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ABSTRACT: Cone Penetration Testing (CPTU) is one of the most popular soil investigation methods offshore, both for 

offshore oil and gas industry and offshore windfarm industry.  A CPTU test is a continuous recording of the subsurface 

at the test location. It contains the vertical variations of the mechanical characteristics of the subsoil. These variations in 

turn indicate changes in geological layers and their properties. During a test the cone tip resistance, the friction along the 

rod and excess pore water pressure can be obtained. A considerable amount of CPTU data is available from industry and 

research projects so far. Soil type, such as sand, silt and clay, can be classified by CPTU data. Normally this is done based 

on soil behavior type (SBT). In addition to SBT method, machine learning is used for soil classification in this study. A 

big dataset, combining CPTU and corresponding lab data, is used for training purpose and application of the method in 

soil classification is discussed. Synthetic classes are used in this study and ML technique is used to mimic the Ic and SBT 

classification based on CPTU. Grain-size distribution as well as Attemberg`s limits datasets are used to further refine the 

classification according to Unified Soil Classification System (USCS). 
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1. Introduction  

Machine learning (ML) has been used frequently in 

Geotechnical engineering field, e.g., in liquefaction as-

sessment (Garcia, et al., 2012, [1], Ardakani and Ko-

hestani, 2015, [2]), in predicting spatial soil type distri-

bution (Ghaderi, et al., 2018, [3]), in site characterization 

(Tsiaousi, et al., 2018, [4]), in pile capacity evaluation 

(Goh, 1995, [5], Maizir et al. 2015, [6], Mazaher, A., 

2016, [7]), in settlement prediction of foundations (Sha-

hin, et al., 2002, [8], Alkroosh and Nikraz, 2011, [9]) and 

in slope stability analysis (Cho, 2009, [10], Peng, et al., 

2014, [11]). ML has also been used for soil classification, 

e.g.,  Bhargavi and Jyothi, 2011, [12],  used data mining 

technics to classify  agriculture soil types, and it was in-

dicated that Fuzzy classification rules is a good method 

for the soil classification. 

CPTU is a widely used in situ test method to get vari-

ation of soil properties and it is one of the most efficient 

and repeatable method for site investigation. A signifi-

cant amount of CPTU data is available and can be used 

for ML analysis (Alkroosh and Nikraz, 2011, [9], Arda-

kani and Kohestani, 2015, [2], Ghaderi et al., 2018, [3]). 

Classical CPTU based soil classification  uses empirical 

soil classification charts by Robertson et al., 1986, [13], 

Robertson, 1990, [14] and Robertson, 2016, [15]). 

Bhattacharya and Solomatine, 2006, [16] applied deci-

sion trees, Artificial Neural Network (ANN) and Support 

Vector Machines (SVM) techniques to CPT data for soil 

classification with a prediction accuracy of about 83%.  

In this study, we use a CPTU database for soil classi-

fication purpose. The SBT index Ic is directly calculated 

from CPTU data and used for model testing. Synthetic 

classes are used and ML technique is used to mimic the 

Ic and SBT classification based on CPTU. Ku et al., 

2010, [17] concluded that SBT index, Ic, either in terms 

of the RW formulation (Robertson and Wride,1998, [18]) 

or the JD formulation (Jefferies and Davies, 1993, [19]) 

is an effective parameter for soil classification. Ic reflects 

the mechanical behavior of soils and can distinguish sand 

like soils from clay like soils without knowledge of par-

ticle size distribution and plasticity. In terms of the RW 

formulation, the most suitable cut-off Ic value for distin-

guishing sand-like soils from clay-like soils is 2.67; in 

terms of the JD formulation, the most suitable cut-off Ic 

value is 2.58. These cut-off values were established based 

on statistical analyses of the data set derived and em-

ployed in the study. However, research with additional 

high quality data to further validate these cut-off values 

is desirable. In this regard, collection of soils that can ex-

pand the database  is especially important  

In this study, we also use the Unified Soil Classifica-

tion System (USCS) for further refining the soil classifi-

cation based on CPTU data. We apply Random Forest 

Classifier (RFC) technique and find this to be a good 

method for soil classification.  

2. Interpretation of CPTU data 

Typical raw CPTU data includes the cone tip 

resistance, qc, the sleeve friction, fs and pore water 

pressure, u2. Interpretation of raw CPTU data (u2, fs and 

qc) has traditionally been done by derivation of 

parameters like friction ratio (Rf), normalized cone tip 

resistance (Qt), and normalized friction ratio (Fr) and 

their subsequent use in existing charts or classifications.  

