝑓ሺ𝑡ሻ𝜕𝑡 = −{ሺ2𝜋 − 𝛴𝛽𝑖ሻ𝑐𝑟𝑟𝑝𝐵 + ሺ2𝜋 −𝛴𝜃𝑖ሻ𝑐𝑧𝐶}𝑓ሺ𝑡ሻ (56) 

and thereby 

𝑓ሺ𝑡ሻ = 𝑒𝑥𝑝 {− (ሺ2𝜋−𝛴𝛼̄𝑖ሻ𝑐𝑟𝑟𝑝𝐵+ሺ2𝜋−𝛴𝜃𝑖ሻ𝑐𝑧𝐶2𝜋𝐴 ) 𝑡}.    (57) 

The pore pressure field is then given by 𝑢𝑤ሺ𝑟, 𝑧, 𝑡ሻ =𝑢ሺ𝑟0, 𝐻, 0ሻ𝑓ሺ𝑟ሻ𝑓ሺ𝑧ሻ. 𝑒𝑥𝑝 {− (ሺ2𝜋−𝛴𝛽𝑖ሻ𝑐𝑟𝑟𝑝𝐵+ሺ2𝜋−𝛴𝜃𝑖ሻ𝑐𝑧𝐶2𝜋𝐴 ) 𝑡}   

     (58) 

 

Figure 6.  Possible seepage surface reductions due to impermeable 

obstructions 
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where A, B and C are as defined elsewhere. Following 

this result, the degree of consolidation may be defined as 

𝑈 = 1 − 𝑢𝑤ሺ𝑟,𝑧,𝑡ሻ𝑢𝑤ሺ𝑟,𝑧,0ሻ = 1 −𝑒𝑥𝑝 {− (ሺ2𝜋−𝛴𝛽𝑖ሻ𝑐𝑟𝑟𝑝𝐵+ሺ2𝜋−𝛴𝜃𝑖ሻ𝑐𝑧𝐶2𝜋𝐴 ) 𝑡} (59) 

We can also solve for the consolidation time as 

𝑡 = 𝑇̄𝑟02𝑐𝑟  (60) 

where, 

𝑇̄ = 2𝜋𝐴 𝑙𝑛ሺ1−𝑈ሻ𝑟02(ሺ2𝜋−𝛴𝛽𝑖ሻ𝑟𝑝𝐵+ሺ2𝜋−𝛴𝜃𝑖ሻ𝑐𝑧𝑐𝑟𝐶). (61) 

The higher ∑ 𝛽𝑖 and/or ∑ 𝜃𝑖, the higher is the 

consolidation time required for achieving a given degree 

of consolidation. The pore pressure field can also be 

written as 𝑢𝑤ሺ𝑟, 𝑧, 𝑡ሻ = 𝑢ሺ𝑟0, 𝐻, 0ሻ𝑓ሺ𝑟, 𝑡ሻ𝑓ሺ𝑧, 𝑡ሻ, (62) 

in which 

𝑓ሺ𝑟, 𝑡ሻ = 𝑓ሺ𝑟ሻ 𝑒𝑥𝑝 {−ሺ1 − 12𝜋 𝛴𝛽𝑖ሻ𝑐𝑟𝑟𝑝 𝐵𝐴 𝑡} (63) 

and 

𝑓ሺ𝑧, 𝑡ሻ = 𝑓ሺ𝑧ሻ 𝑒𝑥𝑝 {−ሺ1 − 12𝜋 𝛴𝜃𝑖ሻ𝑐𝑧 𝐶𝐴 𝑡}. (64) 

For long piles, practically, the predominant 

consolidation is radial. Thence,  𝑢ሺ𝑟, 𝑧, 𝑡ሻ ≈ 𝑢ሺ𝑟0, 𝐻, 0ሻ𝑓ሺ𝑟, 𝑡ሻ (65) 

may be considered. In that case the time factor will be 

𝑇̄𝑟 = 2𝜋 𝑙𝑛ሺ1−𝑈ሻ𝑟02ሺ2𝜋−𝛴𝛽𝑖ሻ𝑟𝑝 𝐴𝐵 (66) 

Let us denote the timefactor, T,r for the pile whose 

seepage surface in radial direction is defined by 2𝜋 − 𝛴𝛽𝑖 
(𝛴𝛽𝑖 being the sum of all central angles subtended by the 

seepage obstractions in the radial directuion). The ratio 

of the time factor T,r to the time factor T is then given by 

𝑇̄𝛽,𝑟𝑇̄𝑟 = 𝑓𝛼 = 2𝜋2𝜋−𝛴𝛽𝑖 (67) 

Fig.7 shows the plot of values of  𝑓𝛼 gainst 
𝛴𝛽𝑖𝜋 . 

