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ABSTRACT: This study assesses the practical limitations of using the multichannel analysis of surface waves (MASW) 

method for detecting subsurface anomalies. The sensitivity of MASW dispersion data to the presence of subsurface 

anomalies is examined through various two-dimensional (plane-strain) finite-difference elastic wave-propagation 

simulations. These simulations were performed on models with anomalies of varying size, stiffness, and depth. The misfit 

between the dispersion data from a model with an anomaly (treatment model) and the same model without an anomaly 

(control model) were compared as a quantitative means of discerning if the anomaly was reliably detectable (i.e., outside 

the bounds of common dispersion data uncertainty). The ability of MASW to detect an anomaly of a given size, stiffness, 

and depth is summarized in normalized figures, which are intended as a feasability tool for those seeking to use MASW 

for anomaly detection. 
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1. Introduction 

In order to perform geotechnical design, it is necessary 

to obtain accurate information regarding the characteris-

tics of the subsurface, which include the subsurface ma-

terial’s physical properties and spatial variability. Unfor-

tunately, obtaining extensive information with the 

current state-of-practice remains highly impractical. This 

is especially true when using invasive methods, such as 

drilling boreholes, due to the time and cost involved. As 

a result of the need for more complete information in re-

cent years, non-invasive methods, especially those capa-

ble of producing two- and three-dimensional subsurface 

images, have seen a marked increase in their popularity. 

These methods include refraction tomography, reflection 

tomography, electrical resistivity imaging (ERI), full-

waveform inversion (FWI), and the multichannel analy-

sis of surface waves (MASW) method [1-4]. This study 

will focus on the MASW method due to its wide-spread 

use. 

The MASW method [5] was developed as a relatively 

inexpensive and efficient non-invasive test which uses 

the propagation of surface waves to evaluate subsurface 

stiffness. MASW involves recording actively generated 

surface waves as they travel down a linear array of re-

ceivers. These recordings are then processed to obtain 

surface wave dispersion data using one of several two-

dimensional (i.e., time and space) transformations [6, 7]. 

This estimate of the site’s surface wave dispersion char-

acteristics (i.e., the variation of surface wave velocity as 

a function of frequency or wavelength) is often referred 

to as the experimental dispersion curve. This measure-

ment of the site’s dispersion is generally not the end goal, 

but rather is inverted to produce an estimate of the site’s 

one-dimensional shear-wave velocity (Vs) profile. This 

profile is generally believed to be representative of the 

soil beneath the center of the array [8]. Multiple 1D Vs 

profiles may then be combined and interpolated to form 

a pseudo-2D image of the subsurface.  

This process for using MASW to develop a pseudo-

2D subsurface image has shown varying degrees of suc-

cess in literature, particularly regarding the detection of 

subsurface irregularities. For example, when comparing 

the MASW method to seismic refraction and ERI, 

Groves et al. [9] found that MASW testing was the most 

successful at detecting three distinct soil layers at the 

near-surface (i.e., the top 4 m) and that it was able to de-

tect an increase in stiffness due to a large till layer located 

approximately 4.6 to 10.7 m deep across the site, but pro-

vided an inaccurate estimate of the depth to that layer. In 

contrast, ERI was shown to provide the most accurate es-

timate to the soil-till interface. Alternatively, Ismail et al. 

[10] found that the MASW method was not able to pro-

vide high vertical or lateral resolution of soil layers com-

pared to the shear-wave reflection method but provided 

relatively better Vs measurements at a lower time and 

cost. Mahvelati and Coe [11] found that using MASW 

testing to detect the geometry of unknown bridge foun-

dations could produce mixed results. Specifically, the lat-

eral extent of the bridge’s foundation was relatively ac-
curate while the depth and thickness were smaller than 

expected based on prior knowledge regarding the foun-

dation’s design. Nolan et al. [12] used a shallow, man-

made void to illustrate the accuracy of MASW testing. 

They found that it was possible to detect a subsurface 

anomaly using MASW, although there was limited reso-

lution in both the vertical and lateral geometry of the 

void. Pan et al. [13] analyzed the ability of MASW test-

ing to detect lateral heterogeneity by creating a synthetic 

model containing a checkerboard pattern of stiff and soft 

soil. They discovered that MASW had poor resolution 

and the checkerboard model could not be recovered, 

whereas using the same model analyzed with FWI al-

lowed for much higher resolution. 



 

Given the mixed conclusions regarding the MASW 

method’s ability to detect and accurately resolve under-

ground irregularities, this paper seeks to evaluate the pos-

sibility of detecting subsurface anomalies by using a va-

riety of synthetic models and the MASW method. In this 

study, MASW-style testing is performed numerically on 

a control model without an anomaly and a number of 

treatment models containing anomalies of varying size, 

location, and stiffness. Each model contains a simulated 

array of receivers and multiple source locations based on 

testing parameters commonly found in literature. As a 

simplification each anomaly was rectangular in shape, 

homogenous, and centered underneath the array. The 2D 

finite-difference code DENISE was used to simulate the 

MASW wavefield [14]. The experimental waveforms 

were then processed using standard MASW techniques 

to estimate an experimental dispersion curve. The misfit 

between the experimental dispersion curves from each 

treatment and control model pair was then calculated. 

The misfit values were then summarized in figures for 

use as a guide to quantify the feasibility of detecting a 

subsurface anomaly. 

2. Methodology 

2.1. MASW method 

The MASW method relies upon the propagation of 

surface waves (Rayleigh or Love) to evaluate subsurface 

soil stiffness. The velocity (v) of the waves as they travel 

through the subsurface is dependent not only on the prop-

erties of the material through which they propagate, but 

also on their frequency (f). This dependence of the 

waves’ phase velocities on frequency is called dispersion. 

