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ABSTRACT: In the numerical simulations of full-flow (T-bar and ball) penetrometers and cone penetration test, the 

onset and growth of damage in the surrounding geomaterial depend on the rates of deformation and the magnitude of 

strain (or material structure). In such applications, modelling the deformation and stress histories of soil particles as they 

move during the penetration process is important. This paper presents a novel Eulerian-based finite element formulation 

to study the effect of strain softening on penetrometers resistance. The novelty of this approach is that it is capable of 

simulating large deformations without the need for re-meshing. The gradient of the stress at each Gaussian point is cal-

culated using a smoothing thin-plate splines (TPS) technique. This novel approach has been used to simulate T-bar and 

cone-penetration tests in soft clay. The results show that the effect of softening is much less significant for the cone 

penetration test compared to T-bar penetration.  
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1. Introduction 

The cone penetration test is one of the most widely in-

situ tests in geotechnical engineering practice for 

assessing the strength profile in soil. In saturated clay, the 

test is performed at a penetration rate that does not permit 

drainage during the penetration process, so the test may 

be interpreted directly as a measure of the undrained 

strength profile of the clay.  The popularity of this in situ 

testing device has resulted in great demand for the 

development of accurate correlations between measured 

cone quantities (e.g., cone resistance and sleeve friction 

ratio) and engineering properties of the soil. Despite 

extensive research on cone penetration test in the last two 

decades [1-7] the effect of strain-softening on the cone 

resistance has not been investigated in detail. 

In the numerical simulation of the cone penetration 

test (CPT) and full-flow penetrometers such as T-bar and 

ball tests, modelling the deformation and stress histories 

of soil particles as they move during the penetration pro-

cess is important. Soils tend to exhibit a drop in strength 

after significant shearing. This strain softening behaviour 

can be related both to the reorientation of platy clay min-

erals during large strains, and to the “critical state” 
strength degradation in over-consolidated clays [8]. Ran-

dolph [9] has illustrated that the undrained shear strength 

is exponentially decayed with the cumulative shear 

strain.   

The finite element method has been implemented 

successfully to model history-dependent geotechnical 

problems [10]. The formulations are based either on 

small deformations (which is not suitable for large-strain 

problems such as CPT) or using Lagrangian theory. Fi-

nite element discretisations with Lagrangian meshes are 

commonly classified as updated Lagrangian formulations 

and total Lagrangian formulations. Both formulations use 

Lagrangian descriptions, i.e. the dependent variables are 

functions of the material (Lagrangian) coordinates and 

time. In the updated Lagrangian formulation, the deriva-

tives are with respect to the spatial (Eulerian) coordi-

nates; the weak form involves integrals over the de-

formed (or current) configuration. In the total Lagrangian 

formulation, the weak form involves integrals over the 

initial (reference) configuration and derivatives are taken 

with respect to the material coordinates. 

 

2. Finite element  

2.1. Formulation 
The principal of virtual work in the Total Lagrangian 

can be written as: 
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where 0 is the domain of the undeformed 

configuration, 0 is the boundary of that domain, iu  is 

the displacement, 0  is the mass density in the 

undeformed domain, ib  is the body forces, it  is the 

traction force, ijP  are the nominal stresses and ijF  is the 

deformation gradient given  by: 
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where iX  is the material (Lagrangian) coordinates 

and ix  is the spatial (Eulerian) coordinate (see Fig. 1). 

 

The equation of motion (the discrete momentum 

equation) can be derived by: 
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where 
int

iIf  are the internal nodal forces given by: 
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 XN I  is the shape function and 
ext

iIf are the external 

nodal forces given by: 
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and the mass matrix in the Total Lagrangian is given by: 
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The nominal stresses ijP  are related to the Second 

Piola-Kirchhoff (PK2) stresses ijS  by:  

                    
T
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Taking the time derivative of the internal nodal forces 

is therefore gives: 
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Eq. 8 shows that the rate of the internal nodal forces 

consists of two distinct parts:  

1. The first term depends on the material response 

(the rate of stress S ) and leads to what is called 

the material tangent stiffness matrix Kmat .  

