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An open-source Julia code for geotechnical MPM 

N.D. Gavin, R.E. Bird, W.M. Coombs, C.E. Augarde 

Department of Engineering, Durham University, Durham, UK 

 
ABSTRACT: There is considerable interest in the Material Point Method (MPM) in the computational geotechnics community 

since it can model problems involving large deformations, e.g. landslides, collapses etc. without being too far from the standard 

finite element method, which can struggle with large deformation problems. The open-source code AMPLE developed at 

Durham University in recent years is a compact set of MATLAB functions that “address the severe learning curve for researchers 
wishing to understand, and start using, the MPM”. It is well known that MATLAB can be very slow hence limiting its utility for 

major studies of large problems, so here we introduce an MPM code with the same aims as AMPLE but written in the relatively 

new language Julia, specifically for fast runtimes. We highlight areas where MATLAB code constructs are inefficient if just 

transferred to Julia and show that to unlock large speed gains with Julia, one needs to code in a different way and we demonstrate 

this on a geotechnical problem. While this paper is concerned with the MPM, the advice regarding coding using Julia is trans-

ferable to other computational geotechnics methods and tools.  
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1 INTRODUCTION 

The Material Point Method (MPM), originally devel-

oped by Sulsky and co-workers in the 1990s (Sulsky et 

al., 1994), models a problem domain as a collection of 

material points at which all information pertaining to 

that location in the domain is stored. It is not however a 

meshless method, as sometimes supposed since the cal-

culations to determine deformation response to a load 

event (in the case of quasi-statics for instance) are car-

ried out on a background Finite Element (FE) mesh or 

grid. Information is mapped from the material points to 

the grid nodes, a standard FE solve carried out and the 

results mapped back to the material points. The ad-

vantage of this arrangement is that a new undistorted 

background mesh can be used for the subsequent load 

step/increment regardless of the magnitude of defor-

mations of material points and therefore the key issue of 

mesh distortion met with in standard FE methods is to-

tally avoided. 

This key feature, and hence its utility for problems 

involving large deformation, has promoted considerable 

interest in the computational geotechnics community as 

evidenced by an increasing number of publications and 

two recent conferences (Fern et al., 2019). Recent ex-

amples of its use can be found for landslides (e.g. Xu et 

al., 2018; Conte et al., 2019), site investigations (e.g. 

Ceccato et al., 2016; Francesca et al., 2020) and off-

shore foundations (e.g. Brinkgreve et al. 2017, Galavi et 

al. 2019). Its close relation to standard FE methods 

means it is easy to transfer material models and other 

numerical methods to run in MPM from an existing FE 

code. Having said this, the MPM is not without its chal-

lenges, for instance much effort is being expended in the 

MPM research community trying to address solutions to 

problems such as poor system conditioning due to low 

numbers of material points in a background element 

(Coombs, 2022). 

 The open-source code AMPLE (Coombs & Augarde, 

2020) is a MPM implementation for solid mechanics 

developed to specifically address the steep learning 

curve met by those wishing to experiment with the 

MPM. AMPLE is a MATLAB implementation of the 

MPM with relatively few options, but with the emphasis 

on code clarity and lack of ambiguity. While MATLAB 

is a good framework in which to develop code and pro-

totype, it is not fast and actually using it to carry out 

large analyses (in terms of numbers of degrees of free-

dom) is difficult. In this paper we describe a new ver-

sion of AMPLE written in the Julia language, which 

combines the clarity of the MATLAB implementation 

but with a much lower computational cost. We do not 

claim here to be the first developers of an MPM code in 

Julia, as there are other examples, e.g. Sinaie et al. 

(2017) covers similar ground and in greater detail, but 

for an explicit MPM code rather than implicit as in AM-

PLE and most geotechnical FEA. Other useful guidance 

on the use of Julia can be found in Xiong et al. (2020) 

and Xiao et al. (2022). 

2 THE JULIA LANGUAGE  

The Julia language was developed initially in 2009 to 

"address the needs of high-performance numerical and 

scientific computing." (Core Julia development team, 

https://doi.org/10.53243/NUMGE2023-35
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2023a). It has since gathered a large following and has 

a strong and supportive user community. It is also an 

exciting, flexible, and relatively new language. Julia has 

a modern, expressive syntax, automatic memory man-

agement, and built-in support for parallel computing. 

