

INTERNATIONAL SOCIETY FOR
SOIL MECHANICS AND

GEOTECHNICAL ENGINEERING

This paper was downloaded from the Online Library of

the International Society for Soil Mechanics and

Geotechnical Engineering (ISSMGE). The library is

available here:

https://www.issmge.org/publications/online-library

This is an open-access database that archives thousands

of papers published under the Auspices of the ISSMGE and

maintained by the Innovation and Development

Committee of ISSMGE.

 The paper was published in the proceedings of the 10th
European Conference on Numerical Methods in
Geotechnical Engineering and was edited by Lidija
Zdravkovic, Stavroula Kontoe, Aikaterini Tsiampousi and
David Taborda. The conference was held from June 26th
to June 28th 2023 at the Imperial College London, United
Kingdom.

To see the complete list of papers in the proceedings
visit the link below:

https://issmge.org/files/NUMGE2023-Preface.pdf

https://www.issmge.org/publications/online-library
https://issmge.org/files/NUMGE2023-Preface.pdf

Proceedings 10th NUMGE 2023

10th European Conference on Numerical Methods in Geotechnical Engineering

Zdravkovic L, Kontoe S, Taborda DMG, Tsiampousi A (eds)

© Authors: All rights reserved, 2023

https://doi.org/10.53243/NUMGE2023-35

 1 NUMGE 2023 - Proceedings

An open-source Julia code for geotechnical MPM

N.D. Gavin, R.E. Bird, W.M. Coombs, C.E. Augarde

Department of Engineering, Durham University, Durham, UK

ABSTRACT: There is considerable interest in the Material Point Method (MPM) in the computational geotechnics community

since it can model problems involving large deformations, e.g. landslides, collapses etc. without being too far from the standard

finite element method, which can struggle with large deformation problems. The open-source code AMPLE developed at

Durham University in recent years is a compact set of MATLAB functions that “address the severe learning curve for researchers
wishing to understand, and start using, the MPM”. It is well known that MATLAB can be very slow hence limiting its utility for

major studies of large problems, so here we introduce an MPM code with the same aims as AMPLE but written in the relatively

new language Julia, specifically for fast runtimes. We highlight areas where MATLAB code constructs are inefficient if just

transferred to Julia and show that to unlock large speed gains with Julia, one needs to code in a different way and we demonstrate

this on a geotechnical problem. While this paper is concerned with the MPM, the advice regarding coding using Julia is trans-

ferable to other computational geotechnics methods and tools.

Keywords: Material Point Method; Julia; AMPLE

1 INTRODUCTION

The Material Point Method (MPM), originally devel-

oped by Sulsky and co-workers in the 1990s (Sulsky et

al., 1994), models a problem domain as a collection of

material points at which all information pertaining to

that location in the domain is stored. It is not however a

meshless method, as sometimes supposed since the cal-

culations to determine deformation response to a load

event (in the case of quasi-statics for instance) are car-

ried out on a background Finite Element (FE) mesh or

grid. Information is mapped from the material points to

the grid nodes, a standard FE solve carried out and the

results mapped back to the material points. The ad-

vantage of this arrangement is that a new undistorted

background mesh can be used for the subsequent load

step/increment regardless of the magnitude of defor-

mations of material points and therefore the key issue of

mesh distortion met with in standard FE methods is to-

tally avoided.

This key feature, and hence its utility for problems

involving large deformation, has promoted considerable

interest in the computational geotechnics community as

evidenced by an increasing number of publications and

two recent conferences (Fern et al., 2019). Recent ex-

amples of its use can be found for landslides (e.g. Xu et

al., 2018; Conte et al., 2019), site investigations (e.g.

Ceccato et al., 2016; Francesca et al., 2020) and off-

shore foundations (e.g. Brinkgreve et al. 2017, Galavi et

al. 2019). Its close relation to standard FE methods

means it is easy to transfer material models and other

numerical methods to run in MPM from an existing FE

code. Having said this, the MPM is not without its chal-

lenges, for instance much effort is being expended in the

MPM research community trying to address solutions to

problems such as poor system conditioning due to low

numbers of material points in a background element

(Coombs, 2022).

