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ABSTRACT: The paper presents a novel methodology to calculate the flow regime in unsaturated infinite slopes by means of 

horizontal ground infiltration models. This is achieved by decomposing the flow regime of the infinite slope into a symmetric 

part and an antisymmetric part, whose respective solutions are then combined to determine the actual seepage. The solution of 

the antisymmetric part is trivial and does not even need integration of the continuity equation while the symmetric part reduces 

to the case of one-dimensional vertical infiltration into a horizontal soil deposit, for which analytical/numerical solutions exist 

in the literature. The idealised geometry implies that all surface infiltration crosses the slope along the shortest path perpendicular 

to the ground, while the flux parallel to the slope is fed by an upstream source at infinite distance. The paper also calculates the 

expression of the piezometric head gradient parallel to the slope, which is the Neumann boundary condition to be imposed on 

the upstream and downstream sides of any soil slice perpendicular to the inclined ground. This avoids the use of arbitrary 

boundary conditions in finite element/difference models as done in current practice. The proposed methodology is finally 

validated against analytical and numerical solutions of transient seepage across an infinite unsaturated slope. 
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1 INTRODUCTION 

The calculation of the flow regime across unsaturated 

soils presents additional complexities compared to the 

saturated case because of the dependency of 

permeability and degree of saturation on pore water 

pressure through constitutive laws, which introduce a 

degree of non-linearity in the governing differential 

equations. These equations are solved via closed-form 

derivations or, if this is not possible, via approximated 

numerical models. 

Rigorous analytical solutions of the 

monodimensional vertical flow across a horizontal 

unsaturated soil deposit have been obtained for different 

constitutive laws and boundary conditions, e.g. Huang 

and Wu, 2012; Lu and Griffiths, 2004; Tracy, 2011; 

Wang et al., 2009. However, the same is not true for the 

bidimensional flow across an infinite unsaturated slope, 

which has been rigorously solved only in few specific 

cases (Lu and Godt, 2008; Travis et al., 2010, Zhan et 

al., 2013). In those cases where a rigorous solution is 

unavailable, the unsaturated flow regime is usually 

evaluated via finite element or finite difference models 

of a relatively long segment of the infinite slope (El 

Shamy, 2007), whose upstream and downstream sides 

are subjected to arbitrary boundary conditions (typically 

hydrostatic or impermeable). The inaccuracies 

introduced by this artefact are minimised by calculating 

the solution at the mid-section of the slope segment, 

which is the farthest section from the extremities where 

the arbitrary boundary conditions have been imposed. 

To overcome some of the above limitations, this 

paper presents a general methodology that enables the 

rigorous calculation of the bidimensional flow across an 

unsaturated infinite slope, provided that a rigorous 

solution already exists for the parent case of a horizontal 

soil deposit. If such parent solution is unavailable and a 

numerical model must therefore be created, the present 

paper defines the Neumann boundary condition to be 

imposed on the upstream and downstream sides of a 

slope slice perpendicular to the ground. 

The proposed methodology relies on the 

decomposition of the actual seepage problem into two, 

namely antisymmetric and symmetric, sub-problems 

(Bianchi et al., 2022). The antisymmetric problem is 

immediately solved, without even integrating the 

governing partial differential equations, as the pore 

pressure field must be zero over the entire slope domain. 

Conversely, the symmetric problem reduces to the case 

of monodimensional flow across a horizontal soil 

deposit, for which several analytical and numerical 

solutions are already available. The antisymmetric and 

symmetric problems are then combined to obtain the 

actual flow field. 

The infinite geometry of the slope also allows a 

physical interpretation of the flow regime by 

distinguishing between the seepage components parallel 

and perpendicular to the ground. All surface infiltration 
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crosses the slope along the shortest path, that is the path 

perpendicular to the ground, while the seepage parallel 

to the ground is fed by an upstream source located at 

infinite distance. 

