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ABSTRACT: The development of numerical methods and the need to define precision for calculations 

means that the admissible margins of error for calculations must be defined. specialy on the pressuremeter 

parameters (EM, pLM), which are used for foundation design. The pressuremeter parameters which are used in 

the design of the foundations are assumed here to follow a Gaussian distribution curve. The error theory is 

used to define the precision of the pressuremeter module EM, and the limit pressure pLM .  It is applied to a 

series of pressuremeter tests used as a benchmark for the ARSCOP French National Project. The precision of 

the pressuremeter modulus is shown highy related to the acuracy on the pressure and the volume, whereas 

the limit pressure is mostly linked to the determination of the creep pressure. 
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1. Introduction 

In the field of civil engineering, the pressuremeter is 

widely used for the design of structures such as shallow 

foundations [1] or the settlement of foundations (Ap-

pendix H [1]. These methods use the geotechnical char-

acteristics of the soil related to the pressuremeter test, 

namely the Ménard pLM limit pressure and the Ménard 

EM pressuremeter module.  These quantities are used for 

the design of foundation but the new requirements of 

dimensioning needs to define for these values a preci-

sion, even a tolerance so as to specify the dimensions of 

the geotechnical works 

The aim of this study is to define the precision relat-

ed to the pressuremeter module and the limit pressure, 

as a function of the accuracy of the unit pressure and 

volume measurements, but also according to the meth-

ods used to measure them in a standard way [2] . 

 

2. Hypothesis 

2.1. Essential notions 

Before studying Error, it is important to identify 

some essential notions, and to distinguish Errors from 

Mistakes: 

• True measurement does not exist; there is always a 

measurement uncertainty related to the imperfection of 

our senses and / or our instruments 

• Errors always add up, and never remove one from 

the other 

• The error is inevitable; every measurement is viti-

ated by an error related to the imperfection of our senses 

and / or our instruments. The error always exists when 

one makes a measurement. 

• The fault is a gross error related to the non respect 

of the measurement protocol 

• Tolerance is the maximum limit of the error; be-

yond which we consider a fault 

 

2.2. What is a result of a measure? 

When we measure n times the same size: 

• for an ideal world, the average value of a 

measurement series and the true value are close (Fig. 1) 

• In the real world we obtain a dispersion of the 

measurements (Fig. 2) 

• Measures may have different biases (Fig. 3) 

 

 

Figure 1.  Ideal match between measurements and true value  

 

Figure 2. Real  match between measurements and true value 
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Figure 3. Correspondence between the measurements and the 

true value, for the dart game 

 

2.3. Distribution of measurements - Gauss 

curve 

We assume that the number of repeated measurements 

for the same measurand is distributed (Fig.4) according 

to a Gaussian curve (or normal law). 

Figure 4. Distribution of measurements according to the 

Gaussian curve:   is the standard deviation 

2.4. Characteristics of Gauss curve 

The characteristic quantities of the Gauss curve are: 

• The average X̅  of measurements Eq. (1) 

• The standard deviation  or variance or squared 

mean error Emq Eq. (2) 

• The probable error Ep Eq. (3) 

• The Tolerance T Eq. (4); beyong it the measurement 

is faulty X̅ = (∑i=1n Xi )/n (1) σ = Emq = √{∑ 〖(X〗_i − X ̅)〗2ni=1 i=1
n /(n − 1)} (2) Ep = 2/3. Emq (3) 

T = 4. Ep (4) 

 

Figure 5. Gauss curve with an average of 0 and a standard de-

viation  of 2 

2.5. Composition of errors 

When one wants to calculate a particular physical 

quantity F, one uses the measurement of different 

variables x, y, z which each have their own variance x, 

y, z. The errors related to each measurement have an 

influence on the error of the magnitude that one seeks to 

calculate. It is calculated differently in the case of a 

simple function F (5) as  addition or subtraction by 

adding the squares of the variances of each variable Eq. 

(6) or in the case of a composed function Eq. (7), as 

multiplication, or division, then its variance is 

calculated according to Eq. (8). A more detailed 

description of these calculations can be found in [3]. For 

a simpler application it is recommended to consult 

[4,[5]. F = x + y − z (5) σF2 = σx2 + σy2 + σz2 (6) F = (a. x. b. y) (c. z)⁄  (7) σF2 =∑ (∂F ∂xi⁄ )2ni=1 . σi2 (8) 

Especially in the case where we use a large measure 

into n smaller measures of precision x (like to chaine a 

great distance of 90m by carrying out 5 times a 

decameter of 20m) the precision σTotal on the sum of the 

n measures is then Eq. ( 9). 