 The open-source code AMPLE (Coombs & Augarde,

2020) is a MPM implementation for solid mechanics

developed to specifically address the steep learning

curve met by those wishing to experiment with the

MPM. AMPLE is a MATLAB implementation of the

MPM with relatively few options, but with the emphasis

on code clarity and lack of ambiguity. While MATLAB

is a good framework in which to develop code and pro-

totype, it is not fast and actually using it to carry out

large analyses (in terms of numbers of degrees of free-

dom) is difficult. In this paper we describe a new ver-

sion of AMPLE written in the Julia language, which

combines the clarity of the MATLAB implementation

but with a much lower computational cost. We do not

claim here to be the first developers of an MPM code in

Julia, as there are other examples, e.g. Sinaie et al.

(2017) covers similar ground and in greater detail, but

for an explicit MPM code rather than implicit as in AM-

PLE and most geotechnical FEA. Other useful guidance

on the use of Julia can be found in Xiong et al. (2020)

and Xiao et al. (2022).

2 THE JULIA LANGUAGE

The Julia language was developed initially in 2009 to

"address the needs of high-performance numerical and

scientific computing." (Core Julia development team,

https://doi.org/10.53243/NUMGE2023-35

Finite element, finite difference, discrete element, material point and other methods

 2 NUMGE 2023 - Proceedings

2023a). It has since gathered a large following and has

a strong and supportive user community. It is also an

exciting, flexible, and relatively new language. Julia has

a modern, expressive syntax, automatic memory man-

agement, and built-in support for parallel computing.

Julia also has a growing ecosystem of packages and li-

braries, making it well-suited for a wide range of appli-

cations.

2.1 Key differences

Since the syntax for MATLAB and Julia look similar

(as both do to Python), it is easy to assume that behav-

iour expected from MATLAB will also happen for a

similar-looking code fragment in Julia and that can lead

to surprising annoyances in code development and de-

bugging. Some of these differences are now described.

A key syntax difference that is immediately obvious

if moving a code from MATLAB to Julia is the use of

brackets. For example, for indexing of arrays, a

MATLAB code fragment

bc(node*2-1,:)=[node*2-1 0]

would have the equivalent in Julia of

bc[node*2-1,:]=[node*2-1, 0]

which is almost the same apart from the use of square

rather than curved brackets for the left hand side.

Function calling also looks a little different: the

MATLAB call to a function form2D with four

arguments would look like this

[ep,cd] = form2D(nx,ny,lx,ly)

and in Julia like this

ep,cd= form2D(nx,ny,lx,ly).

Julia functions also by default return the last value

calculated so it is important to override that default and

ask explicitly for what you want returning, e.g. the

fragment at the end of a function

else

 Svp =0
 dSvp=0
end

return Svp, dSvp
end

without the return statement will just return dSvp.

 In the original AMPLE, all data for material points is

held in a structure array (a “struct”) containing 20 fields.
In Julia the equivalent is a mutable struct, the “mutable”

indicating that field values can be changed during

execution.

One pitfall to be aware of is how Julia handles the

assignment of one variable to another. If variable A is

an array and is assigned to variable B, MATLAB will

create a new memory address for the new variable.

However, Julia simply creates a “shallow copy” mean-
ing that B becomes a reference to the memory address

in which A is located. This means that errors can arise

when working with both variables. For example, if A is

an array of integers and we assign A to variable B, B will

produce the same output as A,

A = [1,2,3,4]
B = A

>> B = [1,2,3,4]

Now, if an element of B is altered, the corresponding

element in the variable A will also be altered

B[1] = 5
>> B = [5,2,3,4]

>> A = [5,2,3,4]

This is inevitably going to cause errors within the code

if A and B are to be used in separate calculations. In or-

der to overcome this, the copy() (Core Julia develop-

ment team 2023f) function should be used, this will cre-

ate a new memory address for B in which the contents

of A will be stored when assigning to the new variable.

A = [1,2,3,4]
B = copy(A)

B[1] = 5
>> A = [1,2,3,4]
>> B = [5,2,3,4]

By copying the variable A into B, it is now possible to

alter the elements of A (or B) without affecting the con-

tents of B (or A).

3 JULIA NUANCES

Moving on from the syntactical differences, some of

which have been covered above, it is useful to be aware

that many optimisation practices that are used in more

traditional languages have already been considered in

the development of Julia and are simple to apply once

one is aware. This includes; making use of contiguous

memory, vectorisation, cache optimisation and memory

allocation and reuse. Additionally, due to the large

open-source community that uses Julia, and its inherent

speed, it is simple to include a range of open source op-

timised numerical packages, and also produce your

own, with relative ease. Some of the optimisation pro-

cedures inherent in Julia are now discussed.

