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ABSTRACT: Since its invention in 2004, the particle finite element method (PFEM) has being attracted increasing attention. 

So far, it has been demonstrated to be a robust and powerful numerical tool for handling various challenging engineering prob-

lems such as free-surface flow, solid-structure interaction, multiphase problems, melting problems with phase changes, etc. Nev-

ertheless, several issues arise when adopting it for large deformation geotechnical problems. This is, to a large extent, due to the 

complex geomaterial behaviour. History dependency makes variable mapping between meshes inevitable if the classical PFEM 

is adopted. Linear elements used in the conventional PFEM do not work well for capturing soil behaviour. Although the smoothed 

particle finite element method, a variant version of the PFEM, allows the use of linear elements and alleviates the variable 

mapping requirement, stress oscillation occurs in its dynamic analysis. In this paper, challenges associated with the conventional 

PFEM for modelling geotechnical problems are explored followed by a new version of Nodal integration based PFEM (N-PFEM) 

proposed to overcome the issues. Numerical benchmarks demonstrate the correctness and robustness of the N-PFEM for dynamic 

analysis of geotechnical problems. 
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1 INTRODUCTION 

There are many geotechnical problems where geo-

materials undergo large deformation. Representative 

examples include cone penetration test, offshore foun-

dation installation, embankment failure, among others. 

In the past decades, several numerical approaches have 

been developed and applied to large deformation ge-

otechnical problems, such as the smoothed particle hy-

drodynamics (SPH) method (Bui and Nguyen 2021), 

the material point method (MPM) (Soga et al. 2016), the 

particle finite element method (PFEM) (Zhang et al. 

2015), etc.  

The PFEM is a hybrid method with the feature of the 

particle method for handling large deformation and the 

accuracy of the traditional Lagrangian finite element 

method. It was originally invented for modelling free-

surface flow problems in the community of fluid dy-

namics in 2004 (Idelsohn et al. 2004). Soon after its in-

vention, it was demonstrated to be a powerful and robust 

numerical tool for simulating many challenging prob-

lems such as fluid-solid interaction, multiphase flow, 

melting problems with phase change, etc.  

To solve geotechnical problems, the PFEM has been 

adapted so that history-dependent behaviour, a typical 

characteristic of geomaterials, can be handled. So far, 

several challenging problems, such as cone penetration 

(Sabetamal et al. 2021), granular flow (Zhang et al. 

2014, Zhang et al. 2016), landslides (Wang et al. 2021), 

etc., have been simulated successfully using the PFEM 

or its variant version. Despite that, issues still exist for 

the PFEM modelling of geotechnical problems which 

will be explored and discussed in this paper.  

2 PARTICLE FINITE ELEMENT METHOD 

(PFEM) 

2.1 PFEM steps for fluid dynamics 

Treating mesh nodes as free particles at the end of La-

grangian finite element analyses is the fundamental of 

the PFEM. The free particles are used to re-construct a 

computational domain and meshes so that free-surface 

evolution such as water splashing can be captured. The 

simulation cycle of the PFEM modelling of fluid dy-

namic problems is as below (Figure 1): 

i) Fill the domain with a set of particles (Figure 

1(a)). 

ii) Conduct Delaunay Triangulation using the 

particles (Figure 1(b)). 

iii) Identify boundaries based on the triangles gen-

erated in ii) (Figure 1(c)). 

iv) Solve the governing equations on the meshes. 

v) Update node positions (Figure 1(d)). 

vi) Erase mesh topology (Figure 1(e)) and go to ii) 

in which another Delaunay triangulation will 

be conducted leading to (Figure 1(f)).   
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Figure 1. PFEM steps (after (Cremonesi et al. 2020)) 

 

The boundary identification in step iii) is achieved 

using the alpha-shape method whose implementation is 

forthright. The radius of the circumcircle of each trian-

gle from ii) is first checked. The triangle is deleted if the 

radius is greater than αh, where α is an empirical factor 

and h is a characteristic length interpreted as the size of 

the used meshes; otherwise the triangle is retained. The 

retained triangles form the computational domain as 

seen in Figure 1(c) where boundaries of the domain are 

identified and also the mesh is ready for FE analyses to 

be carried out in step iv). By doing so, free surface 

evolution can be captured, even for problems with new 

free surface generation such as water splashing and 

wave breaking.  

2.2 Challenges of PFEM for solid dynamics 

The first attempt to make use of the PFEM for geotech-

nical problems was reported in (Carbonell et al. 2010) 

where ground excavation was concerned. The main mo-

tivation for using the PFEM to the excavation problems 

is its convenience in detecting the changing geometry of 

ground and the contact between ground and a road-

header of complex geometry. In the simulation, the 

damage model was used, and when criteria were met 

geomaterials were removed to mimic excavation pro-

cess. The deformation of geomaterial in (Carbonell et 

al. 2010) is relatedly small. To explore the capability of 

the PFEM for tackling mesh distortion issues in model-

ling large deformation geotechnical problems, a variant 

version of the PFEM was developed for in (Zhang et al. 