Julia also has a growing ecosystem of packages and li-

braries, making it well-suited for a wide range of appli-

cations. 

2.1 Key differences 

Since the syntax for MATLAB and Julia look similar 

(as both do to Python), it is easy to assume that behav-

iour expected from MATLAB will also happen for a 

similar-looking code fragment in Julia and that can lead 

to surprising annoyances in code development and de-

bugging. Some of these differences are now described. 

A key syntax difference that is immediately obvious 

if moving a code from MATLAB to Julia is the use of 

brackets. For example, for indexing of arrays, a 

MATLAB code fragment 

 
bc(node*2-1,:)=[node*2-1 0] 

 

would have the equivalent in Julia of 

 

bc[node*2-1,:]=[node*2-1, 0] 
 

which is almost the same apart from the use of square 

rather than curved brackets for the left hand side. 

Function calling also looks a little different: the 

MATLAB call to a function form2D with four 

arguments would look like this 

 
[ep,cd] = form2D(nx,ny,lx,ly) 

 

and in Julia like this 

 

ep,cd= form2D(nx,ny,lx,ly).  
 

Julia functions also by default return the last value 

calculated so it is important to override that default and 

ask explicitly for what you want returning, e.g. the 

fragment at the end of a function 

 
else                                                                         

  Svp =0 
  dSvp=0 
end 

return Svp, dSvp 
end 

 

without the return statement will just return dSvp. 

 In the original AMPLE, all data for material points is 

held in a structure array (a “struct”) containing 20 fields. 
In Julia the equivalent is a mutable struct, the “mutable” 

indicating that field values can be changed during 

execution. 

One pitfall to be aware of is how Julia handles the 

assignment of one variable to another. If variable A is 

an array and is assigned to variable B, MATLAB will 

create a new memory address for the new variable. 

However, Julia simply creates a “shallow copy” mean-
ing that B becomes a reference to the memory address 

in which A is located. This means that errors can arise 

when working with both variables. For example, if A is 

an array of integers and we assign A to variable B, B will 

produce the same output as A, 

 
A = [1,2,3,4] 
B = A 

>> B = [1,2,3,4] 

 

Now, if an element of B is altered, the corresponding 

element in the variable A will also be altered 

 
B[1] = 5 
>> B = [5,2,3,4]  

>> A = [5,2,3,4] 

 

This is inevitably going to cause errors within the code 

if A and B are to be used in separate calculations. In or-

der to overcome this, the copy() (Core Julia develop-

ment team 2023f) function should be used, this will cre-

ate a new memory address for B in which the contents 

of A will be stored when assigning to the new variable. 

 
A = [1,2,3,4] 
B = copy(A) 

B[1] = 5 
>> A = [1,2,3,4] 
>> B = [5,2,3,4] 

 

By copying the variable A into B, it is now possible to 

alter the elements of A (or B) without affecting the con-

tents of B (or A). 

3 JULIA NUANCES 

Moving on from the syntactical differences, some of 

which have been covered above, it is useful to be aware 

that many optimisation practices that are used in more 

traditional languages have already been considered in 

the development of Julia and are simple to apply once 

one is aware. This includes; making use of contiguous 

memory, vectorisation, cache optimisation and memory 

allocation and reuse. Additionally, due to the large 

open-source community that uses Julia, and its inherent 

speed, it is simple to include a range of open source op-

timised numerical packages, and also produce your 

own, with relative ease. Some of the optimisation pro-

cedures inherent in Julia are now discussed.  
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3.1 Predefining variable types  

Variables in Julia belong to “types”  ̧and this can be ex-

ploited to make parametric and hierarchical code (Core 

Julia development team, 2023d), a particularly powerful 

tool for numerical modelling. By default, variable and 

function types are ambiguous making the code very 

flexible and powerful, however if the type is ambiguous 

then high performance compiled code is unlikely to ex-

ist, as additional decisions and operations will be per-

formed at runtime, thus slowing the code. It is therefore 

routine to define types wherever possible. An example 

of a variable defined with a type is,  

 

A:: Matrix{Float64},  

 

where A is a matrix of 64-bit floating point (IEEE 754 

standard) values. Matrix and Vector in Julia are 

based on the mutable data type Array{T,N} where T 

is the type (e,g, Float64) and N is the number of di-

mensions; Matrix has N=2 and Vector, N=1.Differ-

ent results are obtained for slight changes in assign-

ments  

e.g. a=[1 2 3] will give a 1 × 3 Matrix, while 

a=[1,2,3] or a=[1;2;3] will give a 3-element 

Vector (i.e. a 3 × 1 Array).  

