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ABSTRACT: The random field finite element method (RF-FEM) incorporates spatial variability of soil properties with advanced 
capabilities of the finite element method for analyzing complex geotechnical systems. However, this method requires extensive 
computational efforts, which can be alleviated by metamodeling techniques. In this paper, a novel deep learning-based technique that 
involves Convolutional Neural Networks (CNNs) and an adaptive training strategy are proposed to facilitate RF-FEM analyses. 
Random fields can be considered as “images” that describe the spatial randomness of soil properties. CNNs can predict quantities 
obtained using RF-FEM analyses by learning features that contain information about the random variabilities in both spatial distribution 
and intensity of soil characteristics. Therefore, CNNs can be used as metamodels to replace expensive random field finite element 
models. A multi-layered c-ϕ slope case study is used to illustrate this technique. The results show that (i) the trained CNNs accurately 
predict the values of factor of safety and failure probability, and (ii) the adaptive training strategy, compared with the non-adaptive 
training strategy, improves the performance of the CNNs. In this regard, the use of CNNs and the adaptive training strategy for efficient 
slope reliability analyses in spatially variable soils is effectively validated. 

RÉSUMÉ : La méthode des éléments finis à champ aléatoire (RF-FEM) intègre la variabilité spatiale des propriétés des sols avec les 
capacités avancées de la méthode des éléments finis pour analyser des systèmes géotechniques complexes. Cependant, cette méthode 
nécessite des efforts de calcul considérables, qui peuvent être allégés par des techniques de méta-modélisation. Dans cet article, une nouvelle 
technique d'apprentissage profond plus efficace computationnellement, faisant appel à des réseaux neuronaux convolutifs (CNN), est 
proposée pour faciliter les analyses RF-FEM. Une stratégie d'apprentissage adaptif est également adoptée dans l'étude afin d'améliorer les 
performances des CNN. Les champs aléatoires peuvent être considérés comme des "images" qui décrivent le caractère spatialement 
aléatoire des propriétés du sol. Les CNN peuvent prédire les résultats obtenus par les analyses RF-FEM en apprenant des caractéristiques 
qui contiennent de l'information sur les variabilités aléatoires de la distribution spatiale et de l'intensité des propriétés du sol. Par conséquent, 
les CNN pourraient être utilisés comme métamodèles pour remplacer les coûteux modèles d'éléments finis à champ aléatoire. Une étude 
de cas de pente c-ϕ multicouche est utilisée pour illustrer la technique proposée. Les résultats montrent que (i) les CNN entraînés donnent 
des résultats précis, et (ii) la stratégie d'apprentissage adaptatif améliore la précision avec un coût de calcul inférieur à celui de la stratégie 
d'apprentissage non adaptatif. 

KEYWORDS: slope stability; spatial variability; reliability; convolutional neural networks; metamodel. 

1  INTRODUCTION 

The spatial variability of physical and mechanical properties of 
natural soils is arguably the most widely recognized source of 
uncertainty that can impact the performance of geotechnical 
systems (Griffiths et al. 2009; Goh et al. 2019; Zhang et al. 
2021a). As a result, the Random-Field Finite Element Method 
(RF-FEM), which integrates the random field theory (Vanmarcke 
2010) and the advanced capabilities of the finite element method, 
has become more widespread in the geotechnical engineering 
community.  

Monte-Carlo simulation (MCS) is a commonly used 
technique for uncertainty propagation. This technique starts by 
carrying out the geotechnical analyses for X simulated samples. 
The number of failure samples Xfailure is then obtained by 
comparing the sample results against some pre-defined 
performance functions, following which the value of probability 
of failure (Pfailure) can be calculated as Xfailure/𝑋𝑋. The Coefficient 
of Variation (CoV) of Pfailure (Ang & Tang 2007) can also be 
calculated to assess the uncertainty associated with the calculated 
value of Pfailure. The method of Monte-Carlo Simulation, 
although versatile and conceptually simple, suffers from a lack 

of efficiency because a large number of samples are usually 
required to ensure that the calculated Pfailure converges and a 
reasonably low value of CoV of Pfailure is attained, especially for 
cases involving low levels of failure probability. 