2013). Unlike the cases considered in (Carbonell et al. 

2010), geomaterials in (Zhang et al. 2013) underwent 

remarkably large deformation and were simulated using 

plastic constitutive models 

 

 
Figure 2. Sliver elements which are of low quality for FE 

analyses (after (Wang et al. 2022)) 

 

Challenges were encountered when extending the 

classical PFEM for geotechnical problems. This is, to a 

large extent, because of the complex soil behaviour. 

Three-node triangular elements in the conventional 

PFEM do not perform well for modelling elastoplastic 

materials like soils because of the associated volumetric 

locking issue. High-order elements were, thus, adopted 

in the version of the PFEM proposed in (Zhang et al. 

2013). Given the low quality of the automatically gen-

erated meshes in the boundary identification process 

(particularly at shear bands as shown in Figure 2,), 

remeshing the complete identified domain using a new 

set of nodes has to be carried out to ensure simulation 

accuracy which, consequently, necessitates the mapping 

of variables at both quadrature points and mesh nodes. 

Alternatively, a mixed finite element formulation was 

adopted in the PFEM to overcome the volumetric lock-

ing issues (Monforte et al. 2017, Monforte et al. 2018). 

By doing so, the low-order element such as three-node 

triangular element can be adopted, but information 

should still be transferred from old to new meshes when 

handling history-dependent materials (Carbonell et al. 

2022). A drawback of variable mapping is the accumu-

lated error. Although mesh smoothing may increase the 

quality and somewhat alleviate the requirement of vari-

able mapping, the quality of smoothed meshes is not 

guaranteed for three dimensional cases in which sliver 

elements exist (Wang et al. 2022).  

 

 
Figure 3. Cells constructed on triangles 

 

A possible way to overcome this issue is the use of 

nodal integration leading to the so-called smoothed par-

ticle finite element method (SPFEM) (Zhang et al. 

2018). In the SPFEM, nodal integration is carried out on 
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cells (Figure 3) which are constructed based on trian-

gles. It was shown in (Zhang et al. 2018) that good sim-

ulation results can be gained despite of low mesh qual-

ity. Moreover, linear triangles can be adopted without 

the volumetric locking issue. However, further investi-

gation shows that the SPFEM developed on the conven-

tional displacement-based finite element method suffers 

from the stress oscillation issue when modelling dy-

namic problems. Ad hoc regularisation techniques have 

to be employed to stabilise the stress field (Jin et al. 

2021, Shafee and Khoshghalb 2022, Yuan et al. 2023). 

3 NODAL INTEGRATION BASED PFEM (N-

PFEM)  

In this section, a variant version of nodal integration 

based PFEM (N-PFEM) is introduced. This version in-

herits the nodal integration feature as the SPFEM but 

solves the governing equations in mathematical pro-

gramming based on a generalised Hellinger-Reissner 

variational principle.  

3.1 Min-max problem 

According to (Zhang et al. 2019), the time discretised 

governing equations for dynamic analysis of 

elastoplastic models with volume   and boundary   

are equivalent to the following min-max problem with 

the use of generalised Hellinger-Reissner variational 

principle 

 𝑚𝑖𝑛⏟𝛥𝒖  𝑚𝑎𝑥 ⏟  𝝈𝑛+1,𝒓𝑛+1 − 12∫ 𝜟𝝈𝑇 ℂ𝜟𝝈𝑑𝛺𝛺  

  +∫ 𝝈𝑛+1𝑇 𝛻𝛥𝒖𝑑𝛺𝛺 + 1−𝜃1𝜃1 ∫ 𝝈𝑛𝑇𝛻𝛥𝒖𝑑𝛺𝛺  

  −∫ 𝒕̃𝑛𝑇𝛥𝒖𝑑𝛤 −𝛺 ∫ 𝒃̃𝑛𝑇𝛥𝒖𝑑𝛺𝛺                        (1) 

 − 12∫ 𝒓𝑛+1𝑇 ∆𝑡2𝜌̃ 𝒓𝑛+1𝑑𝛺𝛺 + ∫ 𝒓𝑛+1𝑇 𝛥𝒖𝑑𝛺𝛺  𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:    𝐹(𝝈𝑛+1) ≤ 0          

 
in which  

 𝒕̃𝑛 = 1𝜃1 𝒕̅                                                               (2) 

 𝒃̃ = 1𝜃1 𝒃 + 𝜌̃ 𝒗𝑛𝛥𝑡  with 𝜌̃ = 𝜌𝜃1𝜃2                       (3) 

  
In min-max problem (1), the independent master 

fields consist of the displacement increment, Δ𝒖, the 

stress, 𝝈n+1, and the inertial force, 𝒓n+1. Subscripts n 

and n+1 refer to the values at known and unknown 

steps, respectively. The material density is 𝜌; the body 

force is 𝒃 ; the velocities are 𝒗 ; 𝛻 is the gradient 

operator; 𝒕̅  is the traction force imposed on the 

boundary 𝛤t; ℂ is the elastic compliance matrix, and 𝐹 

is the yield function. The time increment is Δ𝑡 . The 

parameters 𝜃1 and 𝜃2 are in between 0 and 1. 