3.2 Predefining variable memory 

Predefining variable memory is another way to optimise 

compiler performance and is achieved by allocating a 

size to the variable’s definition 

 

A  = zeros(6,6)::Matrix{Float64}. 

 

Predefining memory has two purposes. Firstly, if cor-

rect, it prevents reallocation of memory during a calcu-

lation since the variable’s size, and attributed memory, 

has already been defined. Secondly, it allows for 

memory reuse during repeated rewrites to a variable, 

therefore preventing unnecessary memory allocation 

which significantly slows code (Core Julia development 

team, 2023d). As an example, a function that does as 

much as it can to supply useful information for the com-

piler, that squares the Float64 a, to produce the output 

Float64 b, is 
 
a = 2::Float64 

b = 0::Float64 
function sqr_flt!(a::Float64,b::Float64) 
b=a^2 

end 

 

The exclamation mark ! in the function definition 

prevents memory allocation when the function is called, 

it allows variables in the function to be edited directly 

and prevents new memory being allocated each time the 

function is called. This is particularly critical if the func-

tion is called multiple times.  

3.3 Macros 

Macros in Julia provide a mechanism to include gener-

ated code in the final body of a program; they change 

existing source code or generate entirely new code 

(Core Julia development team, 2023b). Julia optimisa-

tion packages have been written so they can be deployed 

with a macro, in most cases this means a significantly 

optimised version of the code can be achieved with an 

edit to a single line. One of the most useful packages is 

LoopVectorization (Elrod, 2023), which is used 

with macro @turbo and demonstrated below. 

One of the most common calculations in implicit 

MPM and finite element codes is the element stiffness 

contribution at an integration point 𝑖 (FEs) or a material 

point i (MPM).  

 𝑘𝑖𝑒 ≈ 𝐵⊤𝐷𝐵                (1) 

 

where 𝑘𝑖𝑒 is the local stiffness matrix contribution from 

point 𝑖 to the element 𝑒, 𝐵 is the shape function deriva-

tive matrix and 𝐷 is the material stiffness matrix. The 

approximation in Equation (1) represents the fact that 

there will be weighting of the matrix triple product, e.g. 

Gauss quadrature weights for FEs and volume/mass for 

the MPM. For 3D elasticity 𝐵 is 9 × 3𝑛, where 𝑛 is the 

number of element nodes, and 𝐷 is 9 × 9. Within a 

MPM or finite element code Equation (1) is a small ma-

trix operation undertaken many times. In the MPM case, 

Equation (1) is calculated at each material point in every 

iteration of the non-linear solve. 

A performance test of the calculation of Equation (1)  

is used here to demonstrate the @turbo macro. The tim-

ing of the code was performed with the benchmarking 

toolbox BenchmarkTools (Churavy, 2023) on a single 

core 2.10 GHz machine. Two different methods to mul-

tiply matrices are considered. First, to multiply the ma-

trix A, of size 𝐼 × 𝐾, with matrix B, of size 𝐾 × 𝐽, to 

form C, the following code segment is used: 

 
function my_mul!(C::Matrix{Float64}, 

A::Matrix{Float64},B::Matrix{Float64}, 
I::Int64,J::Int64,K::Int64) 
    @turbo for j in 1:I 

        for k in 1:J 
            for i in 1:K 
                C[i,j] += A[i,k]*B[k,j] 

            end 
        end 
    end 

end 
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With the @turbo macro initiated on the first for loop of 

my_mul! To calculate the two matrix multiplications in 

Equation (1) my_mul! is called twice.  