An open-source Julia code for geotechnical MPM

 3 NUMGE 2023 - Proceedings

3.1 Predefining variable types

Variables in Julia belong to “types” ̧and this can be ex-

ploited to make parametric and hierarchical code (Core

Julia development team, 2023d), a particularly powerful

tool for numerical modelling. By default, variable and

function types are ambiguous making the code very

flexible and powerful, however if the type is ambiguous

then high performance compiled code is unlikely to ex-

ist, as additional decisions and operations will be per-

formed at runtime, thus slowing the code. It is therefore

routine to define types wherever possible. An example

of a variable defined with a type is,

A:: Matrix{Float64},

where A is a matrix of 64-bit floating point (IEEE 754

standard) values. Matrix and Vector in Julia are

based on the mutable data type Array{T,N} where T

is the type (e,g, Float64) and N is the number of di-

mensions; Matrix has N=2 and Vector, N=1.Differ-

ent results are obtained for slight changes in assign-

ments

e.g. a=[1 2 3] will give a 1 × 3 Matrix, while

a=[1,2,3] or a=[1;2;3] will give a 3-element

Vector (i.e. a 3 × 1 Array).

3.2 Predefining variable memory

Predefining variable memory is another way to optimise

compiler performance and is achieved by allocating a

size to the variable’s definition

A = zeros(6,6)::Matrix{Float64}.

Predefining memory has two purposes. Firstly, if cor-

rect, it prevents reallocation of memory during a calcu-

lation since the variable’s size, and attributed memory,

has already been defined. Secondly, it allows for

memory reuse during repeated rewrites to a variable,

therefore preventing unnecessary memory allocation

which significantly slows code (Core Julia development

team, 2023d). As an example, a function that does as

much as it can to supply useful information for the com-

piler, that squares the Float64 a, to produce the output

Float64 b, is

a = 2::Float64

b = 0::Float64
function sqr_flt!(a::Float64,b::Float64)
b=a^2

end

The exclamation mark ! in the function definition

prevents memory allocation when the function is called,

it allows variables in the function to be edited directly

and prevents new memory being allocated each time the

function is called. This is particularly critical if the func-

tion is called multiple times.

3.3 Macros

Macros in Julia provide a mechanism to include gener-

ated code in the final body of a program; they change

existing source code or generate entirely new code

(Core Julia development team, 2023b). Julia optimisa-

tion packages have been written so they can be deployed

with a macro, in most cases this means a significantly

optimised version of the code can be achieved with an

edit to a single line. One of the most useful packages is

LoopVectorization (Elrod, 2023), which is used

with macro @turbo and demonstrated below.

One of the most common calculations in implicit

MPM and finite element codes is the element stiffness

contribution at an integration point 𝑖 (FEs) or a material

point i (MPM).

 𝑘𝑖𝑒 ≈ 𝐵⊤𝐷𝐵 (1)

where 𝑘𝑖𝑒 is the local stiffness matrix contribution from

point 𝑖 to the element 𝑒, 𝐵 is the shape function deriva-

tive matrix and 𝐷 is the material stiffness matrix. The

approximation in Equation (1) represents the fact that

there will be weighting of the matrix triple product, e.g.

Gauss quadrature weights for FEs and volume/mass for

the MPM. For 3D elasticity 𝐵 is 9 × 3𝑛, where 𝑛 is the

number of element nodes, and 𝐷 is 9 × 9. Within a

MPM or finite element code Equation (1) is a small ma-

trix operation undertaken many times. In the MPM case,

Equation (1) is calculated at each material point in every

iteration of the non-linear solve.

A performance test of the calculation of Equation (1)

is used here to demonstrate the @turbo macro. The tim-

ing of the code was performed with the benchmarking

toolbox BenchmarkTools (Churavy, 2023) on a single

core 2.10 GHz machine. Two different methods to mul-

tiply matrices are considered. First, to multiply the ma-

trix A, of size 𝐼 × 𝐾, with matrix B, of size 𝐾 × 𝐽, to

form C, the following code segment is used:

function my_mul!(C::Matrix{Float64},

A::Matrix{Float64},B::Matrix{Float64},
I::Int64,J::Int64,K::Int64)
 @turbo for j in 1:I

 for k in 1:J
 for i in 1:K
 C[i,j] += A[i,k]*B[k,j]

 end
 end
 end

end

Finite element, finite difference, discrete element, material point and other methods

 4 NUMGE 2023 - Proceedings

With the @turbo macro initiated on the first for loop of

my_mul! To calculate the two matrix multiplications in

Equation (1) my_mul! is called twice.