Accordingly, many strategies, such as Subset Simulation (Au 
& Beck 2001; Gao et al. 2019), importance sampling (IS) (Liu et 
al. 2019) and metamodel-based methods (Jiang and Huang 2016; 
Li et al. 2019; Wang et al. 2020), have also been proposed for an 
efficient reliability analysis of a geotechnical system. 

Among these strategies, the metamodel-based methods have 
been shown to be efficient for reliability analysis of geotechnical 
systems. The core concept of these methods is the use of an 
approximate model, often referred to as a metamodel, a response 
surface, or a surrogate model, to replace the computationally 
rigorous, but expensive finite element analysis. However, the 
presence of spatial variability adds to the complexity in the 
construction of the metamodel. This results from the significant 
growth of the dimensionality of the problem. Although the 
Polynomial Chaos Expansion (PCE) method, a commonly used 
metamodel for such problems, has been shown to be effective, 
the computational efficiency can diminish quickly as the size and 
dimensionality of the geotechnical system under study grows 
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(Jiang & Huang 2016; Li et al. 2019). 
Recently, Wang & Goh (2021) proposed a new metamodel for 

geotechnical reliability analysis in spatially variable soils. This 
technique involves the use of Convolutional Neural Networks 
(CNNs) to automatically extract and learn features pertaining to 
the random variabilities in both spatial distribution and intensity 
of soil characteristics. In this way, CNNs interpret random fields 
in a completely different way from that adopted by the 
conventional PCE-based techniques. After sufficient training 
using a set of sample data, CNNs gain the capability to make 
good quality predictions in lieu of the finite element analysis. 
Most importantly, Wang et al. (2021) demonstrated that this 
technique is robust against the growth of the dimensionality of 
the problem, which makes it a better metamodel than a PCE. 

The primary objective of this paper is to investigate use of an 
adaptive training strategy to improve the performance of CNNs 
for slope reliability analyses involving low failure probability 
levels. In this paper, the application of CNNs and the adaptive 
training strategy to slope reliability analysis in spatially variable 
soils is illustrated using a multi-layered c-ϕ slope case study, 
namely the Congress Street cut in Chicago (Oka & Wu 1990). 
The results are also compared against those published in several 
studies using the PCE-based methods to demonstrate the efficacy 
of the combination of CNNs and the adaptive training strategy. 

2  METHODOLOGY AND IMPLEMENTATION 

2.1  Convolutional Neural Networks (CNNs) 

In the field of computer science, Convolutional Neural Networks 
(CNNs) specialize in processing data that has a grid-like topology, 
such as an image. This technique has been commonly used to 
solve many engineering problems (Xiao et al. 2018; Zhang et al. 
2021b). In general, the major components of a CNN include, but 
are not limited to, an input layer, a convolutional layer, a pooling 
layer, an activation layer and an output layer. 

In contrast to traditional neural networks that may not be 
effective in capturing the spatial information contained in an 
image, CNNs, through the use of convolutional filers, can extract 
features of the image taking into account pixel positions and the 
influence of nearby pixels. As a result, the spatial information can 
be better captured using CNNs than traditional neural networks. 
This attribute is particularly important for its adaptation to 
random field finite element analysis because spatial 
variability/spatial information is a key aspect of the information 
represented by a random field. 

After extracting features contained in input images and 
passing them through a pooling layer, an activation layer and any 
other layer deemed appropriated for the task, a fully connected 
layer then links the extracted features to an output layer. 
Depending on the type of problem under study, a softmax layer 
or a regression layer can be specified for a classification task and 
a regression task, respectively. Therefore, the completion of an 
analysis using a CNN involves the combination of several types 
of layers. The configuration of these layers is often referred to as 
the architecture of a CNN. Details pertaining to these layers can 
be found in Cha et al. (2017). 

2.2  Interpreting random fields using CNNs  

In the context of random field finite element analysis (RF-FEM), 
the domain of a geosystem is first discretized into a system of 
grid points. Random fields that represent the spatial variation of 
a soil property are then generated in the soil domain of interest, 
following which each grid point in the soil domain is assigned a 
variable value of this soil property in accordance with the random 
field generated. Figure 1 shows samples of digitally generated 
random fields. The grid-like topology can be clearly seen in this 
figure.  