 

 

Figure 7. : Modified hydrodynamic period for a pile group with inter-

fering angle 𝛴𝛽𝑖 normalized by a hydrodynamic period for unob-

structed consolidation. Only radial consolidation is considered.  

5. Conclusions 

We have presented solutions for describing a consoli-

dation processes in a cylindrical coordinate system. We 

began with Finite Difference discretization of the differ-

ential equation of consolidation which can be used for 

solving the problem numerically for more general condi-

tions when it is not possible to assume a homogeneous 

material and simple boundary conditions. We then 

looked for possible exact analytical solutions and finally, 

we presented simplified approximations by fixing the 

shape of the pore pressure profile and the boundary con-

ditions in time and employing the Gauss divergence the-

orem for describing the average consolidation processes. 

The solutions so obtained may differ from the exact ana-

lytical solutions at the beginning of the consolidation pro-

cess. The propagation of the pore pressure front in radial 

direction is also not considered. However, such solutions 

can be employed for simple approximations and elucidat-

ing qualitative aspects of the consolidation process. The 

approximate solutions can also be valuable for sharpen-

ing engineering judgement of the process. The approach 

can be employed when problems of similar nature are en-

countered. For instance, they can be for approximating 

effect of drains on the consolidation processes.  

 In this paper, we have treated the problem as a decou-

pled problem in such a way it is accessible to analytical 

solutions. The problem can be investigated in a more gen-

eral setup using advanced numerical methods, such as 

FEM, where coupled flow and deformation phenomena 

can be considered.  
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A tribute 

…to my loving grandmother, the late Emahoy Tru-

work Asfaw who devoted her life to raising me with 

aboundance of unconditional love whom I miss dearly.  

 

Symbols  

Variables 𝑖𝑧=0: Hydraulic gradient at z =0 𝑖𝑟𝑝:  Hydraulic gradient at 𝑟 = 𝑟𝑝 𝑛:  Unit normal to the surface area, 𝑆  𝑞:     Seepage (with sucscrpt r-> radial direction, with 

subscript z-in the vertical direction) 𝑟:  Radial distance 𝑟0:  Pile radius 𝑟𝑝:  Plastified radius 𝑆:  Surface area 𝑢:  pore pressure 𝑢̄:  Average pore pressure (over a volume) 𝑈:  Degree of consolidation  𝑡:  Time 𝑇̄:   Time factor 𝑧:  Vertical distance 𝛺:  Volume element 

 

Parameters/coefficients/constants 𝛽𝑖:  Central angle subtended by obstructions in the 

radial seepage direction 𝑐𝑟:  Radial consolidation coefficient 𝑐𝑧:  Vertical consolidation coefficient 𝛾𝑤:  Unit weight of water 𝐻:  Pile height (length) or half the pile length in 

the case of two way drainage 𝑘𝑟:  Permeability in the radial direction 𝑘𝑧:  Permeability in the vertical direction 𝑐𝑖, 𝑐𝑗:  coefficients that depend on the initial pore 

pressure profile 𝜆𝑖:  Eigen values of the Bessel function, J0 𝜃𝑖: Central angle subtended by obstructions in the 

vertical seepage direction 

Functions 𝐽0: Bessel function of the first kind and order zero 𝑓ሺ𝑟ሻ: A function that describes the pore pressure 

profile in the radial direction 𝑓ሺ𝑧ሻ: A function that describes the pore pressure 

profile in the vertical (z) direction 

Operators 𝑑:  Infinitesimal increment 𝛥:  Finite increment 𝜕𝜕𝑥:  Partial differential wrt the variable x 𝛻 = 𝜕𝜕𝑥: Spatial variation (with subscript r-in the r di-

rection, with subscript z, in the z (vertical) di-

rection) 

𝛻2 = 𝜕2𝜕𝑥2: Laplacian (with subscript r-in the r direc-

tion, with subscript z, in the z (vertical) direc-

tion) 
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