2 DECOMPOSITION OF THE FLOW REGIME 

Bianchi et al. (2022) have demonstrated that the flow 

regime across an infinite slope can be decomposed into 

antisymmetric and symmetric parts, which are 

separately solved and then combined to compute the 

actual hydraulic field. Bianchi et al. (2022) have also 

validated this decomposition methodology for the case 

of steady state flow while the present paper validates it 

for the case of transient flow.  

It is useful to recall first the main aspects of the 

proposed decomposition methodology. Figure 1 

provides a schematic representation of an infinite 

homogeneous unsaturated slope of thickness 𝐿 

(measured normal to the surface) and angle 𝛽 with 

respect to the horizontal. The infinite slope is subjected 

to a constant pore water pressure 𝑢𝑏 at the bottom and 

to either a constant pore water pressure 𝑢𝑡  or a constant 

infiltration rate normal to the ground 𝑞𝑡 at the top. 

The unsaturated soil permeability 𝐾 is defined as: 

 𝐾 = 𝜅𝑟 𝐾𝑠𝑎𝑡          (1) 

 

where 𝜅𝑟 is the relative permeability function, 

accounting for the dependency of the unsaturated 

hydraulic conductivity on the pressure head 𝑢 𝛾𝑤⁄  

(where 𝑢 is the pore water pressure and 𝛾𝑤 =10 𝑘𝑁 𝑚3⁄  is the specific water weight) and 𝐾𝑠𝑎𝑡 is the 

constant saturated permeability. 

 

 

 
 

Figure 1. Unsaturated infinite slope and hydraulic boundary 

conditions 

 

 

The saturated permeability is further expressed in 

terms of the constant intrinsic permeability 𝜅, the 

specific water weight 𝛾𝑤 and the dynamic water 

viscosity 𝜇 as: 

 𝐾𝑠𝑎𝑡 =  𝜅 𝛾𝑤𝜇           (2) 

 

The decomposition of the specific water weight 𝛾𝑤 

into two components parallel 𝛾𝑤𝑥∗  and perpendicular 𝛾𝑤𝑦∗ to the slope (Figure 1) enables the separation of 

the flow regime into antisymmetric and symmetric 

parts. These two parts can be individually solved and 

subsequently combined to calculate the overall flow 

regime, as explained in the following. 

2.1 Antisymmetric flux components 

The antisymmetric seepage is governed by the specific 

water weight component parallel to the slope 𝛾𝑤𝑥∗ 

shown in Figure 1 (see also Bianchi et al., 2022). In this 

case, every section perpendicular to the slope 

constitutes an antisymmetry axis, which implies that the 

flow field is always parallel to the ground and the 

corresponding pore water pressure 𝑢𝑎𝑠𝑦𝑚 is zero 

everywhere. Consequently, the antisymmetric 

piezometric head ℎ𝑎𝑠𝑦𝑚 is defined as: 

 ℎ𝑎𝑠𝑦𝑚 = −𝑥∗ + 𝑢𝑎𝑠𝑦𝑚 𝛾𝑤𝑥∗ = −𝑥∗         (3) 

 

where the minus sign is introduced because the 

component of specific water weight parallel to the slope 𝛾𝑤𝑥∗ has the same direction of the 𝑥∗ axis.  

The antisymmetric permeability 𝐾𝑎𝑠𝑦𝑚 is 

subsequently evaluated from Equation (1) by 

introducing inside Equation (2) the component of the 

specific water weight parallel to the slope 𝛾𝑤𝑥∗ as: 

 𝐾𝑎𝑠𝑦𝑚 = 𝜅𝑟   𝜅 𝛾𝑤𝑥∗ 𝜇 = 𝜅𝑟  𝜅 𝛾𝑤𝜇 sin 𝛽 = 𝐾 sin 𝛽  (4) 

 

Finally, based on Equations (3-4), the two flux 

components 𝑞𝑥∗𝑎𝑠𝑦𝑚
and 𝑞𝑦∗𝑎𝑠𝑦𝑚

 are calculated according 

to Darcy’s law as: 

