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ABSTRACT: In the numerical simulations of full-flow (T-bar and ball) penetrometers and cone penetration test, the
onset and growth of damage in the surrounding geomaterial depend on the rates of deformation and the magnitude of
strain (or material structure). In such applications, modelling the deformation and stress histories of soil particles as they
move during the penetration process is important. This paper presents a novel Eulerian-based finite element formulation
to study the effect of strain softening on penetrometers resistance. The novelty of this approach is that it is capable of
simulating large deformations without the need for re-meshing. The gradient of the stress at each Gaussian point is cal-
culated using a smoothing thin-plate splines (TPS) technique. This novel approach has been used to simulate T-bar and
cone-penetration tests in soft clay. The results show that the effect of softening is much less significant for the cone

penetration test compared to T-bar penetration.
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1. Introduction

The cone penetration test is one of the most widely in-
situ tests in geotechnical engineering practice for
assessing the strength profile in soil. In saturated clay, the
test is performed at a penetration rate that does not permit
drainage during the penetration process, so the test may
be interpreted directly as a measure of the undrained
strength profile of the clay. The popularity of this in situ
testing device has resulted in great demand for the
development of accurate correlations between measured
cone quantities (e.g., cone resistance and sleeve friction
ratio) and engineering properties of the soil. Despite
extensive research on cone penetration test in the last two
decades [1-7] the effect of strain-softening on the cone
resistance has not been investigated in detail.

In the numerical simulation of the cone penetration
test (CPT) and full-flow penetrometers such as T-bar and
ball tests, modelling the deformation and stress histories
of soil particles as they move during the penetration pro-
cess is important. Soils tend to exhibit a drop in strength
after significant shearing. This strain softening behaviour
can be related both to the reorientation of platy clay min-
erals during large strains, and to the “critical state”
strength degradation in over-consolidated clays [8]. Ran-
dolph [9] has illustrated that the undrained shear strength
is exponentially decayed with the cumulative shear
strain.

The finite element method has been implemented
successfully to model history-dependent geotechnical
problems [10]. The formulations are based either on
small deformations (which is not suitable for large-strain
problems such as CPT) or using Lagrangian theory. Fi-
nite element discretisations with Lagrangian meshes are
commonly classified as updated Lagrangian formulations
and total Lagrangian formulations. Both formulations use
Lagrangian descriptions, i.e. the dependent variables are
functions of the material (Lagrangian) coordinates and
time. In the updated Lagrangian formulation, the deriva-
tives are with respect to the spatial (Eulerian) coordi-

nates; the weak form involves integrals over the de-
formed (or current) configuration. In the total Lagrangian
formulation, the weak form involves integrals over the
initial (reference) configuration and derivatives are taken
with respect to the material coordinates.

2. Finite element

2.1. Formulation
The principal of virtual work in the Total Lagrangian
can be written as:
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where () is the domain of the undeformed
configuration, Fo is the boundary of that domain, u, is
the displacement, O, is the mass density in the
undeformed domain, bi is the body forces, t_, is the

traction force, Pij are the nominal stresses and F;j is the

deformation gradient given by:
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where X, is the material (Lagrangian) coordinates

and X; is the spatial (Eulerian) coordinate (see Fig. 1).

The equation of motion (the discrete momentum
equation) can be derived by:
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where fl}m are the internal nodal forces given by:
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N, (X)) is the shape function and f** are the external

nodal forces given by:
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and the mass matrix in the Total Lagrangian is given by:

Mijl./ = 51;/' IPONI NJdQO ©)
QO
The nominal stresses Pij are related to the Second
Piola-Kirchhoff (PK?2) stresses S i by:
T
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Taking the time derivative of the internal nodal forces
is therefore gives:
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Eq. 8 shows that the rate of the internal nodal forces
consists of two distinct parts:
1. The first term depends on the material response

(the rate of stress S ) and leads to what is called
the material tangent stiffness matrix Kmat .

2. The second term accounts for rotation of the
stress with the motion. This term is called the
geometric stiffness. It is denoted by Kgeo .

The rate of stress S can be related to the rate of Green
strain E using the tangent stiffness matrix C:
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The rate of Green strain E can be related to the rate
of nodal velocity d by:
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Eq. 7 can be converted to updated Lagrangian forms
by letting the current configuration be a reference
configuration (see Fig. 1). Therefore, Eq. 7 can be
rewritten as:

fint = [IB,T [C" ]B,da+1] Bks;m]a, (11)
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Therefore, from Eq. (11), the material tangent stiffness
can be defined as:

K" = [B][c” B, a0 a3
Q

And the geometric stiffness matrix is given by:
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In finite deformation analyses, an objective rate is
needed in the definition of constitutive model to ensure
that rigid body motions do not influence the stress state
in the material. Several definitions of objective stress
rates can be found in the literature (see [11] for example).
A widely used stress rate that satisfying objectivity is the
Jaumann rate:
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where o, s the Cauchy stress rate, o, is the

Jaumman objective stress rate and @,; is the spin tensor

defined as:
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where V is the velocity vector.
The material tangent moduli relating the Jaumman rate

of Cauchy stress to the rate of deformation can be defined
as:
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The Jaumann and the Trusdell tangent moduli can be
related as follows (see [1])

CT =C” -C’ (18)
where
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Fig. 1 FE configuration

Therefore the material tangent matrix for Jaumann rate
can be rewritten as:

K} = [Bf[c” -C"]B,d0 (19)
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For more details on the mathematical derivation, the
reader should refer to [11].