The dispersive nature of surface waves is useful for site 

characterization because the depth of penetration into the 

ground may be thought of as a function of a wave’s meas-
ured wavelength (λ = v/f). A rough estimate of the depth 

to which the wave can “see” (i.e., dmax) is generally ap-

proximated to be about half its wavelength (λ/2). There-

fore, given that frequency and wavelength have an in-

verse relationship, it follows that a low 𝑓 corresponds to 

a longer λ and vice versa. Consequently, higher frequen-

cies will propagate at velocities corresponding to shal-

lower layers, while lower frequencies will propagate at 

velocities that are influenced by both the shallow and 

deeper layers, as illustrated schematically in Fig. 1.  

To perform MASW testing, a seismic source is oper-

ated in-line with the axis of the array of receivers to gen-

erate surface waves, which are then recorded by the array 

of receivers. The array of receivers can vary in number 

(generally between 12 and 96) and spacing (generally be-

tween 0.5 and 5 m). Because it is believed the length of 

the receiver array governs the data’s horizontal resolu-
tion, care should be taken when determining appropriate 

parameters to use while testing [16]. Furthermore, the 

length of the array should also be chosen based on the 

desired depth of investigation. It is typical to choose an 

array length that is at least twice the investigation depth, 

or equal to the maximum desired wavelength [17]. Addi-

tionally, a seismic source with appropriate frequency 

bandwidth should be chosen based on desired testing 

depths due to the relationship between depth of penetra-

tion and the surface wave frequency. Multiple shot off-

sets (i.e., the distance from the source to the nearest re-

ceiver in the array) may be used to improve gathered data 

[17]. It is also important to choose proper shot offsets for 

the mitigation of near-field effects. 

dmax

 
Figure 1. The relationship between surface wave vertical particle mo-

tion, wavelength, and frequency are shown. Note that shorter 

wavelengths correspond to higher frequencies, whereas longer 

wavelengths correspond to lower frequencies. Fig. 1b shows one 

wavelength, while Fig. 1c shows dmax, or λ/2, which is the “visi-

ble” depth [modified from 15]. 

The recorded time histories gathered by the array can 

then be analyzed to obtain measurements of the site’s dis-
persion characteristics. This is completed by using any 

number of various two-dimension wavefield transfor-

mations, with the simplest being a two-dimensional Fou-

rier transform to the frequency-wavenumber (i.e., f-k) 

domain [6]. The points of maximum power of this two-

dimensional transformation represent a measurement of 

the surface waves’ dispersion, and these measurements 

are typically represented by plotting phase velocity as a 

function of frequency. Ultimately, these measurements of 

phase velocity are inverted to obtain a 1D Vs profile. If 

multiple MASW arrays were set up in close proximity to 

one another, their resulting 1D Vs profiles can be con-

toured to produce a pseudo-2D and, in certain cases, a 

pseudo-3D image. The purpose of this work is to 

primarily assess the first stage of this process (i.e., the 

ability to detect an anomaly at the dispersion stage). 

However, it should be noted that detecting an anomaly at 

the dispersion stage does not imply that it can be 

accurately resolved during the inversion phase. 

Accurately resolving the depth, size, and stiffness of an 

anomally via inversion is a much more complicted 

problem due to the non-unique nature of inverse 

problems.  

2.2. Model development 

To simulate MASW testing, DENISE, a 2D plane-

strain finite-difference program, was used [14]. This 

program simulates wave propagation by solving the 2D 

wave equation for an elastic medium. Each model was 

256 m in length and 64 m in depth and discretized into 

square 0.25 m elements. The order of the finite-difference 

operator was eight, and PML boundary conditions were 

applied to the bottom and side faces of each model. In 

particular, the width of the absorbing frame was 25 

gridpoints, and the frequency within the PML was 10 Hz. 



The damping velocity was set to 1,500 m/s, and the 

degree of the damping function was 2.  The remaining 

inputs for each model included user-defined receiver 

spacing, array length, source type, and sampling 

parameters, which are detailed in Section 2.3. 

Each control model (i.e., with no anomaly present) 

was generated to contain a uniform body of soil (i.e., a 

half-space) with a constant density (ρ), Poisson’s ratio 
(ν), and Vs. Two control models were considered, where 

one had Vs equal to 150 m/s and the other 300 m/s, while 

ρ and ν were held constant at 2,000 kg/m3 and 0.33, 

respectively. 

Various anomalies were then placed into each half-

space to create the treatment models. These anomalies 

were selected to be noticeably softer/stiffer than the 

surrounding material. Specifically, impedance contrasts, 

defined as the ratio of the anomaly Vs to the half-space 

Vs, of 1.5, 2.0, and 5.0 were used for models containing a 

stiff anomaly, whereas values of 0.20, 0.50, and 0.67 

were used for soft anomalies. This means for a half-space 

Vs of 150 m/s, stiff anomalies had Vs equal to 225, 300, 

and 750 m/s, while soft anomalies were created with Vs 

equal to 30, 75, and 100 m/s. Similarly, for a half-space 

Vs of 300 m/s, stiff anomalies had Vs equal to 450, 600, 

and 1,500 m/s, while soft anomalies were created to have 

values of Vs equal to 60, 150, and 200 m/s. 