The corrected cone tip resistance, 𝑞𝑡: 𝑞𝑡 = 𝑞𝑐  +  𝑢2(1 − 𝛼)   (1) 

where α is the net area ratio 
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The friction ratio (𝑅𝑓) represents the ratio between fs 

and qc: 𝑅𝑓  = 𝑓𝑠𝑞𝑡 × 100%   (2) 

With u2 the pore pressure measured between the cone  

tip and the friction sleeve and the net area ratio 

determined by the characteristics of the used cone. 

Stress-normalized equivalents of the variables qt and Rf 

should be used to account for the in-situ vertical stresses: 

the normalized cone tip resistance, Qt: 

 𝑄𝑡  =  𝑞𝑡 – 𝑣0
𝑣0′    (3) 

 

and the normalized friction ratio, Fr: 𝐹𝑟  =  𝑓𝑠𝑞𝑡 – 𝑣0 × 100%   (4) 

 

where 𝑣0 is the total overburden pressure, and 𝑣0′' 

the effective vertical stress.  

Pore pressure ratio, Bq, is defined as:  

 𝐵𝑞  =  𝑢2−𝑢0𝑞𝑡 – 𝑣0 × 100%  (5) 

Where 𝑢0 is equilibrium pore pressure. 

Jefferies and Davies (1993, [19]) introduced the SBT 

index Ic to represent the radius of the concentric circles 

in the classification diagram of Robertson (1990, [14]). 

Jefferies and Davies (1993, [19]) proposed an 

expression for Ic: 𝐼𝑐 = √[3.0 − 𝑙𝑜𝑔10 𝑄𝑡 (1 − 𝐵𝑞  )]2 + [1.5 + 1.3𝑙𝑜𝑔10 (𝐹𝑟 )]2  
(6) 

Robertson and Wride (RW) (1998) proposed an other 

expression for Ic: 𝐼𝑐 = √[3.47 − 𝑙𝑜𝑔10𝑄𝑡𝑛 )]2 + [1.22 + 𝑙𝑜𝑔10 𝐹𝑟]2               (7) 

 𝑄𝑡𝑛 = (𝑞𝑡 – 𝑣0)/𝑎𝑡𝑚 (𝑣0′ /𝑎𝑡𝑚)𝑛  (8)  𝑛 = 0.381𝐼𝑐 + 0.05 𝑣0′
𝑎𝑡𝑚 − 0.15, 𝑛 ≤ 1.0 (9) 

Where 𝑎𝑡𝑚 is the reference pressure. 

The Ic variable captures only the soil type from the 

raw CPTU data, and carries little or no information on the 

in situ soil state (consolidation, cementation, or 

sensitivity). In contrast, the 2D classification charts 

(Roberson et al., 1986, [13], and Robertson 1990, [14]) 

do include such additional soil state information. 

3. Machine learning method 

Artificial Intelligence (AI) means making or automat-

ing the human tasks with help of Algorithms and pro-

gramming. In recent 20 years, AI algorithms have been 

proved promising in many fields, including geotechnical 

engineering. Machine learning (ML) is a broad subfield 

of AI that uses multivariate, nonlinear, nonparametric re-

gression or classification algorithms and techniques to 

learn from existing data and develop predictive models. 

ML can be very useful for solving problems where deter-

ministic solutions are not available or are very expensive 

in terms of computational cost, but for which there is sig-

nificant data available. 

Random Forest (RF) is one of the many machine 

learning algorithms used for supervised learning, this 

means for learning from labelled data and making predic-

tions based on the learned patterns. RF can be used for 

both classification and regression tasks. Random Forests 

(RFs) are ensemble-based decision trees and were devel-

oped to overcome the shortcomings of traditional deci-

sion trees. In RF, like other ensemble learning tech-

niques, the performance of a number of weak learners is 

boosted via a voting scheme. The main hallmarks of ran-

dom forest include; 1) bootstrap sampling – randomly se-

lecting number of samples with replacement, 2) random 

feature selection – randomly selecting only a small num-

ber of features in the split of each node, 3) full depth de-

cision tree growing, and 4) Out-of-bag error estimation – 

calculating error on the samples which were not selected 

during bootstrap sampling (Jiang et al., 2009, [20]). 