Secondly, this is compared to the native implementa-

tion: 

 
function k_mul!( 

k::Matrix{Float64}, 
B::Matrix{Float64}, 
BT::Matrix{Float64}, 

D::Matrix{Float64}) 
k = BT*D*B 

end 

  

where the multiplication operator * is called from the 

native LinearAlgebra package, which in turn calls 

LAPACK ( ). The speed of k_mul! is compared to 

my_mul! for the calculation of  𝑘𝑖𝑒 when  𝑛 = 10, rep-

resenting a linear tetrahedral element. The run times of 

the two code segments are compared, and presented, in 

Table 1. The table clearly shows the improved speed 

from a bespoke user multiplication with the @turbo 

macro. 

 
Table 1. Run times of native multiplication and @turbo. 

Function used Time (ns)  

no @turbo 

Time (ns) 

@turbo  

k_mul! 671.3  n/a 

my_mul!  1334.9 158.0 

 

This example also demonstrates where Julia performs 

well with a nest of loops, which may feel counter 

intuitive. 

3.4 The dot syntax 

Normally, vectorised code needs to be structured as 

such during writing, and one of the most useful features 

of Julia is the dot syntax (Core Julia development team, 

2023a) which allows for the vectorisation of code with-

out the overhead of writing code in a vectorised form 

and the subsequent lower readability.  

However, the syntax is much more powerful than just 

as an improvement to readability (Core Julia develop-

ment team, 2023a). The dot allows for vectorised oper-

ations to be recognised at the syntactic level, and hence 

loop vectorisation is a syntactic guarantee, not a com-

piled optimisation that might occur. Using the con-

densed example from Johnson (2017), operations for 

the vectorized code 

 
f(X) = 2*X.^2 

 

will be 

  

tmp1 = X.^2 
tmp2 = 2*tmp1 

X = f(tmp2) 

 

This both requires memory allocation for tmp1 and 

tmp2, but also means that loops over the array X occur 

separately and sequentially over X. This in turn will 

cause repeated memory transfers to and from the RAM 

to CPU cache for values within X (assuming that X does 

not fit in the CPU cache). Rewriting f as  

 
f(X) = 2*X^2 

 

and calling it with f.(X), fuses the loops that would 

exist for tmp1 and tmp2. This means that each value in 

the array is called into the cache once, all operations are 

performed and then it is stored back into the RAM; in-

creasing code speed. The true power of the dot syntax, 

which is unique to Julia (Johnson, 2017), is that this can 

be applied to any function type, even those created by 

the user. 

3.5 Preallocating and reusing variables 

It can often be the case in loops that some variables only 

exist within the loop and are recalculated in every in-

stance of the loop, this means that an allocation will oc-

cur each time, for example 

 
C = zeros(Float64,3,3,100) 

for i in 1:100 
 A = rand(Float64,3,3) 
 B = rand(Float64,3,3) 

 C[:,:,i] = A * B 
end 

 

Here, variables A and B are allocated 100 times, how-

ever, if the sizes of A, B and C are known before enter-

ing the loop, these matrices can be pre-allocated and the 

contents of the matrices can be altered within each loop 

rather than reallocating the variables each time. This is 

done by using the broadcast operator .= (Core Julia 

development team 2023g),  reducing the number of al-

locations by rewriting the values within the 3x3 matri-

ces stored at the pre-existing memory address. Using the 

broadcast operator along with the my_mul! function 

presented in section 3.3, an improved code becomes 

 

A = zeros(Float64,3,3) 
B = zeros(Float64,3,3) 

C = zeros(Float64,3,3,100) 
for i in 1:100 
A .= rand(Float64,3,3) 

B .= rand(Float64,3,3) 
my_mul!(C[:,:,i],A,B) 

end 

 

Knowing the sizes of the variables used throughout a 

code can be useful, as variables can be used throughout 
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by storing variables in a “tuple” (Core Julia develop-

ment team 2023e), which are immutable collections of 

variables. Once created, the contents of the tuple cannot 

be changed, meaning that variables cannot be added to 

the tuple or variables within the tuple cannot be re-

moved or altered, but the contents of the variables can 

be changed. For example, a tuple is created with two 

variables, X (a 3x3 matrix) and Y (a 3x1 vector), the val-

ues of within X and Y can be changed using the broad-

cast operator, but the sizes and types of the two varia-

bles cannot change. The variables held within the tuple 

can be used in the same way as a struct in MATLAB. 