2. The second term accounts for rotation of the 

stress with the motion. This term is called the 

geometric stiffness. It is denoted by Kgeo . 

  

The rate of stress S  can be related to the rate of Green 

strain E  using the tangent stiffness matrix C: 
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The rate of Green strain E  can be related to the rate 

of nodal velocity d by: 
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Eq. 7 can be converted to updated Lagrangian forms 

by letting the current configuration be a reference 

configuration (see Fig. 1). Therefore, Eq. 7 can be 

rewritten as: 
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Therefore, from Eq. (11), the material tangent stiffness 

can be defined as: 
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And the geometric stiffness matrix is given by:  

 

                                                         

 


d
T

J

T

I

geo

IJ σββIK                                              (14) 

In finite deformation analyses, an objective rate is 

needed in the definition of constitutive model to ensure 

that rigid body motions do not influence the stress state 

in the material. Several definitions of objective stress 

rates can be found in the literature (see [11] for example). 

A widely used stress rate that satisfying objectivity is the 

Jaumann rate: 
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where ij  is the Cauchy stress rate, 
J

ij

  is the 

Jaumman objective stress rate and kj  is the spin tensor 

defined as: 
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where v  is the velocity vector.  

 

The material tangent moduli relating the Jaumman rate 

of Cauchy stress to the rate of deformation can be defined 

as: 
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The Jaumann and the Trusdell tangent moduli can be 

related as follows (see [1]) 
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Fig. 1 FE configuration 
 

 

 

Therefore the material tangent matrix for Jaumann rate 

can be rewritten as: 
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For more details on the mathematical derivation, the 

reader should refer to [11].  

The material derivative f   in the Eulerian frame of 

reference is described by:  
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The stress state in a path-dependent material depends 

on the history of the material point. In the Eulerian 

description, the quadrature points do not coincide with 

the material points. Therefore,  the stress history needs to 

be convected by the velocity. The material derivative of 

Cauchy stresses is given by: 
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where   is evaluated from the constitutive relations 

and the consistency condition. Considering the Jauma 

rate: 
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The operator splitting technique [12] can be used to 

solve the above equation. Eq. 21 can be decomposed into 

sets of simple partial differential equation operators, 

which can be solved sequentially as follows: 
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The first set can be solved without considering the 

convective effect. Thus it can be evaluated in the same 

manner as in an updated Lagrangian analysis.   

 

2.2. Stress integration 

For non-linear materials, the stress-strain relations are 

usually given in rate form and have to be solved by 

integration for a given strain increment. The integration 

of 29 over the time period from t  to tt   is given by: 
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Hughes and Winget [13] considered the skew-

symmetry of ij and shows that the second integration 

in Eq. 24 is equivalent to a stress transformation:  
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2.3. Calculation of stress gradient 

The gradient of the stress at each Gaussian point is 

required for calculating the internal force rate vector (Eq. 

21 combined with Eq. 23). Inaccuracies in the calculation 

of the stress gradient could lead to numerical instability 

problems.  In order to calculate the stress gradient, the 

smoothing thin-plate splines (TPS) technique [14,15] is 

employed. Thin plate splines are a special case of the 

Polyharmonic splines and are very useful for 

interpolation of scattered data in two-dimensions. The 

construction is based on choosing a function that 

minimises an integral that represents the bending energy 

of a surface. The globally constructed spline has 

continuous second-order derivatives. 

 

A thin-plate interpolation scheme is used for 

interpolating the stress and for calculating the stress 

gradient. In this scheme, a function f(x) is chosen so that 

that exactly interpolates the data points (i.e. yi = f(xi)), and 

minimises the bending energy of the spline surface: 

The problem can be formulated with a smoothing 

parameter for regularisation [15].  A function f is chosen 

that does not necessarily exactly interpolate all the data 

points but that does minimise:  
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where  the smoothing parameters,  m is the number 

of the data points and D2f is the matrix of second-order 

partial derivatives of f .  