Each anomaly was centered under the array to 

represent a single snapshot in space representative of a 

traditional 2D MASW survey. An anomaly directly under 

the center of the array should yield the best opportunity 

to accurately detect and resolve it. To examine the 

sensitivity of MASW to the width of an anomaly, various 

lateral extents between 1 and 36 m were used. To test the 

vertical resolution of MASW, anomalies were placed at 

top depths increasing from 2 to 20 m. Anomaly 

thicknesses of 1, 2, and 4 m were also considered to 

assess the detectibility of various irregularities that may 

be present in soil. Fig. 2 is a schematic of a typical 

treatment model with the previously mentioned variables 

listed for ease of understanding.  

 
Figure 2. A general schematic for each treatment model is shown. 

The half-space and anomaly shear-wave velocities were varied to 

create a range of impedance contrasts, while the top depth, thick-

ness, and lateral extent of each anomaly were varied to represent 

a set of possibilities that may be encountered during field testing. 

Roughly 300 models were created for each unique impedance 

contrast and half-space Vs pairing, such that over 3,000 models in 

total were created for all impedance contrasts. 

 

Additionally, to more easily reference models, each 

model was assigned a unique identification code. Each 

code consists of a string of letters and numbers, which are 

representative of each variable and its value, as shown in 

Table 1. For example, given an anomaly that is 36 m 

wide, 4 m thick, at a depth of 20 m, and with an 

impedance contrast of 0.67 placed in a half-space with Vs 

equal to 150 m/s, the model may be identified as 

I0.67-H150-T4-D20-L36. Because over 3,000 unique 

models were generated for this study, this naming 

convention was adopted so that each model has a 

descriptive identifier that may be quickly referenced. 

Table 1. Summary of model variables with associated values 

 

Variable Acronym Values 

Impedance Contrast I 
0.67, 0.2, 0.5; 1.5, 2.0, 

5.0 

Half-space Vs (m/s) H 150, 300 

Anomaly Thickness (m) T 1, 2, 4 

Top Depth (m) D 2 – 20 

Lateral Extent (m) L 
1, 4, 6, 10, 14, 19, 25, 

30, 36 

2.3. Model testing parameters 

To ensure the 2D MASW testing was being performed 

in conformance with the standard of practice, a literature 

review was performed to summarize a “typical” test con-
figuration. The literature review examined parameters 

such as array lengths, receiver spacings, and source fre-

quency content. When analyzing various case studies, it 

was determined that 24 receivers spaced at approxi-

mately 1 m [4, 11, 18-20] were used to form an array. A 

minority of studies used 24 receivers with a receiver 

spacing greater than 1 m, though this was done explicitly 

in the hope of obtaining longer wavelengths and therefore 

deeper testing depths [3, 21-22]. Others chose to use a 

constant 1 m receiver spacing but utilized more than 24 

receivers to similarly create longer array lengths [9, 12, 

23]. Therefore, to be consistent with the majority of case 

histories, each simulation used 24 receivers spaced at 1 

m for a total array length of 23 m. 

In field tests, the cheapest and most commonly used 

seismic source is the sledgehammer. Sledgehammers 

weighing at least 5 kg can be used to obtain data across a 

relatively large frequency band, and many case studies 

have utilized sledgehammers with varying degrees of 

success [3-4, 11, 18-19, 21]. However, this source typi-

cally does not provide much energy at lower frequencies 

(less than 8 Hz), which means more powerful sources, 

such as an accelerated weight drop or vertically operated 

shaker, should be used if lower frequencies are desired 

[17]. Ultimately, it was decided that the simulations 

should be conducted under very favorable source condi-

tions in order to provide the best chance at detecting 

anomalies, such that frequencies from 5 Hz – 100 Hz 

were considered for all models. Multiple sources were 

tested until data were obtained within this bandwidth, and 

it was determined that the desired source bandwidth was 

acquired using a fifth-order Butterworth filtered spike 



 

wavelet. A timestep of 0.02 ms was used for a total rec-

ord time of 3 s, and the output waveforms were then 

downsampled to 400 Hz.  

After determining the array length and bandwidth of 

the seismic source, various shot locations were analyzed 

to determine which location(s) would provide the highest 

quality dispersion data. Near-field effects, which occur 

when surface waves have not yet fully developed before 

being recorded by a receiver, are caused by having a 

small offset between the array and the source. To avoid 

near-field effects, it is recommended that a source offset 

of at least three to five times the receiver spacing should 

be used [17]. In this study, an offset of ten times the re-

ceiver spacing, or -10 m, was used for the closest shot 

location. This was due to a shot location of -5 m yielding 

clear near-field data when compared to further offsets. It 

was determined that shot offsets of -10, -15, -20, 

and -25 m provided acceptable data without obvious 

near- or far-field effects for the majority of the models. 

Given that the models were known to be symmetric, shots 

were only required off one side of the array. A summary 

of testing parameters used in this study are included in 

Table 2. 

Table 2. Summary of model testing parameters 

 

No. of receivers 24 

Receiver spacing 1 m 

Array length 23 m 

Type of source Spike wavelet, 0-15 Hz 

Sampling frequency 400 Hz 

Record length 3 s 

Nominal offset -10 m 

Source spacing 5 m 

3. Data analysis 

3.1. Processing dispersion data 

After running the control and treatment models, the 

simulated waveforms were transformed in the frequency 

domain using the frequency domain beam former 

(FDBF) method [7]. The FDBF used an inverse-ampli-

tude weighting scheme with a cylindrical steering vector. 