If we repeat the same precision measurement x n 

times to reach a mean value with a better precision, the 

error σMoy on the average is Eq.  (10) σTotal = σx. √n (9) σMoy = σx√n (10) 



 

Figure 6. Determination of the pairs of points (p1, V1) and (p2, 

V2), (AFNOR, 2015) 

 

Figure 7. Determination of the probe length ls  (AFNOR, 2015) 

 

Figure 8. Determination of the diameter of the calibration tube 

(AFNOR, 2015)  

 

Figure 9. Calibration in dilatation of apparatus (AFNOR, 2015) 

 

Figure 10. Calibration in pressure loss (AFNOR, 2015)  

 

3. Ménard Pressuremeter modulus 

3.1. Formula of the EM Pressuremeter 

Modulus 

The pressuremeter modulus is calculated by the 

expression Eq. (11) on the pseudo elastic range (Fig. 6) 

between the points p1 and p2. 

The calculation variables are the volume of the Vs 

probe Eq. (12) which depends on the length of the probe 

ls (Fig. 7) of the diameter of the calibration tube di (Fig. 

8) of the volume correction Vp (Fig. 9). The corrected 

pressures p1 and p2 are calculated by Eq. (13) which 

depend on the measured pressure pr1, the self-resistance 

relationship of the pel probe (Ve) (Fig. 10) and the depth 

z of the probe in the borehole. The corrected volumes 

V1 and V2 are calculated by Eq. (14) and depend on the 

measured volume Vr1, the device's own expansion 

coefficient a (Fig. 9), the ordinate at the origin of the 

equipment expansion line ( Fig. 9). For more precision 

on these different variables, see [2] EM = 2.66. [Vs + V1 + V22 ] . (p2 − p1)(V2 − V1) (11) Vs =  0,25. π. ls. di2 − Vp (12) p1 = pr1 − pel(Ve) + γw. z (13) V1 = Vr1 − a. pr1 (14) 



 

 

3.2. Precision of the main variables 

In this paper the term error indicates the standard 

deviation (in the Gaussian sense) of the measurement 

error. The precision on the main variables is also 

calculated by the law of propagation of the errors for the 

composed functions Eq. (8). We then obtain for the 

calculation of the volume of the probe Vs Eq. (12): 

• The derivatives with respect to the length of the 

probe ls Eq. (15), with respect to the diameter of the 

tube of qualibration di Eq. (16) 

• The derivative with respect to Vp is equal Eq. (17) 

• the accuracy on the volume of the Vs probe (21) 

whose definition is Eq. (12). Note that Vp is obtained 

by the ordinate at the origin of the indicated 

regression line (Fig. 9). Its accuracy follows the 

same rule as that of the limit pressure (see 4.2.2 ). 

The average error of estimation is Eq. (18) 

•  the standard deviation of the error on Vp is  (with y 

= V and x = p and 𝑦⏞  the volume estimated by the 

linear regression) given by Eq. (20). Finally the error 

on the volume of the probe Vs is Eq. (21) ∂Vs ∂pel⁄ =  0,25. π. di2 (15) ∂Vs ∂di⁄ =  0,5. π. ls. di  (16) ∂Vs ∂Vp⁄ = −1 (17) 

𝜎𝑟 = √∑ (𝑦𝑖 − 𝑦⏞)2𝑛𝑖=1 (𝑛 − 2)⁄  
(18) 

𝑅 = (𝑥 − 𝑥̅)2√∑ (𝑥𝑖 − 𝑥̅)2𝑛𝑖=1  
(19) 

σVp = 𝑡1−𝛼 2⁄𝑛−2 . 𝜎𝑉𝑝. √1 + 1/𝑛 + (𝑥 − 𝑥̅)2 𝑅⁄= ∆𝑥 

(20) 

σVs= √{0,0625. π2. 𝑑𝑖4. σls2 + 0,25. π2. 𝑙𝑠2. 𝑑𝑖2. σdi2 } + σVp2(21) 

 

• The precision on the corrected pressures p1 and p2 

Eq. (27) whose definition is Eq. (13), with Ve being 

written Eq. (22) Ve = a0 + a1. pel + a2. pel2 + a3. pel3  (22) ∂Ve ∂pel⁄ =  a1 + 2. a2. pel + 3. a3. pel2  (23) ∂pel ∂Ve⁄ = 1 (a1 + 2. a2. pel + 3. a3. pel2 )⁄  (24) ∂p1 ∂pr1⁄ = 1 (25) ∂p1 ∂z⁄ = γw (26) 