 

The solution Eq. 28  is a linear combination of 

Green's functions together with a linear polynomial 

term:      
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where G(x, s) is the Green’s function and xj is the jth 

component of the variable x which  in 2D could take the 

form: 
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where ir xx  , and   denotes the usual 

Euclidean norm.  

 

Evaluating Eq. (30) at data point k we obtain 
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where 
)(k

jx is the jth  component of xk.   

 

which can be rewritten in matrix form as: 
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In order for f(x) to have square-integrable second 

derivatives, the orthogonality condition needs to be 

satisfied [15].  
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Thus, the coefficients w and b can be obtained by 

solving the following system: 
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For more details on the implementation of thin-plate 

splines, the reader is referred to [15].  

 

The problem varies from the thin-plate spline 

interpolant to the data when the regularisation parameter 

 isto the least-squares approximation to the data by 

a linear polynomial when  . In the FE results 

reported here the regularisation parameter, is chosen in 

the ad hoc fashion adopted in MATLAB, where  is 

taken to be equal to the average of the diagonal element 

of the matrix  QTMQ, where Q is the orthogonal matrix 

in the QR decomposition of N. 

 

The stress gradient calculations are carried out in 

element-by-element fashion. For each element, the 

Gaussian points in this element and in its neighbouring 

elements are used in the interpolation. For each stress 

component, a function that interpolates the stress in all 

the Gaussian points is found together with its derivatives. 

Fig. 2 illustrates the elements patch used in the thin-plate 

spline calculations. In order to calculate the stress 

gradient in the element shown in the dark grey, the stress 

points in the surrounding elements are also taken into 

consideration to obtain the coefficients  w and b in Eq. 

34.  

 

 
 

Fig. 2 Illustration of an element patch for the thin-plate 

spline interpolation 

 

  
Fig. 3 Illustration of an element patch for the thin-plate 

spline interpolation 
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In order to demonstrate the efficiency of the thin plate 

spline technique, a Lagrangian finite element analysis has 

been carried out to calculate the stress gradient around a 

1m diameter rigid T-bar embedded in an elastic medium 

which has a Young‘s modulus of 10000 kN/m2 and 

Poisson’s ratio of 0.49. The outer boundary is located at 

a radial distance of 60r0. A prescribed displacement of 

0.01 m is applied to the outer boundary while the T-bar 

is taken to be stationary. Fig. 3 shows the radial stress 

along the centreline computed from the finite element 

using thin-plate splines compared with the closed-form 

solution of Bagulien et al. [16]. As it can be seen from 

there is an excellent agreement between the thin-plate 

spline interpolation and the closed-form solution.  

 

2.4. FE model for CPT 

Figure 4 shows the finite element mesh used in the 

analysis. The mesh consisted of 1701 nodes and 800 six 

noded reduced integration of triangular elements. The 

outer boundary was fixed in the radial direction. 

Displacement controlled analysis was performed, and the 

cone is taken to be stationary. A standard 60o cone with 

a smooth interface between cone and soil was simulated. 

Soil movement normal to the cone-soil interface was 

prevented and only sliding motion allowed. It should be 

noted that applying this boundary condition at the tip of 

the cone will give a conservative estimate for the soil 

strength. Detailed discussion on boundary conditions of 

CPT can be found in [17]. The radial distance to the outer 

boundary was chosen to be well outside the plastic zone. 

Based on cavity expansion analysis [18] the ratio of 

plastic radius to the current cavity radius remains 

constant at
rI ( where Ir is the rigidity index on the cone 

resistance defined as the ratio between the soil shear 

modulus G and the undrained shear strength su. Ir=G/su). 

The radial distance was taken to be 30R which is wide 

enough for the range of rigidity index between 50 and 

500, which was investigated in the finite element 

simulations.  Isotropic initial stress states were assumed. 