All calculations were performed over a frequency band-

width of 1 – 200 Hz. After the transformation, the maxi-

mum spectral peak for each frequency was automatically 

chosen and plotted to form dispersion curves. The disper-

sion curves for multiple offsets were then plotted together 

and statistically combined to form a mean dispersion 

curve with uncertainty following the recommendations of 

[24]. Fig. 3a-b show examples of a dispersion image for 

a -10 m offset for models composed of a half-space with 

Vs equal to 300 m/s and an anomaly that is 2 m thick, 

36 m wide, at a top depth of 5 m, and with a Vs of 60 m/s 

and 1,500 m/s (models I0.20-H300-T2-D5-L36 and 

I5.00-H300-T2-D5-L36), respectively. The hollow white 

circles identify the peak energy at each frequency. 

Fig. 3c-d show the combined dispersion data for all shot 

offsets for each model. It should be noted that the disper-

sion curves in Fig. 3c-d have not yet been processed to 

remove data points from higher modes, outliers, and data 

beyond the 5 Hz – 100 Hz frequency bandwidth. 

Prior to binning dispersion data and calculating phase 

velocity statistics (mean and standard deviation), clear 

outliers were removed from each data set, as is standard 

for MASW. This was completed by visually determining 

which data significantly deviated from the mean of the 

dispersion data for a given frequency. Data below 5 Hz 

and above 100 Hz were omitted to provide a consistent, 

but optimistic, frequency bandwidth for all models. To 

ensure the dispersion data from all models were provided 

at the same frequencies, each set of dispersion data was 

logarithmically resampled between 5 and 100 Hz with 

100 points. 

 When viewing the dispersion curves, higher mode 

trends were sometimes visible in addition to the funda-

mental mode. Although the fundamental mode alone is 

typically identified for use in inversions during 2D 

MASW processing, higher mode data can also provide 

useful information regarding the soil stratigraphy. In this 

study, not all models exhibited the presence of higher 

mode data. Therefore, an effort was made to consistently 

process the dispersion data in an attempt to recover a dis-

persive trend as close to the fundamental mode as possi-

ble. Although, in some cases, this required including dis-

persion data points along a trend of superposed higher 

modes. To illustrate this, Fig. 3e-f show the dispersion 

data from Fig. 3c-d after trimming and calculating statis-

tics. Fig. 3e-f show the trimmed dispersion curve with the 

lower-bound trend that is presumably close to the funda-

mental mode, but should more accurately be termed a su-

perposition of modes. 

3.2. Calculating relative misfits 

Once the dispersion curves were processed for all 

models, relative misfits between the control models (i.e., 

the half-space models) and their associated treatment 

models were calculated using the L1 norm of dispersion 

residuals. Although the L2 norm is more commonly used, 

various studies have found that using the L1 norm is 

equally applicable. Specifically, [25] found that using an 

L1 norm with FWI provides more accurate 2D Vs maps 

relative to the L2 norm, while [26] found that inverting 

electrical resistivity tomography data with L1 norm im-

plementations allowed for better resolution when analyz-

ing sharp boundaries between materials with high resis-

tivity contrasts. Additionally, the L1 norm has an 

established low sensitivity to outliers when compared to 

the L2 norm. Therefore, the L1 norm misfit was deemed 

to be more suitable for this study. The equation is as fol-

lows: 

L1 misfit = ∑ |xci - xti|
σcinf

nf

i =1

 (1) 

where xci is the Rayleigh wave phase velocity of the con-

trol model at frequency fi, xti is the Rayleigh wave phase 

velocity of a treatment model at fi, σci is the standard de-

viation of the control model’s dispersion data at fi, and nf 

is the number of frequency samples being considered. 

From Eq. (1), it can be deduced that a misfit of one would 

correspond to a treatment dispersion curve that is on 



 
Figure 3. Dispersion data for two models containing an anomaly that is 2 m thick, 36 m wide, and at a top depth of 5 m. The shear-wave velocity of 

the surrounding soil is 300 m/s while the anomaly’s shear-wave velocity is 60 m/s (left column) or 1,500 m/s (right column). Specifically, the 

model shown in the left column is model I0.20-H300-T2-D5-L36, while the right column is model I5.00-H300-T2-D5-L36. (a-b) show the cor-

responding dispersion images for the closest shot offset with peak energies identified as white hollow circles at each frequency. (c-d) show the 

raw dispersion data before trimming and calculating statistics. In both (c) and (d), the presence of higher modes is clearly visible. (e-f) show the 

same dispersion data from (c-d) after trimming and calculating statistics to obtain a lower-bound “fundamental mode” from the superposed 

higher modes. The solid black line in (c-f) represents the theoretical phase velocity of the half-space, while the dashed lines represent an as-

sumed 5% coefficient of variation on phase velocity. 

average one standard deviation away from the mean of a 

control dispersion curve. Therefore, a misfit less than one 

indicates a treatment model’s dispersion curve is on av-

erage within the bounds of uncertainty of the control 

model’s dispersion curve and not easily distinguishable 

from the control model. Note that a constant 5% COV 

was used to estimate the control models’ dispersion un-

certainty. Several blind studies have shown that experi-

mental dispersion data can typically be resolved within 

5% - 10% COV [27-28]. The lower COV value was cho-

sen to again provide more favorable circumstances for 

detecting the anomalies in the models.    