σp= √{σpr2 + σVe2 (a1 + 2. a2. pe + 3. a3. pe2)⁄ + γw2 . }σz2(27) 

 

• the derivative of the corrected volume V1 or V2 with 

respect to the measured volume Vr1 or Vr2 Eq. (28), 

with respect to the coefficient a of the linear 

regression Eq. (29), with respect to the measured 

pressure pr1 Eq. (30) 

• The accuracy of the corrected volumes V1 and V2 

Eq. (32) depends on the accuracy on the slope of the 

regression line σa Eq. (31) which is a function of σr 

the mean error of estimation Eq. (18) ∂V1 ∂Vr1⁄ =  1 (28) ∂V1 ∂pr1⁄ = −a (29) ∂V1 ∂a⁄ = −pr1 (30) 𝜎𝑎 = 𝜎𝑟 {∑ (𝑥𝑖 − 𝑥̅)2𝑛𝑖=1 }0.5⁄  
(31) 

σV1 = √σVr12 + a2. σpr12 + pr12 . σa2 (32) 

 

3.3. Precision of the Pressuremeter Modulus 

EM 

The calculation of uncertainty requires the 

determination of the partial derivatives of the EM 

module Eq. (11) with respect to the main variables: 

• compared to the volume of the Vs probe Eq. (33) 

• to corrected volumes V1 and V2 Eq.  (34-(36) 

• compared to corrected pressures p1 and p2 Eq. (37) 

Which allows to have the precision on EM Eq. (38) 

thanks to the relation of propagation of the errors for the 

composed functions   ∂EM ∂Vs⁄ = 2.66. (p2 − p1) (V2 − V1)⁄  (33) ∂EM ∂V1⁄ = 2.66. ∂[Vs + (V1+ V2)/2]/(∂V1 ). ((p2− p1 ))/((V2 − V1 ) )+ 2.66. [Vs + (V1+ V2)/2]. (p2− p1 )  ∂/(∂V1 ).1/((V2− V1 ) ) 

(34) 

∂EM ∂V1⁄ = 2.66.1/2. ((p2 − p1 ))/((V2− V1 ) ) + 2.66. [Vs + (V1+ V2)/2]. (p2− p1 ).1/(V2 − V1 )^2  
(35) 

∂EM ∂V1⁄ = 1.33. (p2 − p1)/(V2− V1 ) ). {1 + 2/((V2− V1 ) ) [Vs + (V1+ V2)/2] } 
(36) 

∂EM ∂p1⁄ = 2.66. [Vs + (V1+ V2)/2].1/((V2 − V1 ) ) (37) 



σEM  = {∂EM ∂Vs⁄ . σVs + 2. ∂EM ∂V12⁄+ 2. ∂EM ∂p12⁄ + σp² }^0.5 
(38) 

4. Limit pressure 

4.1. Calculation of the Limit Pressure pLM 

4.1.1. Direct calculation of the Limit 

Pressure pLM 

In this case, the measurement of the limit pressure is 

done when the doubling of the volume of the hole is 

reached, that is to say when the injected volume VL cor-

responds to Eq. (39) with V1 the volume injected for the 

contact. of the probe to the borehole. VL = Vs + 2. V1 (39) 

4.1.2. Calculation by linear regression  

In this case, the pressuremeter curve is transformed 

into a straight line by linear regression Eq. (40) of the 

corrected values {p; 1 / V}. This equation is 

transformed into a hyperbolic equation Eq. (41), which 

allows to determine the Ménard limit pressure by Eq. 