 𝑞𝑥∗𝑎𝑠𝑦𝑚 = − 𝐾𝑎𝑠𝑦𝑚  𝜕ℎ𝑎𝑠𝑦𝑚𝜕𝑥∗ = − 𝐾 sin 𝛽  𝜕ℎ𝑎𝑠𝑦𝑚𝜕𝑥∗ =                                                         = 𝐾 sin 𝛽      (5) 

 𝑞𝑦∗𝑎𝑠𝑦𝑚 = − 𝐾𝑎𝑠𝑦𝑚  𝜕ℎ𝑎𝑠𝑦𝑚𝜕𝑦∗ = − 𝐾 sin 𝛽  𝜕ℎ𝑎𝑠𝑦𝑚𝜕𝑦∗ = 0 (6) 

2.2 Symmetric flux components 

The symmetric seepage is governed by the component 

of the specific water weight perpendicular to the slope 𝛾𝑤𝑦∗ shown in Figure 1 (see also Bianchi et al., 2022). 
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The problem is therefore equivalent to that of vertical 

infiltration across a horizontal soil deposit of thickness 𝐿 and infinite extension in the 𝑥∗ direction. Therefore, 

every section perpendicular to the slope is a symmetry 

axis, which implies that the flow field is perpendicular 

to the ground and the pore water pressure 𝑢𝑠𝑦𝑚 depends 

only on the 𝑦∗ coordinate. Therefore, the symmetric 

piezometric head ℎ𝑠𝑦𝑚 is evaluated as: 

 ℎ𝑠𝑦𝑚 = 𝑦∗ +  𝑢𝑠𝑦𝑚𝛾𝑤𝑦∗ = 𝑦∗ +  𝑢𝑠𝑦𝑚𝛾𝑤 cos 𝛽       (7) 

 

As mentioned above, the symmetric permeability 𝐾𝑠𝑦𝑚 is evaluated from Equation (1) by introducing 

inside Equation (2) the component of the specific water 

weight perpendicular to the slope 𝛾𝑤𝑦∗ as: 

 𝐾𝑠𝑦𝑚 = 𝜅𝑟  𝜅 𝛾𝑤𝑦∗ 𝜇 = 𝜅𝑟  𝜅 𝛾𝑤𝜇 cos 𝛽 = 𝐾 cos 𝛽          (8) 

 

Finally, based on Equations (7-8), the flux components 𝑞𝑥∗𝑠𝑦𝑚
and 𝑞𝑦∗𝑠𝑦𝑚

 are calculated according to Darcy’s law 
as: 

 𝑞𝑥∗𝑠𝑦𝑚 = −𝐾𝑠𝑦𝑚  𝜕ℎ𝑠𝑦𝑚𝜕𝑥∗ = −𝐾 cos 𝛽  𝜕ℎ𝑠𝑦𝑚𝜕𝑥∗ = 0      (9) 

 𝑞𝑦∗𝑠𝑦𝑚 = −𝐾𝑠𝑦𝑚  𝜕ℎ𝑠𝑦𝑚𝜕𝑦∗ = −𝐾 cos 𝛽  𝜕ℎ𝑠𝑦𝑚𝜕𝑦∗ =                               = −𝐾 cos 𝛽 (1 + 𝜕( 𝑢𝑠𝑦𝑚𝛾𝑤 cos 𝛽)𝜕𝑦∗ )    (10) 

2.3 Flow regime in the unsaturated infinite slope 

The flux parallel to the slope 𝑞𝑥∗ coincides with the 

antisymmetric part 𝑞𝑥∗𝑎𝑠𝑦𝑚
 (Equation 5) because the 

symmetric part 𝑞𝑥∗𝑠𝑦𝑚
 (Equation 9) is zero: 

 𝑞𝑥∗ = 𝑞𝑥∗𝑎𝑠𝑦𝑚 =  𝐾 sin 𝛽            (11) 

 

Similarly, the flux perpendicular to the slope 𝑞𝑦∗ 

coincides with the symmetric part 𝑞𝑦∗𝑠𝑦𝑚
 (Equation 10) 

because the antisymmetric part 𝑞𝑦∗𝑎𝑠𝑦𝑚
 (Equation 6) is 

zero: 