4. Results and discussion 

Using Eq. (1), relative misfits were calculated between 

each treatment model and its corresponding control 

model. An example of a set of three treatment models 

compared to a control model is shown in Fig. 4. In this 



 

case, the control model consists of a half-space with Vs 

equal to 150 m/s. Three different treatment models con-

taining anomalies that are 1 m thick, 36 m wide, and with 

a Vs of 30 m/s were chosen. These models were selected 

so that a comparison between three different top depths 

could be made (specifically, models I0.20-H150-T1-D2-

L36, I0.20-H150-T1-D6-L36, and I0.20-H150-T1-D14-

L36 were chosen). For an anomaly placed at a depth of 

2 m, 6 m, and 14 m, misfit values were measured as 4.4, 

1.4, and 0.5, respectively. Fig. 4 visually demonstrates 

that increasing misfit values correspond directly to larger 

deviations between the control model and treatment mod-

els. A treatment model with a shallow anomaly and a mis-

fit value of 4.4 is easily detectable; however, a treatment 

model with a deeper anomaly and a misfit of 0.5 is not 

easily detectable outside the bounds of typical dispersion 

data uncertainty. Additionally, these dispersion curves 

were plotted with respect to wavelength rather than fre-

quency to better illustrate the effects the depth of the 

anomaly has on misfit values. The correspondence be-

tween wavelength and depth is apparent in Fig. 4 as the 

presence of a shallow anomaly (i.e., 2 m) causes the treat-

ment model’s dispersion curve to deviate from that of the 

control model at smaller wavelengths. However, for this 

same shallow anomaly the dispersion data begins to re-

turn to the half-space velocity at long wavelengths as 

they “see” through the anomaly and into the half-space 

beneath. Note that the misfit of each model is highly non-

linear with depth. In particular, the difference in the mis-

fit when the anomaly is at 2 m is significantly (by almost 

a factor of 3 times) larger than when it is at 6 m with the 

same being true for the 6 and 14 m depths. This non-lin-

ear relationship between depth and misfit (i.e., whether 

or not the anomaly is detectable) is discussed further 

when analyzing the trends in misfit values for all models. 

After processing over 3,000 unique models, figures 

were created to summarize the trends observed in the 

misfit values (refer to Fig. 5-10). In these figures, the lat-

eral dimension of each anomaly was normalized with re-

spect to the length of the array used in the simulated tests. 

To summarize the results succinctly, plots were created 

for each unique combination of impedance contrast and 

half-space Vs as no acceptable form of velocity normali-

zation could be found to combine all results. This was 

due in part to the observation that with all other parame-

ters held constant (i.e., depth, thickness, and impedance 

contrast), absolute Vs of the half-space and anomaly are 

important and result in vastly different misfit values. 

These differences in misfit are believed to stem from non-

equal wavelengths across models. Since wavelength is a 

function of velocity and frequency, it follows that higher 

velocities will result in larger wavelengths for similar fre-

quencies and thus the potential to detect an anomaly with 

depth will vary depending on the velocities present at a 

site. To illustrate these differences, the overall maximum 

and minimum wavelengths (λmax and λmin, respectively) 

have been shown for each figure. Each figure was further 

separated by anomaly thickness and half-space (HS) ve-

locity for ease of viewing. For plotting purposes, misfit 

values over 3.0 were all assigned the same color scale, as 

values of 3.0 and higher represent clearly detectable 

anomalies. Additionally, Table 3 has been provided, 

which summarizes the key findings of each set of figures. 

 
Figure 4. Comparison of dispersion data for models containing an 

anomaly that is 1 m thick and 36 m wide at varying top depths 

(2 m, 6 m, and 14 m). The shear wave velocity of the anomalies 

is 30 m/s while the surrounding soil has a shear wave velocity of 

150 m/s. Note that as the top depth of the anomaly increases, the 

relative misfit values (indicated inside the legend in brackets []) 

for the respective dispersion curves decrease. The phase veloci-

ties are presented as a function of wavelength such that the trend 

regarding depth is more easily seen. 

Each figure presents misfit values for a fixed imped-

ance contrast as a function of the anomaly’s top depth 

(vertical axis), normalized lateral extent (horizontal axis), 

HS velocity, and anomaly thickness. A clear boundary at 

a misfit value of 1.0 was included in order to indicate the 

zone above which an anomaly will most confidently be 

detected. Specifically, the colors above the boundary line 

(the gradient from green to red) indicate that an anomaly 

within this zone is likely to be detectable, while the colors 

below the boundary line (the gradient of blue colors) in-

dicate anomalies within this zone will be more difficult 

to detect. This is not to say that the blue zone represents 

that an anomaly is impossible to detect; rather, the blue 

zone represents that an anomaly cannot be detected with 

a high degree of confidence.  

Fig. 5 shows the results for an impedance contrast of 

0.67. Fig. 5a-c are for models generated with a half-space 

Vs of 150 m/s while Fig. 5d-f are for a half-space Vs of 

300 m/s. Both rows are listed in order of increasing 

anomaly thickness, such that Fig. 5a-c and Fig. 5d-f are 

for anomalies that are 1, 2, and 4 m thick, respectively. 

From these figures, as expected, it is clear that an increase 

in anomaly thickness directly corresponds to an increase 

in the chance to detect it. The same is true with increasing 

lateral extent of the anomaly relative to the length of the 

array. However, despite the expected trends showing an 

increase in detectability for larger anomalies, the results 

for this impedance contrast indicate it may be more diffi-

cult than anticipated to easily detect anomalies. For ex-

ample, a 1 m-thick anomaly must be longer than at least 

three-quarters of the array length to have a high chance 

of being detected, while a 4 m-thick anomaly must be  

 



 
 

Figure 5.  Summary plots of misfit values for an impedance contrast of 0.67. While all figures represent the same impedance contrast, (a-c) are for 

models containing a half-space with Vs equal to 150 m/s while (d-f) are for a half-space Vs of 300 m/s. Each row is listed in order of increasing 

anomaly thickness, such that (a-c) and (d-f) are for anomalies that are 1 m, 2 m, and 4 m thick, respectively. From these figures, it can be de-

duced that as an anomaly increases in thickness, the likelihood of detecting it increases (as indicated by higher misfit values with warmer col-

ors). Additionally, the maximum depth at which an anomaly may be detected increases as the thickness increases. For higher half-space Vs val-

ues (d-f), longer wavelengths may be measured relative to lower Vs values (a-c), resulting in a higher chance of detecting anomalies at depth. 