 
tpl = (X = zeros(Float64,3,3),  
Y = zeros(Float64,3)) 

>> tpl.X = [0 0 0; 0 0 0; 0 0 0] 
>> tpl.Y = [0, 0, 0] 
 

tpl.X .= Diagonal([1, 2, 3]) 
>> tpl.X = [1 0 0; 0 2 0; 0 0 3] 
 

tpl.Y .= [4, 5, 6] 
>> tpl.Y = [4, 5, 6] 

 

Z = tpl.X * tpl.Y 
>> Z = [4, 10, 18] 

 

This tuple can be passed into every function of a code 

and the variables can be used as many times as required, 

reducing the total number of allocations and thus im-

proving the performance. Tuples are also useful to hold 

key variables that are used throughout the code without 

having to pass them in and out of functions. In AMPLE 

for example, the number of material points is constant 

throughout an analysis (unlike the number of active 

nodes) and therefore one can exploit this feature to set 

up tuples for variables containing material point data, 

zeroing all of the contents of the pre-allocated variable 

at the start of a load step and altering its contents in each 

Newton-Raphson iteration rather than creating a new 

variable every load step. 

4 AN EXAMPLE 

To demonstrate the Julia version of AMPLE a very sim-

ple geotechnical problem is modelled, and the compu-

tational cost in terms of runtime measured. The problem 

is somewhat artificial for simplicity, but includes mate-

rial non-linearity and involves large deformations. An 

embankment of material 8 units high is modelled (using 

symmetry to reduce the problem domain modelled by 

half) where the base is assumed to be supported on a 

surface with zero friction. Two discretisations of bilin-

ear quad elements are used: “small” where the element 
size is 1 unit and “large” where the element size is 0.5 
units. The starting material point distribution is a 6 × 6 

grid in each element and the total numbers of material 

points are 1440 and 5760 respectively.  

Using compatible units, the material has a density of 

1000 and is elastic-perfectly plastic with a von Mises 

failure criterion, with a deviatoric yield stress of 𝜌𝑦 =2 × 104 where the yield surface is defined as 

 

 𝑓 = 𝜌 − 𝜌𝑦 = 0               (2) 

 

where 𝜌 = √2𝐽2 , 𝐽2 =  12 𝑡𝑟([𝑠][𝑠])   &   [𝑠] = [𝜏] − 13 𝑡𝑟([𝜏]) 

in which [𝜏] is the Kirchhoff stress tensor. Elastic prop-

erties are Young’s modulus, 𝐸 = 106 and Poisson’s ra-
tio, 𝜈 = 0.3. The embankment is loaded from increasing 

the gravitational acceleration over forty increments. As 

expected the embankment material slumps outwards as 

shown in Figure 1 and large deformations are evident.  

          
 

Figure 1. Example problem (small version) (a) original configuration;  

(b) final slumped shape: colours represent horizontal displacement. 
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Table 2 shows the runtimes (mean of five instances) 

for this problem for three versions of AMPLE: A. 

Original AMPLE in MATLAB, B. AMPLE in Julia 

where none of the nuances of Julia cited in Section 4 

have been used and C. AMPLE in Julia where they 

have. The results show the huge advantages of the third 

implementation where large time savings (even for 

these relatively small problems) are achieved for intel-

ligent Julia code over MATLAB, i.e. around 1.5-1.7 

times faster. It also demonstrates that plain conversion 

from MATLAB to Julia is not a good idea. 

 
Table 2. Runtimes (in seconds) for the example problems 

Code Small problem Large problem 

A 35.226 145.335  
B 125.828  547.869 

C 20.160  92.596 

5 CONCLUSIONS 

Julia is an ideal language in which developers of com-

putational geotechnics technology can work being al-

most as clear as MATLAB in syntax (as compared to 

C++ for instance) but used correctly, can be much 

faster, as demonstrated here, via the use of a few simple-

to-understand commands and structures.  

Work is now underway in the group at Durham to ex-

pand the capabilities of Julia implementations to include 

multiphase materials, contact and friction and HPC. The 

Julia code used here will be made available via Github 

in the near future 

(https://wmcoombs.github.io/). 
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