 𝑞𝑦∗ = 𝑞𝑦∗𝑠𝑦𝑚 = −𝐾 cos 𝛽 (1 + 𝜕( 𝑢𝑠𝑦𝑚𝛾𝑤 cos 𝛽)𝜕𝑦∗ )      (12) 

 

Moreover, the fluxes parallel and perpendicular to the 

slope, 𝑞𝑥∗ and 𝑞𝑦∗ , can be alternatively calculated 

according to Darcy’s law from the corresponding 

gradients of the actual piezometric head ℎ as: 

 𝑞𝑥∗ = −𝐾 𝜕ℎ𝜕𝑥∗            (13) 

 

𝑞𝑦∗ = −𝐾 𝜕ℎ𝜕𝑦∗            (14) 

By equating Equation (11) to Equation (13) and 

Equation (12) to Equation (14), the components of the 

gradient of the actual piezometric head ℎ in the direction 

parallel and perpendicular to the slope are calculated as: 

 𝜕ℎ𝜕𝑥∗ = − sin 𝛽            (15) 

 𝜕ℎ𝜕𝑦∗ = cos 𝛽 (1 + 1 cos 𝛽  𝜕(𝑢𝑠𝑦𝑚𝛾𝑤 )𝜕𝑦∗ )              (16) 

 

Equation (15) corresponds to the hydraulic constraint 

acting on any section perpendicular to the slope and 

constitutes a Neumann boundary condition for such 

sections. It is easily shown that the same boundary 

condition can be alternatively expressed in terms of the 

pressure head 𝑢 𝛾𝑤⁄  as: 

 𝜕( 𝑢𝛾𝑤)𝜕𝑥∗ = 0            (17) 

 

Integration of Equations (15-16) leads to the 

following expression of the actual piezometric head ℎ: 

 ℎ = −𝑥∗ sin 𝛽 + 𝑦∗ cos 𝛽 +  𝑢𝑠𝑦𝑚𝛾𝑤             (18) 

 

Given that the geometric component of the 

piezometric head is 𝑦 = −𝑥∗ sin 𝛽 + 𝑦∗ cos 𝛽, 

Equation (18) implies that the symmetric pore pressure 

field coincides with the actual pore pressure field, i.e. 𝑢𝑠𝑦𝑚 = 𝑢.  

By considering Equations (11-12) and recalling that 𝑢𝑠𝑦𝑚 = 𝑢, the water mass balance is expressed in the 

reference system (𝑂, 𝑥∗, 𝑦∗) as: 

 𝜕𝜃𝜕𝑡 = − 𝜕𝑞𝑥∗𝜕𝑥∗ − 𝜕𝑞𝑦∗𝜕𝑦∗ =  = − 𝜕𝜕𝑥∗ [𝐾 sin 𝛽] + 𝜕𝜕𝑦∗ [𝐾 cos 𝛽 (1 + 𝜕( 𝑢𝛾𝑤 cos 𝛽)𝜕𝑦∗ )] (19) 

 

where 𝜃 is the volumetric water content. 

The first term on the right-hand side of Equation (19) 

is, however, zero because the flux parallel to the slope 𝑞𝑥∗  coincides with the antisymmetric part 𝑞𝑥∗𝑎𝑠𝑦𝑚
 which 

does not vary along the 𝑥∗ coordinate. Equation (19) can 

therefore be simplified to: 

 𝜕𝜃𝜕𝑡 = − 𝜕𝑞𝑦∗𝜕𝑦∗ = 𝜕𝜕𝑦∗ [𝐾 cos 𝛽 (1 + 𝜕( 𝑢𝛾𝑤 cos 𝛽)𝜕𝑦∗ )]     (20) 

 

Equation (20) defines the monodimensional variation 

of the pore water pressure along the 𝑦∗ direction and 

coincides with Richards’ vertical infiltration equation 
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across a horizontal soil deposit with the permeability 

and specific water weight equal to the symmetric 

components 𝐾 cos 𝛽 and 𝛾𝑤 cos 𝛽, respectively. It is 

therefore possible to exploit published numerical or 

analytical solutions of the vertical infiltration across a 

horizontal soil deposit for calculating the seepage across 

an infinite slope by replacing the permeability and 

specific water weight with their symmetric 

counterparts. The validity of this approach has already 

been demonstrated by Bianchi et al. (2022) for the case 

of steady state flow across an unsaturated infinite slope. 