A finite element model, on the other hand, needs also to be 
discretized into the finite element mesh, consisting of nodes and 
stress points. The integration of the two components then 
involves the mapping of the given realization of the random field 
to the stress points in the finite element mesh. Therefore, there is 
a one-to-one match between the grids of a random field and the 
mesh in a finite element model. In this manner, the finite element 
calculation can take into account the spatial variability contained 
in the generated random fields. 
 

Figure 1. Samples of digitally generated random fields for (a) cohesion c 
and (b) friction angle ϕ. 

Figure 2. Comparison the representation of channel information in CNNs 
for (a) digital color images and (b) random fields in finite element 
models. 
 

Given that random fields have a grid-like topology, it is 
hypothesized that CNNs are able to interpret and process random 
fields in a similar manner as they are used for images. The 
illustrative comparison of digital color images and random fields 
in Figure 2 verifies the hypothesis.  

With reference to Figure 2(a), a color digital image is made of 
pixels. Each pixel has three channels that correspond to the three 
primary colors, i.e. red, green and blue. As a result, each pixel of 
the image is described by three values that correspond to the 
intensities of the three channels. In Figure 2(a), the input layer of 
CNNs contains an image of size 4 x 4 x 3. The two “4”s refer to 
the number of pixels that form the width and height of the image, 
while the “3” signifies that the image is made up of three 
channels, i.e. red, green and blue. 

In random field finite element analysis, the stress integration 
points in the discretized finite element mesh or the grids in the 
discretized random field are the counterparts of the pixels in 
conventional image processing. The random field of a variable 
property then corresponds to the “channel”. The magnitude of 

218



 

 

this variable property at a stress integration point/random field 
grid is analogous to the “channel intensity” of a “pixel”.  

With reference to the example shown in Figure 2(b), a soil 
layer characterized by a spatially varying cohesion c and friction 
angle  involves two random fields for each finite element 
realization. Accordingly, a two-channel “image”, containing the 
“c” channel and the “ϕ” channel, can be created to represent the 
spatial variability in the system. The values within each channel 
then correspond to the values of the spatially varying cohesion c 
and friction angle ϕ respectively.  

In this way, the two random fields are configured in a two-
channel image-like manner for subsequent processing using 
CNNs. This is illustrated in Figure 2(b), in which the input 
random field image has a size of 4 x 4 x 2. The two “4”s refer to 
the number of stress integration points/random field grids along 
the width and height of the 2-D model domain, while the “2” 
indicates that there are two random fields involved, i.e. c and ϕ.   

In summary, the comparison presented in Figure 2 highlights 
that there is a one-to-one match between the attributes of digital 
color images and random fields; therefore, CNNs should be able 
to interpret random fields in a similar manner as they are used for 
digital color images. 

2.3  Implementation procedure 

2.3.1   Initialization 
With reference to Figure 3, after constructing the finite element 
model of the geotechnical system, X samples of random fields 
are generated following the statistics of the variable properties of 
interest. As will be explained in the later parts of this paper, the 
quantity of interest in the present study is the factor of safety 
(FoS) against the failure of the geotechnical system. In this 
regard, random field finite element analyses of the X samples are 
then carried out to obtain the associated factors of safety (FoS) 
of the geotechnical system under study. 

The X pairs of random fields and their corresponding FoS 
values are then divided into a training set and a validation set. In 
the present study, 75% of the X dataset is used as the training set 
while the remaining 25% is used as the validation set. 

After a CNN with an appropriate architecture is set up, the 
training and validation datasets are fed into the program for 
training. With sufficient training and proper validation, a CNN 
that gains the capability to predict the mapping function between 
input random fields and output FoS values can be obtained. This 
then concludes the initialization part of the implementation. 

2.3.2   Adaptive training 
As mentioned in the preceding section, the FoS against the failure 
of the geotechnical system is the key quantity of interest. A 
threshold FoS value of 1.0 is then used in the present study. Finite 
element simulations that yield a FoS value lower than this value 
are considered as failure cases. Therefore, the performance of the 
trained CNN for this region is of primary concern, and the 
adaptive training scheme is proposed to improve the accuracy of 
the trained CNNs over this region. 