4. Testing of Machine learning method 

In this study, we used JD formulation of Ic (Jefferies 

and Davies, 1993, [19]). Figure 1 shows the commonly 

used soil behaviour type chart.  

 
Figure 1. Normalized CPT soil behavior type chart. 

Table 1 shows the proposed description and 

corresponding 𝐼𝑐  values for soil classification (Robertson 

et al., 1986, [13] and Robertson 1990, [14]). 

 

Table 1. Soil Behaviour Type 

Proposed description SBT𝑛 SBT I𝑐 

Sensitive fine-grained 1 1 N/A 

Clay - organic soil 2 2 > 3.6 

Clays: clay to silty clay 3 3 2.95-3.60 

Silt mixtures: clayey silt & silty clay 4 4&5 2.60-2.95 

Sand mixtures: silty sad to sandy silt 5 6 & 7 2.05-2.60 

Sands: clean sands to silty sands 6 8 1.31-2.05 

Dense sand to gravelly sand 7 9 & 

10 

< 1.31 

Stiff sand to clays sand 8 12 N/A 

Stiff fine-grained 9 11 N/A 

 



To determine if any of the soil layers contains “sensi-
tive clays and silts” from zone 1 or “stiff soil” from zones 
8 and 9, the following rule can be used: (see Figure 1): 

1) The soil layers belong to zone 1, if  𝑄𝑡 < 12𝑒−1.4𝐹𝑟 ,  (10) 

2) The soil layers belong to zone 8 and 9, if 𝑄𝑡 > 10.005(𝐹𝑟−1)−0.0003(𝐹𝑟−1)2−0.002 , (11) 

 

3) Zones 8 and 9 are separated by line 𝐼𝑐  =2.6 

 

Our database includes 357 CPT tests sampled at 0.5 me-

ter. There are 12921 CPT data points in total to be used 

in the application of machine learning methods (Figure 

3). Nine types of soils can be classified according to Ic 

values proposed by JD and 67.6% of the soil in the data-

base belong to group 3 (clay to silty clay). Table 2 pre-

sents the database distribution of the different soil behav-

ior types, while Table 3 gives a list of statistical summary 

of mean, standard deviation, median, 25% and 75% per-

centile, minimum and maximum values of input features 

Rf, Qt, Fr and Bq. Figure 2 shows data in the train da-

tasets and Figure 3 shows data in the test datasets. Data 

that was predicted in a wrong category was shown in Fig-

ure 3 too. It should be noted that synthetic classes are 

used in this study and ML technique is used to mimic the 

SBT classification. 

 

 
Figure 2. Soil types based on the available train dataset, 

boundary lines are based on Robertson 

 

There are various techniques that help improving the per-

formance of imbalanced datasets. Under-sampling and 

over-sampling are two of them. Under-sampling removes 

samples randomly from over-represented classes, and it 

is useful for large dataset. Over-sampling adds more sam-

ples from under-represented classes and is useful for a 

relatively small dataset. SMOTE (Synthetic Minority 

Over-sampling Technique) is an over-sampling method 

which creates synthetic samples of the minority class. In 

this study, we use the Python package Imblearn to per-

form over-sampling for the minority classes. 
 

 
Figure 3. Soil types based on the available test dataset, 

boundary lines are based on Robertson 

 

Table 2. Different Soil Behaviors types in the datasets 
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1 34 0.3% 28 6 

2 480 3.7% 393 87 

3 8734 67.6% 6992 1742 

4 1558 12.1% 1240 318 

5 801 6.2% 651 150 

6 710 5.5% 569 141 

7 426 3.3% 326 100 

8 101 0.8% 73 28 

9 77 0.6% 64 13 

Sum 12921 100% 10336 2585 

Table 3. Statistical description of samples 

Feature Number of 

_samples 

Mean Standard 

Deviation 

Min 

Rf 12921 2.1 1.47 0.0 

Bq 12921 0.33 0.28 -3 

QT 12921 65.3 222 0.5 

Fr 12921 2.8 1.62 0.0 

 

Feature 
25%  

percentiles 
median 

75%  

percentiles 
Max 

Rf 1.24 1.6 2.93 21.8 

Bq 0.047 0.38 0.59 0.99 

QT 4.38 5.8 19.7 2942 

Fr 1.90 2.4 3.44 22.3 

 

We train our model following this procedures: 

(a) Python Scikit-learn package is used to train the 

model and predict the result using the random 

forests method (Buitinck, et al., [22]). 