(42), with A slope of the regression line at V-1 and B at 

its ordinate at the origin: V−1 = A. p + B (40) p = − B/A + 1/(A. V) (41) pLM = −B/A + 1/(A. (Vs + 2. V1 ) ) (42) 

 

4.1.3. Calculation by the double hyperbola 

method 

In this case, the pressuremeter curve is approximated 

by a double hyperbola whose coefficients are (A1, A2, 

A3, A4, A5, A6). The Ménard limit pressure is then the 

solution of  Eq. (43) positive and lower than A6 0 = −A2. pLM3 + [VL − A1+ A2. (A5 + A6)]. pLM2+ [(A1 − VL). (A5 + A6)− A5. A6. A2 + A3+ A4]. pLM+ [(VL − A1). A5. A6− A3. A6 − A4. A5] 

(43) 

4.2. Precision of the Limit Pressure pLM 

4.2.1. Precision on the calculation of pLM by 

method in V-1 and by the composition of 

the errors 

In this case we use the inverse linear relation of V 

and we find the relation Eq. (42). By applying the law 

of composition of the errors to Eq. (42), one obtains 

successively the partial derivatives with respect to the 

variables Vs, V1, A and B Eqs. (44), (45), (46), (47) 

then the precision on the pressure limit pLM Eq. (48) ∂pLM ∂Vs⁄ = 1 [A. (Vs + 2. V1)2]⁄  (44) ∂pLM ∂V1⁄ = 2 [A. (Vs + 2. V1)2]⁄  (45) ∂pLM ∂A⁄ = (B + 1 (Vs + 2. V1)⁄ ) A2⁄  (46) ∂pLM ∂B⁄ = 1 A⁄  (47) σPlm  = {1/(A2. (Vs + 2. V1 )4 ). σVs2+ 4/(A2. (Vs + 2. V1 )4 ). σV12+ 1/A4  [B+ 1 (Vs + 2.V1)⁄   ]2. σA2 _+ 1/A2 . σB2  }0.5 
(48) 

4.2.2. Precision on the calculation of pLM by 

linear regression 

In this case, the limit pressure pLM and the volume VL 

lie on the regression line beyong the points P2 with a 

line of slope A and ordinate at the origin B. The 

equation Eq. (40) is represented in the theory of the 

regression line by Eq. (49), with y for V-1 and x for p, 0 

for B and 1 for A. As we search for precision on pLM, 

we must determine the precision from x and back to the 

theoretical equation Eq. (50), whose coefficients '0 and 

'1 are given by Eq. (51) and Eq. (52) [6], [7]. 

To determine the confidence interval of x, we find its 

value for a given risk  by means of the relation Eq. 
(54) in which t represents the Student's law with n-2 

degree of freedom. To reduce it to the case of the 

pressuremeter and the limit pressure, we can notice that 

the variable y corresponds to VL
- 1, 𝑦̅ corresponds to à 𝑉−1̅̅ ̅̅ ̅ , yi corresponds to 𝑉𝑖−1, x corresponds to the 

permissible variation of the pressure pLM, n corresponds 

to the number of measurements. Assuming a Gaussian 

distribution of the measures, we assume that the 

variance corresponds to a measurement expectation of 

34.1% (Fig. 4). 

Under these conditions, the theoretical relationship 

that allows to determine the variation of the limit 

pressure with a probability of  = 34.1%, which 

corresponds to the standard deviation of the limit 

pressure is obtained by Eq. (58). If we also take into 

account the variability on  𝑉𝑖−1 and  𝑉𝐿−1, assuming that 

the mean values are not affected by the measurement 

errors, we get the partial derivatives of the variance with 

respect to   𝑉𝑖−1and   𝑉𝐿−1 Eqs. (59) (60), then the value 

of the variance on the limit pressure is Eq. (61): 𝑦⏞ = 𝛽1 . 𝑥 + 𝛽0  (49) 𝑥⏞ = 𝛽1′ . 𝑦 + 𝛽0′) (50) 𝛽′1 = (∑𝑖=1𝑛 (𝑥𝑖 − 𝑥 ̅ ). (𝑦𝑖− 𝑦 ̅ )/(∑𝑖=1𝑛 (𝑦𝑖 − 𝑦 ̅ )2 ) (51) 

𝛽0′ = 𝑥̅ − 𝛽1′ . 𝑦̅ (52) 



 