With refence to Figure 3, after a trained CNN is obtained at 
the end of the initialization phase, a set of random fields is 
generated. This is labelled as “Test set B” in Figure 3. The trained 
CNN is then used to predict the FoS values associated with this 
set of random fields, and a set of CNN-predicted FoS values can 
be obtained. 

In the adaptive training strategy, a higher threshold FoS of 1.2 
is used at this stage of the analysis to identify failure samples. 
Therefore, samples with CNN-predicted FoS values lower than 
1.2 are considered as failure samples. Although a true failure 
sample is of a FoS value lower than 1.0, at this stage of the 
analysis, a relaxation in the threshold FoS value is adopted. The 
main reason behind this relaxation was as follows: 

The “Test set B” is predicted using the trained CNN. Since 

the trained CNN is an approximate model of the finite element 
model, there is a risk that a sample with a CNN-predicted FoS 
value exceeding 1.0 is actually a failure case, meaning that the 
true FoS of this sample is less than 1.0. If the threshold were set 
to 1.0 as this stage, this failure sample would then be excluded 
from the adaptive sample set. In this regard, the relaxation of the 
threshold to 1.2 is introduced to reduce the risk that “true” failure 
samples would be falsely excluded.  
 

 
The identified failure samples from “Test set B” are then fed 

back to the finite element model to obtain the true FoS values. In 
the next step, these samples and their associated true FoS values 
are combined with initial X samples to form a new dataset to re-
train the CNN following the steps in the Initialization phase in 
Figure 3. In this way, the new training dataset contains more 
failure samples, which is expected to result in a trained CNN that 
can better predict the failure region. 

The adaptive training phase in Figure 3 can be repeated so that 
additional failure samples can be identified for improved 
training. It is worth highlighting that predictions associated with 
“Test set B” are obtained using the trained CNN, and only those 
samples that are likely to be failure samples (determined using 
the trained CNN) are calculated using the finite element analysis. 
In this regard, the trained CNN acts as a filter that makes sure 
that the expensive finite element analysis is carried out only on 
samples that are deemed necessary and appropriate. 
Furthermore, the relaxed threshold FoS value of 1.2 is only used 
in the adaptive training phase. A threshold FoS value of 1.0 will 
be used for the subsequent reliability analysis. 

2.3.3   Reliability analysis 
After the CNN is sufficiently trained over the region of interest 
(FoS < 1.0) or the maximum computational budget is consumed, 
the trained CNN can be used to carry out reliability analysis 
following the Monte-Carlo simulation. 

With reference to Figure 3, to perform the reliability analysis, 
a set of new random fields, labelled as “Test set A”, is generated 
and predicted using the trained CNN. Samples with CNN-
predicted FoS values lower than 1.0 are classified as failure 
samples. The probability of failure (Pfailure) can then be calculated 
as 𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜 𝑜𝑜𝑎𝑎𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑠𝑠 𝑠𝑠𝑎𝑎𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠 / 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜 𝑇𝑇𝑠𝑠𝑠𝑠𝑇𝑇 𝑠𝑠𝑠𝑠𝑇𝑇 𝐴𝐴. 

 
Figure 3. Implementation flow-chart for reliability analysis using CNNs. 

c-ϕ

ϕ
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3  CONGRESS STREET CUT, CHICAGO 

3.1  Case study description 

The Congress Street Cut is adopted as a case study to illustrate 
the capabilities of the proposed technique. Figure 4 shows that 
this slope consists of four layers. The spatial variabilities of the 
cohesion c and the friction angle  are considered in the three 
clay layers. The properties of the top sand layer are assumed to 
be deterministic. Table 1 summarizes the statistics of the random 
properties. In the present study, the cross-correlation between c 
and  is assumed to be zero for all three clay layers. 

The finite element software Optum G2 (Krabbenhøft & 
Lyamin 2014) is used to perform the strength reduction 
calculations for evaluating the FoS values against slope failure. 
A built-in Karhunen-Loève (K-L) expansion with a single 
exponential autocorrelation function is used to generate random 
fields. In the present study, 1000 K-L expansion terms are used 
to ensure that the statistics are accurately represented by the 
generated random fields.  