3.2 Nodal integration 

On each cell, both stress and strain distribution are uni-

form since the three-node triangular element is adopted 

(Figure 3). Nodal integration is then conducted over 

cells for min-max problem (1) leading to 

 max ⏟𝝈n+1,𝒓n+1  − 12𝚫𝝈̂T 𝑪𝚫𝝈̂ − 12 𝒓̂n+1T 𝑫𝑟𝒓̂n+1 
subject to {𝑩̅T𝝈̂n+1 + 𝑨T𝒓̂n+1 = 𝒇̃𝐹𝑖(𝝈̂n+1) ≤ 0        𝑖 = 1, 2,⋯ ,𝑁𝑁(4) 

 

in which 𝝈̂ and 𝒓̂ are the vectors consisting of stress 

components and inertial force components at nodes; (∙)𝑖 
represents the value of (∙) at 𝑖th node if not otherwise 

specified; and 𝑁𝑁 is the total number of nodes, which 

is also equal to the total number of cells implying 

imposition of the yield criterion on all nodes. Readers 

are referred to (Meng et al. 2021, Zhang et al. 2022) for 

other symbol definitions.  

Maximsation problem (4) can be resolved in mathe-

matical programming using the advanced primal-dual 

interior point method after being reformulated as a 

standard second-order cone programming problem 

which is  

 min               𝑐𝑇𝒙 subject to    {𝑨𝒙 = 𝒃𝒙𝑖 ∈ 𝒦𝑞 , 𝑤𝑖𝑡ℎ 𝑖 = 1, … , 𝑛𝒙𝑗 ∈ 𝒦𝑟 , 𝑤𝑖𝑡ℎ 𝑗 = 1,… ,𝑚     (5) 

 

where the cones are 

 𝒦𝑞 = {𝑥1 ≥ √𝑥22 + 𝑥32 +⋯+ 𝑥𝑛2}                (6) 

 

and 

 𝒦𝑟 = {2𝑥1𝑥2 ≥ √𝑥32 + 𝑥42 +⋯+ 𝑥𝑚2 }        (7) 

 
Both 𝑥1 and 𝑥2 should be non-negtive in (7). 

In the N-PFEM modelling, maximsation problem (4) 

is resolved to gain the variable states, such as displace-

ments, stresses, strains, inertial forces, etc., at the next 

time step. Since the state of all variables are calculated 

and stored at nodes, variable mapping is not required in 

the N-PFEM modelling. Furthermore, the generalised 

Hellinger-Reissner variational principal underpins the 

finite element algorithm in mathematical programming 

meaning no stress regularisation technique is required 

in dynamic analysis.  
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4 NUMERICAL EXAMPLE  

The classical granular column collapse problem is stud-

ied using the proposed N-PFEM. A cylindrical column 

of granular materials is released. The radius of the bot-

tom of the column is 𝑟0 = 3.9 cm and the height of the 

column is ℎ0 = 7.8 cm. The granular materials are mod-

elled as purely frictional with following material 

parameters: density 𝜌 = 1.8 g/cm3, Young’s modulus 𝐸 = 10 MPa, Poisson ratio 𝜐 = 0.3, friction angle 𝜙 =30°, and dilation angle 𝜓 = 0°. Due to the symmetry, 

only a quarter of the geometry is simulated which is dis-

cretised using a total of 10,759 nodes and 54,350 ele-

ments. The time step used in the simulation is 0.002 s 

with the time integration parameters 𝜃1 = 𝜃2 = 1.0 . 

Figure 4 shows the collapse process from the N-PFEM 

modelling where the vertical stress distribution is plot-

ted. The normalised simulated time 𝑡̅ = 𝑡/√ℎ0/𝑔 . It 

can be seen the complete collapse process is captured 

successfully without stress oscillation even though no 

regularisation technique is adopted.  

 

 
 
Figure 4. Collapse of a granular column at normalised time (a) 𝑡̅ = 0; (b) 𝑡̅ = 1; (c) 𝑡̅ = 2; (b) 𝑡̅ = 3  

 

 

5 CONCLUSIONS 

The PFEM is a novel numerical approach for simulating 

engineering problems with large material deformation. 

This paper discusses the challenges of adopting the 

PFEM for modelling history-dependent materials in ge-

otechnical engineering such as requirement of variable 

mapping, volumetric locking, and stress oscillation. An 

improved nodal integration based PFEM overcoming 

these issues is then proposed with an example showing 

its robustness. It is shown that the developed N-PFEM is 

particularly suitable for modelling soil flow problems 

which are commonly encountered in geotechnical and 

geological engineering.    
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