The material derivative f in the Eulerian frame of
reference is described by:
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The stress state in a path-dependent material depends
on the history of the material point. In the Eulerian
description, the quadrature points do not coincide with
the material points. Therefore, the stress history needs to
be convected by the velocity. The material derivative of
Cauchy stresses is given by:
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where A is evaluated from the constitutive relations
and the consistency condition. Considering the Jauma
rate:

ol
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The operator splitting technique [12] can be used to
solve the above equation. Eq. 21 can be decomposed into
sets of simple partial differential equation operators,
which can be solved sequentially as follows:
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The first set can be solved without considering the
convective effect. Thus it can be evaluated in the same
manner as in an updated Lagrangian analysis.

2.2. Stress integration

For non-linear materials, the stress-strain relations are
usually given in rate form and have to be solved by
integration for a given strain increment. The integration
of 29 over the time period from ¢ to f + At is given by:
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Hughes and Winget [13] considered the skew-

symmetry of Qij and shows that the second integration

in Eq. 24 is equivalent to a stress transformation:
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2.3. Calculation of stress gradient

The gradient of the stress at each Gaussian point is
required for calculating the internal force rate vector (Eq.
21 combined with Eq. 23). Inaccuracies in the calculation
of the stress gradient could lead to numerical instability
problems. In order to calculate the stress gradient, the
smoothing thin-plate splines (TPS) technique [14,15] is
employed. Thin plate splines are a special case of the
Polyharmonic splines and are very useful for
interpolation of scattered data in two-dimensions. The
construction is based on choosing a function that
minimises an integral that represents the bending energy
of a surface. The globally constructed spline has
continuous second-order derivatives.

A thin-plate interpolation scheme is used for
interpolating the stress and for calculating the stress
gradient. In this scheme, a function f(x) is chosen so that
that exactly interpolates the data points (i.e. y; = f{x;)), and
minimises the bending energy of the spline surface:

The problem can be formulated with a smoothing
parameter for regularisation [15]. A function fis chosen
that does not necessarily exactly interpolate all the data
points but that does minimise:

E[f]1= Zm:|f(xl.)— yl.|2 +aj ‘sz‘de (28)
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where ( the smoothing parameters, m is the number
of the data points and D?f is the matrix of second-order
partial derivatives of f.

The solution Eq. 28 is a linear combination of
Green's functions together with a linear polynomial
term:

f(x)= iyf_—f(xf)G(x,xi)J{bo +Z”:bjij
a =
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where G(x, s) is the Green’s function and x; is the jth
component of the variable x which in 2D could take the
form:

G(r)=r’lnr (30)

where r=||X—Xl.||, and ||0|| denotes the usual
Euclidean norm.

Evaluating Eq. (30) at data point k we obtain
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where x;k) is the jth component of Xx.
which can be rewritten in matrix form as:
y=(M+al)w+Nb (32)

In order for f{x) to have square-integrable second
derivatives, the orthogonality condition needs to be
satisfied [15].

N'w=0 (33)

Thus, the coefficients w and b can be obtained by
solving the following system:
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For more details on the implementation of thin-plate
splines, the reader is referred to [15].

The problem varies from the thin-plate spline
interpolant to the data when the regularisation parameter
a is 0 to the least-squares approximation to the data by
a linear polynomial when & —> 0. In the FE results
reported here the regularisation parameter, ¢ is chosen in
the ad hoc fashion adopted in MATLAB, where « is
taken to be equal to the average of the diagonal element
of the matrix Q™MQ, where Q is the orthogonal matrix
in the QR decomposition of N.

The stress gradient calculations are carried out in
element-by-element fashion. For each element, the
Gaussian points in this element and in its neighbouring
elements are used in the interpolation. For each stress
component, a function that interpolates the stress in all
the Gaussian points is found together with its derivatives.
Fig. 2 illustrates the elements patch used in the thin-plate
spline calculations. In order to calculate the stress
gradient in the element shown in the dark grey, the stress
points in the surrounding elements are also taken into
consideration to obtain the coefficients w and b in Eq.
34.
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Fig. 2 Illustration of an element patch for the thin-plate
spline interpolation
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Fig. 3 Illustration of an element patch for the thin-plate
spline interpolation



In order to demonstrate the efficiency of the thin plate
spline technique, a Lagrangian finite element analysis has
been carried out to calculate the stress gradient around a
Im diameter rigid T-bar embedded in an elastic medium
which has a Young‘s modulus of 10000 kN/m? and
Poisson’s ratio of 0.49. The outer boundary is located at
a radial distance of 60ro. A prescribed displacement of
0.01 m is applied to the outer boundary while the T-bar
is taken to be stationary. Fig. 3 shows the radial stress
along the centreline computed from the finite element
using thin-plate splines compared with the closed-form
solution of Bagulien et al. [16]. As it can be seen from
there is an excellent agreement between the thin-plate
spline interpolation and the closed-form solution.