𝜎𝑟  = {∑𝑖=1𝑛 (𝑥𝑖 − 𝑥⏞ )2 ⁄ (𝑛 − 2)}0.5  (53) 𝑅1 = (𝑉𝐿−1 − 𝑉−1̅̅ ̅̅ ̅)2/∑ (𝑉𝑖−1 −𝑛𝑖=1𝑉−1̅̅ ̅̅ ̅)2)  (54) 𝑅2 = 𝑡(1−𝛼⁄2)𝑛−2 . . √{1 + 1/𝑛 + 𝑅1} (55) 𝑅3 = (𝑉𝐿−1 − 𝑉−1̅̅ ̅̅ ̅̅̅ ̅̅ ̅ ̅̅ ̅̅ ̅̅  )/∑𝑖=1𝑛 (𝑉𝐿−1− 𝑉−1 ̅̅ ̅̅ ̅̅ ) 2  (56) ∆𝑥 = 𝑡(1−𝛼⁄2)𝑛−2 . 𝜎𝑟 . √{1 + 1/𝑛 + 𝑅1} (57) 𝜎𝑝𝐿𝑀 = 𝑡(1−𝛼⁄2)𝑛−2 . 𝜎𝑟 . √{1 + 1/𝑛 + 𝑅1} (58) ∂pLM ∂VL⁄ = 2. 𝑅2. 𝑉𝐿−2. (𝑉𝐿−1− 𝑉−1 ̅̅ ̅̅ ̅̅  )/∑𝑖=1𝑛 (𝑉𝐿−1− 𝑉−1 ̅̅ ̅̅ ̅̅ ) 2.  (59) 

∂pLM ∂V1⁄ = 𝑅2.𝑅32. ∑ 2. (𝑉𝑖−1 −𝑛𝑖=1𝑉−1̅̅ ̅̅ ̅) . 𝑉𝑖−2 (60) 𝜎𝑝𝐿𝑀= 𝑡(1−𝛼⁄2)𝑛−2 . 𝜎𝑟 . √{1 + 1/𝑛 + 𝑅1}+ [(𝜕𝜎𝑝𝐿𝑀/𝜕𝑉𝐿 )2. 𝜎𝑉𝐿2+ (𝜕𝜎𝑝𝐿𝑀/𝜕𝑉𝑖 )2. 𝜎𝑖2]^0.5 

(61) 

 

4.2.3. Precision on the calculation of pLM by 

by the double hyperbole 

In this case we use the polynomial equation of the 

double hyperbola for the volume VL Eq. (43), which can 

be written in the form of Eq. (62) which allows to have 

the partial derivatives with respect to each unit variable 

Eqs. (63) to (70) E(VL,   pLM) = −A2. pLM3+ [VL − A1+ A2. (A5 + A6)]. pLM2+ [(A1 − VL). (A5 + A6)− A5. A6. A2 + A3+ A4]. pLM+ [(VL − A1). A5. A6− A3. A6 − A4. A5] = 0 

(62) 

∂E ∂pLM⁄⏞      = −3.A2. pLM2+ 2. [VL − A1+ A2. (A5 + A6)]. pLM+ [(A1 − VL). (A5 + A6)− A5. A6. A2 + A3 + A4] 
(63) 

∂E ∂VL⁄⏞    = pLM2 + (A5 + A6). pLM+ (A5. A6) (64) ∂E ∂A1⁄⏞    = pLM2 + (A5 + A6). pLM (65) ∂E ∂A2⁄⏞    =⏞      pLM3 + (A5 + A6). pLM2+ A5. A6. pLM 

(66) ∂E ∂A3⁄⏞    = pLM + 1 (67) ∂E ∂A4⁄⏞    = pLM + 1 (68) 

∂E ∂A5⁄ = A2. pLM2+ [(A1 − VL)− A6. A2]. pLM+ [(VL − A1). A6 − A4] 
(69) 

∂E ∂A6⁄ = A2. pLM2+ [(A1 − VL)− A5. A2]. pLM+ [(VL − A1). A5 − A3] 
(70) 

 

The law of composition of the errors applied to the 

relation Eq. (62), gives Eq. (71); we notice that equation 

(62) is null by definition so as its variation Eq. (71). We 

pose by definition a null variance, since the nullity of E 

is a hypothesis of resolution. This equation, allows to 

have the precision on the limit pressure by Eq. (72) σE² = (∂E ∂ppLM)⁄ 2 .   σpLM2+ (∂E/ ∂VL )2.   σVL2+ (∂E/ ∂A1 )2.   σA12+ (∂E/ ∂A2 )2.   σA22+ (∂E/ ∂A3 )2.   σA32+ (∂E/ ∂A4 )2.   σA42+ (∂E/ ∂A5 )2.   σA52+ (∂E/ ∂A6)2. σA62 

(71) 

σpLM  = 1/(∂E ∂ppLM).⁄ {(∂E/ ∂VL )2.   σVL2+ (∂E/ ∂A1 )2.   σA12+ (∂E/ ∂A2 )2.   σA22+ (∂E/ ∂A3 )2.   σA32+ (∂E/ ∂A4 )2.   σA42+ (∂E/ ∂A5 )2.   σA52+ (∂E/ ∂A6)2. σA62 }0.5 

(72) 

5. Application - Precision of the Ménard 

Modulus on typical examples 

Typical examples were provided by Fondasol [8]. In 

the following calculations, we use the following 

accuracies (or standard deviation) (Tab.4). deduced 

from the standard (Tab.3).  