 

(b) The available dataset is randomly split in two 

parts: training dataset (80% of the whole dataset) 

and test dataset (20% of the whole dataset). The 

training dataset is used to train the model and the 

test dataset is used to evaluate the prediction 

accuracy. 

(c) The derived CPT parameters 'Rf', 'Qt', 'Fr',’Bq’ are 
input data,  and soil behaviour types, SBT 

classes(1-9) are target and output. 

(d) The random forest parameters such as the numbers 

[1,5,10,30,50,100] of trees in the forest, the 

maximum depth [1,2,5,10,15,20,30, 40,50,100] of 

the tree and the minimum number [1,2,3,4,5,6,7]of 

samples required to be at a leaf node are tested to 

fit the model.  

(e) If we set the number of trees in the forest as 

30~40, the maximum depth of one tree as 20~30, 

accuracy of the total testing samples is 
25252585 ∗100% =97.7 % (Table 4). Since the soil type 3 is 

the majority type, types 2 and 4 have lower 

accuracy.  

(f) If we randomly reduce the number of samples of 

the soil type 3 from 6992 to 1240, keeping the 

same numbers for the remaining samples, the 

accuracy for test data changes from 97.7 % to 

95.6%=(
24752585 ∗ 100%). Accuracy for the majority 

type is reduced, however the types 2 and 4 show 

better accuracy (Table 5) 

(g) From Figure 4, Qt is the most important input 

parameter for the model with 45.45% importance,  

followed by Fr with 23.47% importance, Bq with 

18.12% importance and Rf with 12.95% 

importance to soil classification. 

Table 4. Accuracy for different soil type for the test set before re-

ducing number of majority samples 

 
Table 5. Accuracy for different soil type for test set after reducing 

number of majority samples  

 

 
Figure 4. Importance of input parameters 

These results show that the random forest method can be 

used for classification of soils, and that the accuracy can 

reach about 97% for the test set. 

5. Separation of sand-like soils and clay-like 

soils 

In many geotechnical applications, it is important to  

distinguish between clay-like soils and sand-like soils. 

Based on USCS classification method, if more than 50% 

of material is larger than No.200 sieve size (0.075mm), it 

is coarse grained soils. It is referred to sand-like soils in 

this study (Figure 5). If 50% or more of material is 

smaller than No.200 sieve size (0.075mm), it is fine 

grained soils. It is referred to clay-like soils in this study. 

 
Figure 5. All data with grain size distribution tests 

For clay like soils, it can be classified further to 

different groups based on Atterberg limit tests.  

In this study, 1367 grain size distribution data and 

1801 Atterberg Limit data with corresponding CPT data 

are collected from different locations.  In total, there are 

2792 pairs of CPTU data points and soil types, including 

2555 clay like soils and 237 sand like soils.  

The procedure used for classification is as follow: 

(a) Random forest classifier (RFC) is applied to fit the 

classification model.  

(b) The dataset is randomly split to two parts (Table 

6): training dataset (80%) and test dataset (20%). 

(c) The measured CPT data “qc(kPa)”, “u2(kPa)” and 



fs(kPa) are the input parameters in this model and 

the two classes Sand like soils and Clay like soils 

as output. Since normalized CPTU data cannot be 

obtained, the vertical effective stresses is also 

selected as one input parameters. 

(d) Accuracy of 96 % for test data is obtained. But for 

sand like soil, accuracy is only 65.8%, see 0 for 

details. This is due to the unbalnced dataset, where 

clay-like soils are dominating over the sand-like 

soils. After using synthetic minority over-sampling 

technique (Nitesh,2002, [21]) to create synthetic 

(not duplicate) samples of the minority class and 

balance the minority class to majority class, 

accuracy of  80.5% can be obtained, see 0 for 

details.  