The present work extends the validation to the case of 

transient seepage, as discussed in the following. 

3 VALIDATION OF DECOMPOSITION 

METHODOLOGY FOR TRANSIENT FLOW 

In order to solve the water balance of Equation (19) or 

Equation (20) in a closed form, the following simple 

constitutive laws, which assume an exponential decay 

of permeability 𝐾 and volumetric water content 𝜃 with 

decreasing pore pressure head 𝑢 𝛾𝑤⁄ , are introduced 

(recall that, under partly saturated conditions, the tensile 

pore water pressure has negative sign): 

 𝐾 = 𝐾𝑠𝑎𝑡  𝜅𝑟 = 𝐾𝑠𝑎𝑡  𝑒𝛼 𝛾𝑤 𝑢𝛾𝑤        (21) 

 𝜃 = 𝜃𝑑 + (𝜃𝑠 − 𝜃𝑑) 𝑒𝛼 𝛾𝑤 𝑢𝛾𝑤         (22) 

 

In Equation (22), 𝜃𝑑 is the residual volumetric water 

content corresponding to the driest conditions at an 

infinite negative pore water pressure while 𝜃𝑠 is the 

saturated volumetric water content at zero pore water 

pressure. For simplicity, the exponential decay of both 

permeability (Equation (21)) and volumetric water 

content (Equation (22)) with decreasing pressure head 

is governed by a single material parameter 𝛼. 

The proposed decomposition methodology is then 

validated for the case of transient seepage across an 

unsaturated infinite slope of thickness 𝐿 = 5 𝑚 and 

inclination 𝛽 = 30°. The top and bottom boundaries are 

subjected to a constant infiltration rate 𝑞𝑡 = 0.5 ∙10−6 𝑚 𝑠⁄  and a fixed pore water pressure head 𝑢𝑏 𝛾𝑤⁄ = 0 𝑚, respectively, while the initial pressure 

head across the domain is calculated as 𝑢 𝛾𝑤⁄ = −𝑦∗. 

The corresponding initial values of permeability 𝐾 and 

volumetric water content 𝜃 are evaluated by Equation 

(21) and Equation (22), respectively, with parameter 

values 𝛼=10−2𝑘𝑃𝑎−1, 𝐾𝑠𝑎𝑡 = 10−6 𝑚 𝑠⁄  , 𝜃𝑠 = 0.4 

and 𝜃𝑑 = 0.04. 

The problem of transient seepage has been solved via 

a monodimensional finite difference model of Richards’ 
equation where the permeability and specific water 

weight have been replaced with the symmetric 

components 𝐾 cos 𝛽 and 𝛾𝑤 cos 𝛽, respectively. The 

finite difference model adopts a spatial discretization of ∆𝑦∗ = 0.01 𝑚 (Figure 2) and a time discretization of ∆𝑡 = 0.0028 ℎ (Celia et al., 1990). The same problem 

has also been solved via a bidimensional finite element 

model of Richards’ equation where the permeability and 
specific water weight coincide with the actual values 𝐾 

and 𝛾𝑤 . The bidimensional finite element model has 

been created with the commercial software COMSOL 

Multiphysics and consists of a slope slice of unit width 

perpendicular to the ground (Figure 3). In this case, an 

automatic adaptive time step has been chosen, which is 

based on a local error estimate with a tolerance of 10−8. 

As depicted in Figure 3, the finite element model has 

been discretized with a very fine triangular mesh 

consisting of 5448 elements and 2850 nodes. The 

Neumann boundary condition of Equation (15) has been 

imposed on the upstream and downstream sides of the 

discretised slope slice. 