In all the analysis, a linear elastic model with von Mises 

failure criterion.                                                         

The von Mises yield stress (y) is equivalent to twice 

the undrained shear strength of the soil su in triaxial 

compression test (i.e. y = 2su).  

Fig 5 shows that the rigidity index of the soil has a 

significant influence on the cone factor. Figure 5 

compares the Eulerian-based finite element analysis with 

two finite element techniques: ALE and RITSS. In the 

Arbitary Lagrangian Eulerian (ALE) formulations, the 

mesh motion does not necessarily coincide with the 

material deformation so that severe element distortion 

can be eliminated.  An effective algorithm for updating 

the mesh is needed since numerical errors may develop 

and propagate over time during the analysis. The implicit 

remeshing and interpolation technique by small strain 

(RITSS). RITSS could be regarded as a variant of the 

Aribitary Largranigian-Eulerian ALE method. However, 

the mesh topography and connectivity are not influenced 

by the previous deforming increment. These results 

illustrate that the current Eulerian analysis, enhanced 

with the thin-plate spline technique, gave results that are 

consistent with RITSS analysis of Lu et al. [19] and  the 

ALE analysis of Nazem et al. [20]. 

2.4.1. Analysis of Cone Penetration Test in a 

strain-softening material 

In strain-softening material, the strength of the soil can 

be expressed as a function of the cumulative plastic 

strain. Einav and Randolph [21] suggested a simple 

function of the form: 
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where the ratio /
ref

   is the ratio of the measure of 

current accumulative plastic strain normalised by a 

reference value.  Einav and Randolph [21] took the 

cumulative engineering shear strain  (defined in 

equation (35)) as the measures of cumulative strain for a 

Tresca material, compared with the von Mises model 

adopted here. 
ref

 is the cumulative shear strain required 

to cause 95% reduction (from peak value to remoulded).  

rem represents the fully remoulded strength ratio (i.e. 

su(remolded)/su0 )  or the inverse of the sensitivity index, St. 

It should be noted that the rate of penetration and 

therefore the strain rate increasing shear rate causes the 

soil to be stiffer [21]. However, for the sake of 

simplifaction and validation of the new technique, the 

rate-dependent response was not modelled in this work.  

 

 



 
 

Fig. 4 Finite element mesh for CPT analysis 



 

 
Fig. 5 Effect of rigidity index on the cone resistance 

 
 

Fig. 6 Effect of strain softening on cone test: 

comparison between CPT and T-bar 

 

Fig. 6 compares the effect of strain softening in the 

cone penetration test and in the T-bar as given by Eq. 32. 

The figure shows that the effect of softening in the CPT 

is much lower than for the T-bar. The reduction in cone-

resistance is about 20 % of the reduction in T-bar 

resistance for the case of rem = 0.5. More discussion on 

the effect of strain-softening on penetrometers can be 

found in [22]. The results in Fig. 6 were obtained using 

the constitutive model parameters shown in Table 1.   

 

Table 1 Parameters used in the finite element analysis 

for CPT in a strain-softening material. 

 

Paramter Value 

Young Modulus 10000 kN/m2 

Poisson’s ratio 0.49 

Initial undrained shear 

strength 

25kPa 

cumulative shear strain 

required to cause 95% 

reduction 
ref

  

 

5.0 

2.5. Conclusions 

A novel Eulerian-based finite element formulation is 

developed to study the effect of strain softening on pene-

trometers resistance. The novelty of this approach is that 

it is capable of simulating large deformations without the 

need for re-meshing. The gradient of the stress at each 

Gaussian point is calculated using a smoothing thin-plate 

splines (TPS) technique. This approach gives consistent 

results and show that the effect of softening is much less 

significant for the cone penetration test compared to T-

bar penetration. The reduction in cone resistance due to 

strain-softening is about 20 % of the reduction in T-bar 

resistance for the case of a sensitivity index of 2.  
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