(e) From Figure 6, the most important input 

parameters to soil classification are qc with 46.9% 

importance and u2 with 24.5% importance to soil 

classification. Proportion of various samples 
Table 6. Proportion of various samples used in this study   
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Sand like soils 237 8.49% 196 41 

Clay like soils 2555 91.51% 2037 518 

summary 2792 100% 2233 559 

 

Table 7. Accuracy for classification of sands and clays for test data 

before data balance  
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Sand  27 14 41 65,85 % 

Clay 8 510 518 98.46% 

Total 35 524 559   

 

Table 8. Accuracy for classification of sands and clays for test data 

after data balance 
 

 
 Predicted 
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S
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a
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Sand 33 8 41 80,49 % 

Clay 25 493 518 95.17% 

Total 58 501 559  

 

 
Figure 6. Importance of input parameters 

6. Subcategory of sand-like soils and clay-

like soils 

In this section, the same dataset is used for soil 

classification, but this we subdivided the dataset into 7 

soil types (contra 2 in the previous section). In total,1367 

grain size distribution data and 1801 Atterberg Limit data 

with corresponded CPT data. There are 2031 pairs of 

CPTU data points and soil types, including 1794 clay like 

soils and 237 sand like soils. 

Based on USCS, soils are classified as follows: 

Gravels (GW,GP,GM and GC). There is no gravel 

data and gravel is not discussed in this study. 

Sands (SW,SP,SM , SC and Sand with fines between 

5% and 12%). For coarse grained sands, Cu and Cc are 

used to further classify sands to different types. 

Cu is uniformity coefficient， Cu =  D60D10. 

Cc is coefficient of curvature. Cc =  D302D60D10. 

D60, D30 and D10 are effective size of soil particles 

corresponding to 60%, 30%, 10% finer in the particle 

size distribution graph. 

Silts and Clays (ML,CL,OL and MH,CH,OH).  For 

this fine grained or clay like soils, atterberg limits data 

can be used for further classification (Figure 7) 

 
Figure 7. All data with atterberg limit test results  

The dataset is classified as in Table 9.  Since class MH 

and SW have smaller number of samples, we combine 

them with CM and SP respectively, see Table 9. Random 

forest classifier (RFC) is used to train the model and the 

dataset are randomly split to two parts: training dataset 

(80%) and test dataset (20%). The measured CPT data  

“qc(kPa)”, “u2(kPa)” and fs(kPa) as well as the vertical 

effective stress are selected as input features in the model. 



 

Because the soil type CL is the majority class, the 

other soil classes have lower accuracy (Table 10). After 

using synthetic minority over-sampling technique 

(Nitesh,2002) to create synthetic samples of the minority 

class and balance the minority class to majority class, we 

can get better accuracy for the other soil classes, but it 

remains low (Table 11). One reason could be that the 

dataset used in this study is too small. It is recommended 

to test the model on a bigger dataset. The most important 

input parameter to soil classification is qc with 33.1% 

importance (Figure 8). 

Table 9. Dataset  for classification  

Dataset  for classification Combined dataset 

symbol N_samples symbol N_samples 

 CH 99 CMH 114 

CL 1459 CL 1459 

CML 171 CML 171 

MH 15 ML 50 

ML 50 SMC 119 

SMC 119 SPW 60 

SP 57 S_fine_5_12 58 

SW 3 summary 2031 

S_fine_5_12 58   

summary 2031   

 

Table 10. Accuracy for classification of sands and clays before in-

creasing number of minority samples  

 
Table 11. Accuracy for classification of sands and clays after in-

creasing number of minority samples  

 

 

 
Figure 8. Importance of input parameters 

7. Conclusions and discussions 

Geotechnical datasets, including in situ CPTU data, 

grain size distribution, and atterberg limits from 

laboratory tests is used in this study for soil classification. 

Random forest method is applied to classify soils. Syn-

thetic classes are used and ML technique is applied to 

mimic the soil behaviour type index and propose SBT 

classification based on CPTU. Grain-size distribution as 

well as Attemberg`s limits datasets are used to further re-

fine the classification according to Unified Soil Classifi-

cation System (USCS). Accuracy of the random forest 

method is generally high for CPTU based classification 

of soils in two main soil types, however it becomes lower 

for further refining the classification. This is due to small 

number of samples in the datasets used for further 

classification. We found data balance technique to be 

necessary in the analysis considering that one of the soil 

classes is largely dominated in our dataset.  

References 

[1] Garcia, S., Ovando-Shelley, E., Gutierrez, J., and Garcia, J. 

(2012). Liquefaction assessment through machine learning. 15 

WCEE, Lisboa 2012. 

[2] Ardakani, A. and Kohestani, V.R. (2015). Evaluation of liquefac-

tion potential based on CPT results using C4.5 decision tress. Jour-

nal of AI and Data mining, Vol.3, No.1, 2015, 85-92.  