The determination of the volume of the probe 

(Procedure A) through the expansion test (resistance) is 

indicated for borehole test A at 29m (Fig. 11) for both 

borefole B at 21 and 22m (Fig. 12) for borehole test E at 

1.5m (Fig. 13). In these Fig.s, the Minimum and 

Maximum lines corresponding to the mean  line +/- a 

standard deviation (34.1% precision) were also carried 

 

 

 



Table 1. Measuring Range and Accuracy for Measuring Devices of a 

Ménard Pressuremeter (AFNOR, 2015) 

Measurement unit Area of 

measurement 

Process A Process 

B 

Depth m  0.2 0.2 

Time s  1 0.5 

Pressure kPa 0 - 5000 25 15 

Voluùe Cm3 0 - 700 2 1 

 

Table 2. Precision used in the calculations of the typical examples 

Measu unit Process A Process B Process C 

Length mm 1 1 1 

Diameter 

calib. tube mm 

0.1 0.1 0.1 

Depth m 0.2 0.2 0.2 

Time s 1 0.5 0.5 

Pressure kPa 25 15 10 

Voluùe cm3 2 1 0.1 

Unit weigth kN/m3 0.1 0.1 0.1 

 

Table 3. Precision calculations for the main variables - procedure A 

 Value Precision 

di (mm) 66 0.1 

ls (mm) 210 1 

w (kN/m3) à 20° 97,89 0.1 

Vc (cm3) 139,2 1 

Borehole A , 29m   

pr1 (MPa) 3,000 0,025 

p1 (MPa) 3,076 0,0253 

Vr1 (cm3) 262 2 

V1 (cm3) 248.8 2 

Borehole B, . 21m   

pr1 (MPa) 1,300 0,025 

p1 (MPa) 1,398 0,0253 

Vr1 (cm3) 165 2 

V1 (cm3) 159.9 2 

Borehole B,  22m   

pr1 (MPa) 0,800 0,025 

p1 (MPa) 0,860 0,0253 

Vr1 (cm3) 202 2 

V1 (cm3) 198,9 2 

Borehole E, 1,5m   

pr1 (MPa) 0,300 0,025 

p1 (MPa) 0,210 0,0253 

Vr1 (cm3) 258 2 

V1 (cm3) 257,5 2 

 

 

 

Figure 11. Precision of  Vp by linear regression related to the own di-

lation (resistance) - Test at 29m, hole A. 

 

Figure 12. Precision of  Vp by linear regression related to the own di-

lation (resistance) - Test at 21m and 22m, hole B.. 

 

Figure 13. Precision of  Vp by linear regression related to the own di-

lation (resistance) - Test at 1.5m  hole E. 



 

5.1. Precision on EM - Procedure A for 

p=25kPa and v=2cm3 

A first series of calculations is based on the 

assumption that the operator carries out visual 

measurements with a precision of reading of the 

pressure pr with an accuracy of 25kPa and a precision 

on the volumes Vr of 2cm3. The accuracy on the z-side 

of the probe (Tab.2) is assumed to be 0.2m. Tab.3  

shows the precision calculation for the main variables 

and in Tab.4 the precision of the calculation for the 

pressuremeter module EM which varies between 4% and 

17% (col.9, Table4) 

The precision on the Pressuremeter module EM 

allows to notice: 

• an error related to the linear regression  p greater 

than that on the unit volumes of procedure A (col.3, 

Tab.4). 

• The linear regression error is not improved if the 
accuracy is better. The values of s do not change when 

proceeding from procedure A to B or C 

• There is a significant error in the linear regression 

procedure that cannot be reduced by improving the 

quality of the measurement (see Tab.4 to Tab.6). The 

improvement of the accuracy passes by a better approx-

imation of Vc which cannot be linear. 

5.2. Precision on EM - Procedure B for 

p=15kPa and v=1cm3 

A second series of calculations is based on the assump-

tion that the measurements are carried out automatically 

with a precision of pressure reading pr with an accuracy 

of 15kPa and a precision on volumes Vr of 1cm3. The 

accuracy on the z-side of the probe is assumed to be 

0.2m. The precision of the calculation for the 

pressuremeter module EM is shown and varies between 

2% and 10%. (col.9, Tab.5) 

 . 