 
 

Figure 6.  Summary plots of misfit values for an impedance contrast of 0.50. While all figures represent the same impedance contrast, (a-c) are for 

models containing a half-space with Vs equal to 150 m/s while (d-f) are for a half-space Vs of 300 m/s. Each row is listed in order of increasing 

anomaly thickness, such that (a-c) and (d-f) are for anomalies that are 1 m, 2 m, and 4 m thick, respectively. These figures show a marked differ-

ence from Fig. 5 in that across all models, anomalies in general are more likely to be detected given a higher impedance contrast between an 

anomaly and surrounding soil. In particular, the top depth at which a 1 m-thick anomaly may be detected has nearly doubled, and the likelihood 

of detecting 2 m- and 4 m-thick anomalies has significantly increased for similar depths.  



 

 
 

Figure 7.  Summary plots of misfit values for an impedance contrast of 0.20. While all figures represent the same impedance contrast, (a-c) are for 

models containing a half-space with Vs equal to 150 m/s while (d-f) are for a half-space Vs of 300 m/s. Each row is listed in order of increasing 

anomaly thickness, such that (a-c) and (d-f) are for anomalies that are 1 m, 2 m, and 4 m thick, respectively. Note that these figures vary signifi-

cantly compared to Fig. 5 and Fig 6. Specifically, (d-f) show that for an anomaly that is roughly the same length or longer than an array, the 

likelihood of detecting it is still possible even at relatively large depths. This is likely due to the high impedance contrast providing data for treat-

ment models that are easily distinguishable from that of the control models as many dispersion curves exhibited higher modes.  

 
 

Figure 8. Summary plots of misfit values for an impedance contrast of 1.5. While all figures represent the same impedance contrast, (a-c) are for 

models containing a half-space with Vs equal to 150 m/s while (d-f) are for a half-space Vs of 300 m/s. Each row is listed in order of increasing 

anomaly thickness, such that (a-c) and (d-f) are for anomalies that are 1 m, 2 m, and 4 m thick, respectively. These models are similar to those 

presented in Fig. 5; however, these models contain anomalies that are stiffer than the surrounding material. Although it is difficult to detect 1 m-

thick anomalies, the possibility of detection increases as the thickness of the anomaly increases, similar to previously discussed trends. Addition-

ally, when compared to Fig. 5, stiffer anomalies are shown to be more difficult to detect than softer anomalies. 

 



 
 

Figure 9.  Summary plots of misfit values for an impedance contrast of 2.0. While all figures represent the same impedance contrast, (a-c) are for 

models containing a half-space with Vs equal to 150 m/s while (d-f) are for a half-space Vs of 300 m/s. Each row is listed in order of increasing 

anomaly thickness, such that (a-c) and (d-f) are for anomalies that are 1 m, 2 m, and 4 m thick, respectively. Additionally, these models contain 

anomalies that are stiffer than the surrounding material. Compared to an impedance contrast of 1.5, these plots show that a larger impedance 

contrast results in higher detection of anomalies. As thickness increases, the lower bound of detectability also increases, similar to Fig. 6. 

 
 

Figure 10.  Summary plots of misfit values for an impedance contrast of 5.0. While all figures represent the same impedance contrast, (a-c) are for 

models containing a half-space with Vs equal to 150 m/s while (d-f) are for a half-space Vs of 300 m/s. Each row is listed in order of increasing 

anomaly thickness, such that (a-c) and (d-f) are for anomalies that are 1 m, 2 m, and 4 m thick, respectively. Additionally, these models contain 

an anomaly that is stiffer than the surrounding material. It should be noted that these models provided erratic data at higher depths. Particularly, 

models containing a 4 m-thick anomaly in soil with a Vs of 300 m/s exhibited dispersion data that cannot “see” through an anomaly, which re-
sulted in higher misfits than otherwise expected. Therefore, results below roughly 10 to 12 m are not considered to be trustworthy. 

  



 

 

Table 3. Summary of results for all models 

 

Imp. 

Contrast 

Half-space Vs 

(m/s) 

Anomaly 

Thickness (m) 

Max. Likely 

Detectable Depth (m) 

Min. Likely Detectable 

Size Relative to Array 

Min. Likely Detectable 

Lateral Extent (m) 

0.67 

150 

1 3  0.70 16 

2 4 0.40 9 

4 5.5 0.25 6 

300 

1 2.5 0.80 18 

2 4.5 0.40 9 

4 6 0.25 6  

0.50 

150 

1 5 0.35 8 

2 6 0.23 5 

4 7  0.15 3.5  

300 

1 5.5 0.35 8 

2 7 0.21 5 

4 9.5 0.15 3.5  

0.20 

150 

1 71 0.15 3.5 

2 71 0.13 3 

4 7.51 0.08 2 

300 

1 +202 0.15 3.5 

2 +202 0.12 3 

4 +202 0.08 2 

1.5 

150 

1 - - - 

2 3.5 0.55 12.5 

4 4.5 0.35 8 

300 

1 - - - 

2 3.5 0.55 12.5 

4 6 0.35 8 

2.0 

150 

1 3 0.60 14 

2 5 0.35 8 

4 6 0.25 6 

300 

1 3 0.63 14.5 

2 5.5 0.35 8 

4 7 0.23 5 

5.0 

150 

1 5.5 0.30 7 

2 7.5 0.20 4.5 

4 9 0.18 4 

300 

1 6 0.30 7 

2 8 0.20 4.5 

4 103 0.15 3.5 

1. Although it was expected that increases in thickness would result in increases in maximum detectable depth, these data showed unusual 

trends. Specifically, measured wavelengths were shown to decrease with changes in thickness, as further described in Sec. 4. 