Figure 5 shows the architecture of the CNN used in the 
present study. The first layer contains input images of size 30 x 
100 x 2. Then, a convolutional layer, consisting of 20 filters of 
size 25 x 90 with a padding of 0 and a stride of 1, is coupled with 
a max-pooling layer with a size of 2. Finally, a regression layer 
and a dropout layer are used to construct the regression between 
the FoS values and the extracted features. In the present study, a 
dropout rate of 50% is used to reduce overfitting. 

3.2  Results of reliability analysis 

Random field finite element analyses are carried out with 5000 
Monte-Carlo simulations to provide the benchmark results. 
These 5000 samples correspond to the “Test set A” indicated in 
Figure 3. Based on the results of the 5000 finite element 
simulations, the true probability of failure (Pfailure) is close to 
0.0302. These values will be used to evaluate the accuracy of the 
CNN-predicted results in the subsequent parts of this paper. 

With reference to Figure 3, the initialization phase requires X 
samples of random fields for training. An initial 100 random field 
samples are first generated for training the CNN. During the 
adaptive training phase, a “Test set B” containing 1000 samples 
is used to generate the CNN-predicted FoS values. For the 
investigation of the influence of training sample size, the number 
of training samples experimented in the present studies are 100, 
160, 220, 280, 340, 400. For example, the case trained using 400 
samples then contain 100 initial samples and 300 “failure” 
samples that are obtained using the adaptive training strategy. 

Figure 6 plots the CNN-predicted FoS values against the 
FEM-predicted FoS values for the case trained using the initial 
100 samples. There are 5000 scatters that correspond to the 5000 
Monte-Carlo samples. In general, the CNN-predicted FoS values 
agree reasonably well with the FEM-predicted FoS values, which 
implies that CNN is a reasonable metamodel to map the function 
between input random fields and FoS values. 

Figure 7 shows the FEM versus CNN cumulative probability 
distribution of FoS values for the set of data shown in Figure 6, 
using only the data in the failure region, where FoS <1.0. In 
contrast to Figure 6, Figure 7 implies that there are some major 
discrepancies between the FEM and CNN predicted results. As a 
result, the proposed adaptive training strategy is used to improve 
the performance of the CNN over the failure region. 

Figure 8 shows, in a similar manner as in Figure 6, the results 
of the case with 400 training samples, which contain 100 initial 
samples and 300 “failure” samples obtained using the adaptive 
training strategy. The larger value of r2 implies that the overall 
accuracy of the trained CNN has improved. In addition, 
improvements over the failure region are also observed, as can 
be seen from the reduced scatter in the zone where FoS < 1.0.  

Figure 4. Geometry and geological profile of Congress Street cut. 

 

Figure 5. Architecture of CNNs. N = number of filters, P = padding, and 
S = stride. 

 

Table 1 Statistical parameters of the random properties (Jiang & Huang 2016) 

Layers 
Unit Weight 

(kN/m3) Cohesion c (kPa) Friction angle ϕ (o) 
Scale of fluctuation (SOF) 

(for both c and ϕ) 

  Mean COV Distribution Mean COV Distribution SOFh (m) SOFv (m) 
Sand 21 0 - - 30 - - - - 

Clay 1 19.5 55 0.37 Lognormal 5 0.2 Lognormal 35.45 10.63 

Clay 2 19.5 43 0.19 Lognormal 7 0.21 Lognormal 35.45 10.63 

Clay 3 20 56 0.2 Lognormal 15 0.24 Lognormal 35.45 10.63 

 

Figure 6. FEM versus CNN predictions of FoS for the case trained using 

100 initial samples. 
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Figure 9 shows, in a similar manner as in Figure 7, the FEM 
versus CNN cumulative probability distribution of FoS. In 
contrast to Figure 7, significant improvements in the accuracy of 
the trained CNN are observed. The discrepancies shown in 
Figure 7 are greatly reduced.  

Figure 10 compares the CNN-calculated probability of failure 
(Pfailure) for cases involving different training sample sizes. In 
addition, the results obtained using the adaptive training strategy 
are compared with those obtained without using the adaptive 
training strategy. The non-adaptive training strategy specifies 
that training samples are generated in a random manner. 
Furthermore, due to the stochastic nature of the analysis, the 
training of the CNNs are repeated 20 times following the 
recommendations in Wang & Goh (2021). The bars in Figure 10 
represents the averaged predictions across the 20 sets of analyses 
while the error bars correspond to the maximum and minimum 
predicted values. 