[3] Ghaderi, A., Shahri, A.A., and Larsson, S. (2018). An artificial 

neural network based model to predict spatial soil type distribution 

using piezocne penetration test data. Bulletin of engineering gol-

ogy and the environment. Published online: 15 October, 2018. 

[4] Tsiaousi, D., Travasarou, T., Drosos, V., Ugalde, J. and Chacko, 

J. (2018). Machine learning application for site characterization 

based on CPT data. Geotechnical earthquake engineering and soil 

dynamics, V GSP 293, 461-472.  

[5] Goh A. T. C. 1995b. Empirical design in geotechnics using neural 

networks. Geotechnique.  

[6] Maizir, H., Nurly Gofar and Khairul Anuar Kassim. 2015. Artifi-

cial Neural Network Model for Prediction of Bearing Capacity of 

Driven Pile. Jurnal Teoretis dan Terapan Bidang Rekayasa Sipil.   

[7] Mazaher, A. and Mazaher, B. 2016. Determination bearing capac-

ity of driven piles in sandy soils using Artificial Neural Networks 

(ANNs). IOSR Journal of Mechanical and Civil Engineering 

[8] Shahin M. A., Maier H. R. and Jaksa M. B. 2002. Predicting set-

tlement of shallow foundations using neural networks. J. Geotech. 

& Geoenv. Eng. 

[9] Alkroosh I., Nikraz H. 2011. Simulating pile load-settlement be-

havior from CPT data using intelligent computing. Central Euro-

pean Journal of Engineering.  



[10] Cho S.E. 2009. Probabilistic stability analyses of slopes using the 

ANN-based response surface, Computers and Geotechnics. Vol. 

36. 

[11] Peng, M., Li, X.Y., Li, D.Q., Jiang, S.H. and Zhang, L.M., 2014. 

Slope safety evaluation by integrating multi-source monitoring in-

formation. Structural Safety. 

[12] Bhargavi and Jyothi (2011). Soil classification using data mining 

techniques: A comparative study. International Journal of engi-

neering trends and technology, July to August Issue 2011: 55-59. 

[13] Robertson PK, Campanella RG, Gillespie D, Greig J (1986) Use 

of piezometer cone data. In-Situ '86 use of in-situ testing in ge-

otechnical engineering, GSP 6, ASCE, Reston, VA, specialty Pub-

lication, pp 1263–1280. 

[14] Robertson PK (1990) Soil classification using the cone penetration 

test.Can Geotech J 27(1):151–158 

[15] Robertson PK (2016) Cone penetration test (CPT)-based soil be-

haviour type (SBT) classification system- an update. Can Geotech 

J 53:1910–1927. https://doi.org/10.1139/cgj-2016-0044 

[16] Bhattacharya B, Solomatine, D.P., (2006). Machine learning in 

soil classification. Neural Networks 19, 186-195  

[17] Ku, C.S., Juang, C.H. and Ou C.Y. (2010). Reliability of CPT Ic 

as an index for mechanical behaviour classification of soils. Ge-

otechnique. 60. No.11, 861-875. 

[18] Robertson PK, Wride CE. Evaluating cyclic liquefaction potential 

using the cone penetration test. Cana-dian Geotechnical Journal. 

1998; 35: 442–459. 

[19] Jefferies MG, Davies MP. Use of CPTU to estimate equivalent 

SPT N60. Geotechnical Testing Journal. 1993; 16(4): 458–468. 

[20] Jiang, R., W. Tang, X. Wu, and W. Fu (2009). A random forest 

approach to the detection of epistatic interactions in case-control 

studies. BMC bioinfor-matics 10 (1), 1. 

[21] Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, W. 

Philip Kegelmeyer (2002) SMOTE: Synthetic Minority Over-

sampling Technique, Journal of Artificial Intelligence Research 

16 (2002) 321–357, https://arxiv.org/pdf/1106.1813.pdf   

[22] Buitinck L., Gilles Louppe, Mathieu Blondel, Fabian Pedregosa, 

Andreas Mueller, Olivier Grisel, Vlad Niculae, Peter Prettenhofer, 

Alexandre Gramfort, Jaques Grobler, Robert Layton, Jake 

Vanderplas, Arnaud Joly, Brian Holt and Gaël Varoquaux (2013). 

API design for machine learning software: experiences from the 

scikit-learn project. European Conference on Machine Learning 

and Principles and Practices of Knowledge Discovery in Data-

bases. 1 September 2013. 

 

 

https://arxiv.org/pdf/1106.1813.pdf