5.3. Precision on EM - Procedure C for 

p=10kPa and v=0.1cm3 

A third series of calculations is based on the assumption 

that the measurements are carried out automatically 

with a precision of pressure reading pr with an accuracy 

of 10kPa and a precision on volumes Vr of 0.1cm3. The 

accuracy on the z-side of the probe is assumed to be 

0.2m. The precision of the calculation for the 

pressuremeter module EM is shown and varies between 

2% and 7%. (col.9, Tab.6) 

 

 

 

 

 Table 4: Precision calculations on the pressuremeter module; procedure A 

Borehole Depth 

m 

r  

cm3 

 p  

cm3 

Vs  

cm3 

a 

cm3/kPa 

a  

cm3/kPa 

EM 

MPa 

EM  

MPa 

Error  

% 

Tolérance 

MPa 

A 29 1.2 3.6 7.7 3,380 0.1891 152,3 8.6 5.6 26,8 

B 21 1.8 4.5 8.6 3,470 0.2793 21.6 0.6 3,9 2.3 

B 22 1.8 4.5 8.6 3,470 0.2793 20,6 1.8 8.9 4.8 

E 1,5 0.4 2.6 6.7 1.411 0.1282 5.3 0.9 16.6 2.4 

 

 Table 5 : Precision calculations on the pressuremeter module; procedure B 

Borehole Depth 

m 

r  

cm3 

Vp  

cm3 

Vs  

cm3 

a 

cm3/kPa 

a  

cm3/kPa 

EM 

MPa 

EM  

MPa 

Error  

% 

Tolérance 

MPa 

A 29 1.2 2.6 6.7 3,380 0.1891 152,3 4.4 3.0 11.9 

B 21 1.8 3.5 7.6 3,470 0.2793 21.6 0.4 2,2 1.3 

B 22 1.8 3.5 7.6 3,470 0.2793 20,6 1.0 4,9 2.7 

E 1,5 0.4 1.6 5.7 1.411 0.1282 5.3 0.5 9,9 1,4 

 

 Table 6 : Precision calculations on the pressuremeter module; procedure C 

Borehole Depth 

m 

r  

cm3 

Vp  

cm3 

Vs  

cm3 

a 

cm3/kPa 

a  

cm3/kPa 

EM 

MPa 

EM  

MPa 

Error  

% 

Tolérance 

MPa 

A 29 1.2 1.7 5.8 3,380 0.1891 152,3 1.4 0.8 4,0 

B 21 1.8 2.6 6.7 3,470 0.2793 21.6 0.2 2,2 1,3 

B 22 1.8 2.6 6.7 3,470 0.2793 20,6 0.6 4,9 2,7 

E 1,5 0.4 0.7 4.8 1.411 0.1282 5.3 0.4 9,9 1,4 

 



6. Application - Precision of the Limit 

pressure on typical examples 

6.1. Precision on pLM using V-1 - Procedure 

A for p=25kPa and v=2cm3 

Calculations are made using the relation Eq. (48), 

and estimating the variation of the regression 

coefficients A and B by varying the creep pressure pf 

assumed to be p2. Note that the test A at 29m is very 

sensitive to the variation of pf which leads to a 

significant error on the limit pressure. This is not the 

case for all other tests. 

 

Table 7 : Precision calculation on limit pressure - procedure A 

Hole Depth 

m 

pLM 

MPa 

EM 

MPa 

Error 

% 

Toler 

MPa 

A 29 15,4 5.0 32.9 13.5 

B 21 3,9 0,1 1,3 0,1 

B 22 3,1 0,2 0,1 0,1 

E 1,5 0.74 0,01 0,1 0,1 

 

6.2. Precision on pLM using V-1 - Procedure 

B for p=15kPa and v=1cm3 

Table 8 : Precision calculation on limit pressure - procedure B 

Hole Depth 

m 

pLM 

MPa 

EM 

MPa 

Error 

% 

Toler 

MPa 

A 29 15,4 5.2 32.4 13.8 

B 21 3,9 0,1 1,3 0,1 

B 22 3,1 0,2 0,1 0,1 

E 1,5 0.74 0,01 0,1 0,1 

 