In general, both schemes perform well for predicting the 
failure probability. The percentage errors in the predicted Pfailure 
are all smaller than 20%. However, with the same number of 
training samples, the adaptive training strategy provides better 
results. For example, when 220 samples are used for training, the 
adaptive training strategy produces an error of about 2%, which 
contrasts to the 10% obtained in the non-adaptive training 
scheme. Furthermore, the results obtained using the adaptive 
training strategy also exhibit less variations. For example, with 
220 training samples, the non-adaptive training scheme predicts 
errors ranged from 50% to -20% while the adaptive training 
strategy yields errors ranged from 20% to -15% only. 

Such observations are not unreasonable. The adaptive training 
strategy is designed to search for failure samples while the non-
adaptive training scheme does not differentiate failure samples 
and non-failure samples. As a result, for a given size of training 
samples, the training sample set used for the adaptive training 
scheme contains more failure samples than the set used for the 
non-adaptive training scheme. It is then reasonable to have the 
adaptive training scheme better predicts over the failure region. 

3.3  Comparison with other techniques 

The probabilistic treatment of the Congress Street cut has been 
performed and documented in several publications. Therefore, in 
this section, the results of reliability analyses obtained using the 
trained CNN are compared against studies carried out by Jiang & 
Huang (2016); Li et al. (2016) and Li et al. (2019). In these 
studies, the Polynomial Chaos Expansion (PCE) method was 
used. Five variants of the PCE-based methods, labelled as 
Methods A to E in Figure 11, are compared with the CNN-based 
methods. The comparison is based on the percentage error in the 
metamodel-based value of Pfailure. The error is calculated with 
respect to the benchmark results obtained using the direct Monte-
Carlo simulation. The number of training samples used by the 
individual method is also indicated in the figure. 

In general, the CNN-based methods are of better accuracy. 
The five variants of PCE-based methods are of error percentages 
ranged from -5% to -40% while the percentage errors of two 
variants of CNN-based method are both lower than 5%. In 
addition, Methods B to E require more than 1000 training 

 
Figure 7. FEM versus CNN cumulative probability distribution of FoS 
for the case trained using 100 initial samples. 

 
Figure 8. FEM versus CNN predictions of FoS for the case trained using 
400 samples (100 initial samples and 300 “failure” samples) 

 
Figure 9. FEM versus CNN cumulative probability distribution of FoS 
for the case trained using 400 samples (100 initial samples and 300 
“failure” samples). 

 
Figure 10. Comparison of CNN-calculated probability of failure (Pfailure) 
between adaptive training and non-adaptive training. 
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samples, which can potentially hinder their application in real 
world situations. In contrast, the two variants of CNN-based 
methods yield improved accuracy with a significant reduction in 
the size of training samples, and CNN-based methods also 
outperform Method A, the most recent variant of the PCE-based 
method. In this regard, the proposed CNN-based metamodeling 
technique is a more accurate and efficient technique than the 
PCE-based methods. 

4  CONCLUSIONS 

This paper presents the use of Convolutional Neural Networks as 
a metamodel for efficient slope reliability analysis in spatially 
variable soils. CNNs are capable of recognizing high-level 
features that contain information pertaining to the spatial 
variability of soil properties. With an appropriate training and 
validation, CNNs can successfully map the relationship between 
input random fields and the output factor of safety predictions. 
Therefore, CNNs can replace the computationally demanding 
random field finite element model for reliability analysis. 

Furthermore, an adaptive training scheme is proposed to 
improve the performance of the CNN over the failure region. A 
comparison between the results obtained with and without the 
adaptive training strategy highlights that the proposed adaptive 
training strategy is effective in improving the accuracy of the 
CNN over the failure region.  

Finally, a comparative study involving CNN-based methods 
and PCE-based methods, with the latter generally regarded as 
being the current state-of-the-art, shows that CNN-based 
methods are more accurate and efficient. In this regard, CNNs 
can offer a highly promising metamodel-based method for 
efficient reliability analysis in spatially variable soils.  
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Figure 11. Comparison of the accuracy of CNN against different 
probabilistic metamodel-based techniques (Li et al. 2016; Jiang & Huang 
2016; Li et al 2019; Wang & Goh 2021). 
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