 

 
Figure 2. Monodimensional finite difference model 

 

 
Figure 3. Bidimensional finite element model 
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Figure 4 shows a perfect match between the pore 

water pressure profiles evaluated along the direction 𝑦∗ 

perpendicular to the ground at different times by both 

the monodimensional finite difference scheme (red 

lines) and the bidimensional finite element scheme 

(yellow diamonds). The two analyses agree at all times 

up until the final steady state, when they both match the 

analytical solution (white circle) presented in Bianchi et 

al. (2022). This confirms the validity of the proposed 

decomposition methodology, including the correctness 

of the Neumann boundary condition of Equation (15), 

for calculating the transient seepage across an infinite 

slope. 

Moreover, Figure 5 compares the flux vectors 

calculated by the monodimensional and bidimensional 

models at two different times. The monodimensional 

model only calculates the flux component perpendicular 

to the slope, which is then added to the flux component 

parallel to the slope, as obtained from Equation (11), to 

define the flux vector. Inspection of Figure 5 indicates 

that the direction and intensity of the flux vectors 

calculated by the two models are identical, thus further 

corroborating the validity of the proposed 

decomposition methodology. 

Inspection of Figure 5 also indicates that, consistently 

with Equation (12), the magnitude of the flux vector is 

lowest around the mid-depth of the slope where both the 

pressure head gradient and the permeability, which 

reduces with decreasing values of pressure head, are 

smallest as shown in Figure 4. 

Near the surface, the flux perpendicular to the slope 

dominates the seepage, which is therefore mostly fed by 

ground infiltration. However, as depth increases, the 

flux vectors progressively rotate becoming nearly 

parallel to the slope at the bottom boundary, where 

seepage is therefore mostly fed by the upstream source 

at infinite distance. 

 

 
Figure 4. Comparison of pore water pressure profiles 

perpendicular to the ground calculated at different times by 

the monodimensional finite difference model and the 

bidimensional finite element model 

 

 

  

 
Figure 5. Comparison of the flux vector fields calculated at two different times by the monodimensional finite difference model 

and the bidimensional finite element model 
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The above results confirm, once again, that the flow 

regime across an infinite slope can be alternatively 

evaluated by either a simplified monodimensional 

model with values of specific water weight and 

permeability scaled by cos 𝛽 (where 𝛽 is the slope 

angle) or by a full bidimensional model subjected to 

appropriate upstream and downstream boundary 

conditions. 

4 CONCLUSIONS 

This paper has presented a simplified methodology for 

evaluating the seepage across an unsaturated infinite 

slope under both transient and stationary conditions. It 

is demonstrated that the flow perpendicular to the slope 

can be calculated from Richards’ equation of vertical 

infiltration into a horizontal soil layer where the specific 

water weight and permeability have been scaled by a 

factor of cos 𝛽 (where 𝛽 is the slope angle). The 

problem of vertical infiltration into a horizontal soil 

layer has already been rigorously solved for various soil 

constitutive laws and boundary conditions. It is 

therefore possible to adapt these analyses to the 

evaluation of the flow regime across an infinite slope by 

simply replacing, inside the corresponding solutions, 

the specific water weight and permeability with their 

scaled counterparts.  

If a rigorous solution is unviable, the seepage across 

an infinite unsaturated slope can be calculated via 

approximated numerical models, typically finite 

difference or finite element models. Either a 

monodimensional model incorporating the scaled 

values of specific water weight and permeability or a 

bidimensional model incorporating the actual values of 

these two parameters may be employed. Bidimensional 

models of a slope segment require, however, the 

imposition of appropriate boundary conditions on the 

upstream and downstream sides of the discretised 

domain. To this end, the present paper has defined the 

gradient of the piezometric head in the direction parallel 

to the slope, which is the Neumann boundary condition 

acting on the two sides perpendicular to the ground. The 

rigorous definition of this boundary condition 

overcomes the current need of discretizing large slope 

segments to minimise the inaccuracies due to the 

imposition of arbitrary boundary conditions on the 

upstream and downstream sides of the model. 
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