2. The depths of detection for these models extended beyond the maximum depth of 20 m used in this study. This was due to the presence of 

significant higher modes, which resulted in large misfit values for each set of models that resulted in no visible lower bound for a misfit of 

1.0. 

3. It was expected that a 4 m-thick anomaly would show an increase in maximum detectable depth for this impedance contrast and half-space 

Vs pairing. However, the dispersion trends showed that as the depth to the anomaly increased, the chance to “see” through the anomaly 
decreased, which led to increases in misfit as further described in Sec. 4. 

  



longer than at least a quarter of the array length. Further, 

1 m-thick anomalies can only be confidently detected up 

to 3 m deep, while 4 m-thick anomalies can only be con-

fidently detected up to about 6 m deep. When comparing 

the change in half-space Vs between respective sets of 

models, it is shown that an increase in half-space Vs also 

corresponds to an increase in general detectability. This 

is believed to be related to the increase in the overall max-

imum wavelength present for each set of models. As pre-

viously mentioned, higher velocities will result in longer 

wavelengths for a given frequency, which is shown in 

Fig. 5d-f where the maximum wavelength present for 

each set of models is nearly double the maximum wave-

length for the corresponding sets in Fig. 5a-c. Due to this, 

it is understandable that an increase in overall velocity at 

a given impedance contrast results in an increase in the 

possibility of deeper anomaly detection. These results are 

further tabulated in Table 3, such that trends in the max-

imum likely detectable depth as well as the minimum 

likely detectable size of an anomaly may be more easily 

visualized. It should be noted that the results listed in Ta-

ble 3 are approximate values and represent the bounda-

ries of likely detection. 

Fig. 6 presents similar misfit summary plots for models 

with an impedance contrast of 0.50. These results show 

that for a larger impedance contrast, the ability to detect 

anomalies increases. In particular, the depth at which a 

1 m-thick anomaly can be detected has nearly doubled, 

which can be seen when comparing Fig. 5a and Fig 5d 

with Fig. 6a and Fig. 6d, respectively. Additionally, the 

size of a detectable anomaly is smaller. Like Fig. 5, the 

maximum wavelengths present in the high velocity mod-

els (Fig. 6d-f) are more than double the wavelengths pre-

sent in similar sets of models with lower velocities (Fig. 

6a-c), and as such, the maximum depth at which anoma-

lies can be confidently detected is greater when higher 

velocities are present. This trend further supports the as-

sertion that the wavelengths present for each set of mod-

els are directly related to the chance of detecting anoma-

lies at increasing depths.  

Fig. 7 presents the misfit values for an impedance con-

trast of 0.20. These figures are notably distinct from those 

shown previously in that Fig. 7a-c show almost no 

change in the maximum depth at which an anomaly can 

be reasonably detected despite increases in thickness. 

Likewise, Fig. 7d-f show that increases in anomaly thick-

ness do not show visible effects on the maximum depth 

of detectability, although this is at least partially due to 

the misfit boundary of 1.0 extending beyond the depths 

used in this study. Regarding Fig. 7d-f, the absence of a 

maximum depth of detection is likely due to the data pro-

vided by high impedance contrasts. Although the maxi-

mum wavelengths measured for each set of models reveal 

that it is possible to detect anomalies at relatively large 

depths, the dispersion data obtained for each of these 

models was quite complicated with significant higher 

modes. This meant that, despite using a lower-bound dis-

persion trend from superposed modes, the dispersion 

curves for various treatment models were still signifi-

cantly distinguishable from that of the control model. 

Therefore, it was found that for models containing higher 

velocities and an impedance contrast as significant as 

0.20, the chance of detecting anomalies in general is more 

probable than compared to models containing lower ve-

locities. Based on Fig. 7d-f, it was assumed that Fig. 7a-c 

would also show an increase in misfit as thickness in-

creases. However, the maximum depth for the misfit 

boundary of 1.0 is shown to remain relatively constant 

for each thickness. This is likely due to the maximum 

wavelengths shown in Fig. 7b and Fig. 7c as they reveal 

that the depth of detection should be roughly 7 and 6 m, 

respectively, if using an estimate of λ/2. Therefore, for 

these two sets of models, it is reasonable that the maxi-

mum depth of detection does not significantly increase 

with changes to anomaly thickness as the anomaly, re-

gardless of its thickness, is already nearly undetectable at 

this depth.  

Fig. 8-10 present the misfit values for models contain-

ing an anomaly that is stiffer than the surrounding half-

space. When comparing each set of models, it is clear that 

overall, it is more difficult to detect a stiff inclusion as 

opposed to a soft one. In particular, Fig. 8 shows that it is 

difficult to detect a 1 m-thick anomaly regardless of the 

half-space Vs. Both the 2 m- and 4 m-thick anomalies are 

shown to be detectable, but when compared to Fig. 5b-c, 

the boundary at which a misfit of 1.0 is present is shal-

lower for models containing a stiff anomaly. In terms of 

an anomaly’s lateral extent, the minimum size required 

for an anomaly to be detectable does not significantly 

change depending on whether the anomaly is soft or stiff 

relative to the surrounding soil (compare for example 

Fig. 5 and Fig. 8). Fig. 9 presents misfit values for models 

with an impedance contrast of 2.0, again illustrating that 

stiff anomalies are overall more difficult to detect than 

soft anomalies when compared with Fig. 6.  