2.4. FE model for CPT

Figure 4 shows the finite element mesh used in the
analysis. The mesh consisted of 1701 nodes and 800 six
noded reduced integration of triangular elements. The
outer boundary was fixed in the radial direction.
Displacement controlled analysis was performed, and the
cone is taken to be stationary. A standard 60° cone with
a smooth interface between cone and soil was simulated.
Soil movement normal to the cone-soil interface was
prevented and only sliding motion allowed. It should be
noted that applying this boundary condition at the tip of
the cone will give a conservative estimate for the soil
strength. Detailed discussion on boundary conditions of
CPT can be found in [17]. The radial distance to the outer
boundary was chosen to be well outside the plastic zone.
Based on cavity expansion analysis [18] the ratio of
plastic radius to the current cavity radius remains

constant at ,/], ( where I, is the rigidity index on the cone

resistance defined as the ratio between the soil shear
modulus G and the undrained shear strength s.. 1,=G/s.).
The radial distance was taken to be 30R which is wide
enough for the range of rigidity index between 50 and
500, which was investigated in the finite element
simulations. Isotropic initial stress states were assumed.
In all the analysis, a linear elastic model with von Mises
failure criterion.

The von Mises yield stress (oy) is equivalent to twice
the undrained shear strength of the soil s, in triaxial
compression test (i.e. oy = 25,).

Fig 5 shows that the rigidity index of the soil has a
significant influence on the cone factor. Figure 5
compares the Eulerian-based finite element analysis with
two finite element techniques: ALE and RITSS. In the
Arbitary Lagrangian Eulerian (ALE) formulations, the
mesh motion does not necessarily coincide with the
material deformation so that severe element distortion
can be eliminated. An effective algorithm for updating
the mesh is needed since numerical errors may develop
and propagate over time during the analysis. The implicit
remeshing and interpolation technique by small strain
(RITSS). RITSS could be regarded as a variant of the
Aribitary Largranigian-Eulerian ALE method. However,
the mesh topography and connectivity are not influenced
by the previous deforming increment. These results
illustrate that the current Eulerian analysis, enhanced

with the thin-plate spline technique, gave results that are
consistent with RITSS analysis of Lu et al. [19] and the
ALE analysis of Nazem et al. [20].

2.4.1. Analysis of Cone Penetration Test in a
strain-softening material

In strain-softening material, the strength of the soil can
be expressed as a function of the cumulative plastic
strain. Einav and Randolph [21] suggested a simple
function of the form:

S, =S, (5 +(1=5, Y ) (35)
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where the ratio ref 15 the ratio of the measure of

current accumulative plastic strain normalised by a
reference value. Einav and Randolph [21] took the
cumulative engineering shear strain A (defined in
equation (35)) as the measures of cumulative strain for a
Tresca material, compared with the von Mises model

adopted here. 2 is the cumulative shear strain required

to cause 95% reduction (from peak value to remoulded).
Orem represents the fully remoulded strength ratio (i.e.
Su(remoldedySuo ) OT the inverse of the sensitivity index, S..
It should be noted that the rate of penetration and
therefore the strain rate increasing shear rate causes the
soil to be stiffer [21]. However, for the sake of
simplifaction and validation of the new technique, the
rate-dependent response was not modelled in this work.

60R

30R

i Prescribed velocity

«—— 30R —

Fig. 4 Finite element mesh for CPT analysis
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Fig. 6 Effect of strain softening on cone test:
comparison between CPT and T-bar

Fig. 6 compares the effect of strain softening in the
cone penetration test and in the T-bar as given by Eq. 32.
The figure shows that the effect of softening in the CPT
is much lower than for the T-bar. The reduction in cone-
resistance is about 20 % of the reduction in T-bar
resistance for the case of dem = 0.5. More discussion on
the effect of strain-softening on penetrometers can be
found in [22]. The results in Fig. 6 were obtained using
the constitutive model parameters shown in Table 1.

Table 1 Parameters used in the finite element analysis
for CPT in a strain-softening material.

Paramter Value
Young Modulus 10000 kN/m?
Poisson’s ratio 0.49

Initial undrained shear | 25kPa
strength

cumulative shear strain | 5.0
required to cause 95%

reduction 2
ref

2.5. Conclusions

A novel Eulerian-based finite element formulation is
developed to study the effect of strain softening on pene-
trometers resistance. The novelty of this approach is that

it is capable of simulating large deformations without the
need for re-meshing. The gradient of the stress at each
Gaussian point is calculated using a smoothing thin-plate
splines (TPS) technique. This approach gives consistent
results and show that the effect of softening is much less
significant for the cone penetration test compared to T-
bar penetration. The reduction in cone resistance due to
strain-softening is about 20 % of the reduction in T-bar
resistance for the case of a sensitivity index of 2.
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