6.3. Precision on pLM using V-1 - Procedure 

C for p=10kPa and v=0.1cm3 

Table 9 : Precision calculation on limit pressure - procedure C 

Hole Depth 

m 

pLM 

MPa 

EM 

MPa 

Error 

% 

Toler 

MPa 

A 29 15,4 5.2 32.4 13.8 

B 21 3,9 0,1 1,3 0,1 

B 22 3,1 0,2 0,1 0,1 

E 1,5 0.74 0,01 0,1 0,1 

 

6.4. Precision on pLM using linear regression 

- Procedure A for p=25kPa and 

v=2cm3 

The calculations are based on equation (61), which 

takes into account the uncertainty associated with linear 

regression and pressure and volume uncertainty. We can 

see (Fig. 14 - Fig. 17) and (Tab.10 - Tab.12): 

• a marked linear alignment of the experimental 
points and a small difference between the high and low 

limits linked to the standard deviation of the linear 

regression, calculated for a variation of 34.1% of the 

experimental values (ie a standard deviation of the 

Gaussian law). 

• No influence of the accuracy of the pressure and 
volume measurement on the accuracy of the limit 

pressure 

• The accuracy of the limit pressure is only affected 
by the quality of the alignment after the pressure p2, ie 

by the relation Eq.  (55) and the poor accuracy on Vs 

Table 10 : Precision limit pressure by linear regression - procedure A 

Hol Dept 

m 

r  

MPa 

pLM 

MPa 

r  

MPa 

EM 

MPa 

Err. 

% 

Toler 

MPa 

A 29 0,08 15,4 0.32 0.32 2,0 0.86 

B 21 0.02 3,9 0.17 0.17 4,3 0.46 

B 22 0.01 3,0 0.06 0.06 2,0 0.16 

E 1,5 0.02 0.79 0.06 0.06 7,5 0.16 

 

 

 

Figure 14. Accuracy of the linear regression related to the limit pres-

sure pLM - Test at 29m, Borehole A 

 

Figure 15. Accuracy of the linear regression related to the limit pres-

sure pLM - Test at 21m, Borehole B 



 

 

Figure 16. Accuracy of the linear regression related to the limit pres-

sure pLM - Test at 22m, Borehole B 

 

Figure 17. Accuracy of the linear regression related to the limit pres-

sure pLM - Test at 1,5m, Borehole E 

6.5. Precision on pLM using linear regression 

- Procedure B for p=15kPa and 

v=1cm3 

Table 11 : Precision limit pressure by linear 

regression - procedure B 

Hole Dep

th 

m 

r  

MPa 

pLM 

MPa 

r  

MPa 

EM 

MPa 

Error 

% 

Tole

r 

MPa 

A 29 0.08 15,4 0.31 0.31 2,0 0.84 

B 21 0.07 3,9 0.16 0.16 4,1 0.43 

B 22 0.01 3,0 0.05 0.05 1,7 0.13 

E 1,5 0.01 0.79 0.05 0.05 6,3 0,13 

 

6.6. Precision on pLM using linear regression 

- Procedure C for p=10kPa and 

v=0.1cm3 

 

Table 12 : Precision limit pressure by linear regression - procedure  

C 

Hole Dep

th 

m 

r  

MPa 

pLM 

MPa 

r  

MPa 

EM 

MPa 

Error 

% 

Tole

r 

MPa 

A 29 0.08 15,4 0.30 0.30 1,9 0.81 

B 21 0.07 3,9 0.15 0.15 3,8 0.40 

B 22 0.01 3,0 0.04 0.04 1,3 0.11 

E 1,5 0.01 0.79 0.04 0.04 5,0 0.11 

 

 

7. Conclusions 

This paper used three classes of precisions which 

allows to analyse the  pressuremeter results. The main 

calculations were made with a precision on the 

pressures of 25kPa to 10kPa and 15 cm3 to 0.1 cm3 on 

volumes and could be carried out by the theoretical 

analysis of the standard deviations of the principal 

variables 

 Analysis of the accuracy of the pressuremeter 

module shows that the precision is highly related to the 

accuracy of the pressure and volume measurements. It is 

also linked to the precision on the volume of the Vs 

probe. There is a better accuracy for the high values of 

the pressuremeter modulus. Further more the accuracy 

of the cyclic module is done by the same formulas as 

that of the Ménard module by replacing p1 by p3 and p2 

by p4 

The analysis of the precision of the limit pressure 

shows that the accuracy of the pressure and volume 

measurements has no influence on the limit pressure and 

solely the variability of the creep pressure pF can affect 

pLM  
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