When examining Fig. 10, which represents models 

with an impedance contrast of 5.0, it is clear that the re-

sults for models generated with a half-space Vs of 300 m/s 

differ significantly at deeper depths compared to those 

generated with a Vs of 150 m/s. In particular, models con-

taining a 4 m-thick anomaly (Fig. 10f) show that the po-

tential to detect an anomaly actually increases for depths 

below 16 m. This unexpected change in misfit can be ex-

plained with careful consideration of the dispersion data. 

For an anomaly placed at various depths, with all other 

variables held constant, there are four stages of note. 

First, the anomaly is near the surface and can easily be 

detected (i.e., has a high misfit). Second, the anomaly 

moves deeper and although it is still being “seen” by the 
surface wave, its velocity is being averaged with the ma-

terial above and below it and is therefore less easily de-

tected (i.e., has a relatively lower misfit). Third, the 

anomaly approaches the bottom-most range that the sur-

face wave can “see”, and since it is in effect no longer 

being averaged with a material of a different velocity be-

low it, the anomaly appears to be easier to detect (i.e., 

misfit begins to increase). Fourth, the top of the anomaly 

is below the maximum detectable depth and therefore 

cannot be detected (i.e., misfit is approximately 0). This 

trend is illustrated in Fig. 11 using anomalies represented 

in Fig. 10f for a lateral extent of 36 m with increasing top 

depths of 2, 14, and 20 m. Specifically, the first three 

stages are shown. When the depth of the anomaly in-

creases from 2 to 14 m, the misfit value is shown to de-

crease significantly from 12.6 to 1.0. However, when the 

depth of the anomaly increases to 20 m, the misfit slightly 



 

increases to 1.6. The fourth stage in which the anomaly 

is no longer detected, i.e., when the misfit approaches 

zero, is not shown as this stage extended beyond the 

depths used in this study. For each of the conditions con-

sidered, all four stages may or may not be clearly present, 

although this lends a physical explanation of the data in 

regard to the contour plots presented herein. 

 
Figure 11. Three stages of detectability are shown for an anomaly that 

is 4 m-thick, 36 m wide, and with increasing top depths of 2, 14, 

and 20 m, which are indicative of the trends shown in Fig. 10f. 

Stage 1 shows that the anomaly is easily detectable, as indicated 

by the high misfit of 12.6. As the anomaly is placed deeper 

(stage 2), its velocity begins to be averaged with the surrounding 

soil, leading to a lower misfit of 1.0. Once the anomaly is placed 

at relatively larger depths (stage 3), surfaces waves can no longer 

“see” through the anomaly and the dispersion data do not return 
to the theoretical half-space velocity as expected, which leads to 

higher misfits. Stage 4, in which this anomaly should no longer 

be detectable, is not shown as this stage occurs beyond 20 m, 

which was the maximum depth used in this study. 

5. Conclusion 

To address the limited literature available regarding 

the quantitative ability of the MASW method to detect 

subsurface anomalies, typical testing procedures were 

simulated using synthetic control (i.e., without an anom-

aly) and treatment (i.e., with an anomaly) models. The 

misfit between the dispersion data of the control and 

treatment models were summarized quantitatively and 

used to illustrate whether a particular anomaly could or 

could not likely be detected. To allow for practical usage 

of this study, the quantitative misfit values were used to 

create example feasibility plots such that the likelihood 

of detecting an anomaly of a given geometry can be as-

sessed prior to performing the field acquisition. 

In short, the results presented in Fig. 5-10 and Table 3 

reveal that the ability to detect an anomaly is largely de-

pendent on its impedance contrast with the surrounding 

material and to a lesser extent on its size. In particular, 

lower impedance contrasts (soft anomalies) allow for 

greater chances of detection when compared to higher 

impedance contrasts (stiffer anomalies). Furthermore, a 

site with higher velocities leads to greater chances for de-

tection of anomalies at depth compared to a site contain-

ing soils with low velocities due to an increase in the 

measured wavelengths, provided the frequency range 

measured at both sites is consistent. At impedance con-

trasts greater than 1.0, an anomaly must be roughly half 

the length of the array used during testing to likely be de-

tected, whereas at an impedance contrast less than 1.0, 

the anomaly may be as small as a quarter of the array 

length. As expected, the results show that as the thickness 

of an anomaly increases, the potential to detect it in-

creases, while an increase in depth to the top of the same 

anomaly results in a decrease in its detectability. It should 

be noted again that while a misfit of 1.0 was used as a 

general guideline for the boundary of easy/likely detec-

tion in this study, misfits below 1.0 do not strictly indi-

cate that an anomaly will not be detected; rather, the au-

thors have interpreted a misfit below 1.0 to indicate that 

these anomalies will be more difficult, or in general less 

likely, to be detected given typical levels of experimental 

dispersion data uncertainty.  

Although this study emphasized the importance of de-

tecting anomalies when performing site characterization, 

the ability to accurately resolve irregular velocity profiles 

through inversion is similarly significant. The authors 

acknowledge that detecting an anomaly is present does 

not necessarily mean that the anomaly may be resolved 

in terms of its shape and velocity. Although we hope this 

work may be useful to others planning site characteriza-

tion studies using 2D MASW for anomaly detection, fur-

ther work is needed to determine the potential for resolv-

ing an anomaly’s shape, stiffness, and location given that 

it can likely be detected based on its dispersion signature. 
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