Secondly, this is compared to the native implementa-

tion:

function k_mul!(

k::Matrix{Float64},
B::Matrix{Float64},
BT::Matrix{Float64},

D::Matrix{Float64})
k = BT*D*B

end

where the multiplication operator * is called from the

native LinearAlgebra package, which in turn calls

LAPACK (). The speed of k_mul! is compared to

my_mul! for the calculation of 𝑘𝑖𝑒 when 𝑛 = 10, rep-

resenting a linear tetrahedral element. The run times of

the two code segments are compared, and presented, in

Table 1. The table clearly shows the improved speed

from a bespoke user multiplication with the @turbo

macro.

Table 1. Run times of native multiplication and @turbo.

Function used Time (ns)

no @turbo

Time (ns)

@turbo

k_mul! 671.3 n/a

my_mul! 1334.9 158.0

This example also demonstrates where Julia performs

well with a nest of loops, which may feel counter

intuitive.

3.4 The dot syntax

Normally, vectorised code needs to be structured as

such during writing, and one of the most useful features

of Julia is the dot syntax (Core Julia development team,

2023a) which allows for the vectorisation of code with-

out the overhead of writing code in a vectorised form

and the subsequent lower readability.

However, the syntax is much more powerful than just

as an improvement to readability (Core Julia develop-

ment team, 2023a). The dot allows for vectorised oper-

ations to be recognised at the syntactic level, and hence

loop vectorisation is a syntactic guarantee, not a com-

piled optimisation that might occur. Using the con-

densed example from Johnson (2017), operations for

the vectorized code

f(X) = 2*X.^2

will be

tmp1 = X.^2
tmp2 = 2*tmp1

X = f(tmp2)

This both requires memory allocation for tmp1 and

tmp2, but also means that loops over the array X occur

separately and sequentially over X. This in turn will

cause repeated memory transfers to and from the RAM

to CPU cache for values within X (assuming that X does

not fit in the CPU cache). Rewriting f as

f(X) = 2*X^2

and calling it with f.(X), fuses the loops that would

exist for tmp1 and tmp2. This means that each value in

the array is called into the cache once, all operations are

performed and then it is stored back into the RAM; in-

creasing code speed. The true power of the dot syntax,

which is unique to Julia (Johnson, 2017), is that this can

be applied to any function type, even those created by

the user.

3.5 Preallocating and reusing variables

It can often be the case in loops that some variables only

exist within the loop and are recalculated in every in-

stance of the loop, this means that an allocation will oc-

cur each time, for example

C = zeros(Float64,3,3,100)

for i in 1:100
 A = rand(Float64,3,3)
 B = rand(Float64,3,3)

 C[:,:,i] = A * B
end

Here, variables A and B are allocated 100 times, how-

ever, if the sizes of A, B and C are known before enter-

ing the loop, these matrices can be pre-allocated and the

contents of the matrices can be altered within each loop

rather than reallocating the variables each time. This is

done by using the broadcast operator .= (Core Julia

development team 2023g), reducing the number of al-

locations by rewriting the values within the 3x3 matri-

ces stored at the pre-existing memory address. Using the

broadcast operator along with the my_mul! function

presented in section 3.3, an improved code becomes

A = zeros(Float64,3,3)
B = zeros(Float64,3,3)

C = zeros(Float64,3,3,100)
for i in 1:100
A .= rand(Float64,3,3)

B .= rand(Float64,3,3)
my_mul!(C[:,:,i],A,B)

end

Knowing the sizes of the variables used throughout a

code can be useful, as variables can be used throughout

An open-source Julia code for geotechnical MPM

 5 NUMGE 2023 - Proceedings

by storing variables in a “tuple” (Core Julia develop-

ment team 2023e), which are immutable collections of

variables. Once created, the contents of the tuple cannot

be changed, meaning that variables cannot be added to

the tuple or variables within the tuple cannot be re-

moved or altered, but the contents of the variables can

be changed. For example, a tuple is created with two

variables, X (a 3x3 matrix) and Y (a 3x1 vector), the val-

ues of within X and Y can be changed using the broad-

cast operator, but the sizes and types of the two varia-

bles cannot change. The variables held within the tuple

can be used in the same way as a struct in MATLAB.

tpl = (X = zeros(Float64,3,3),
Y = zeros(Float64,3))

>> tpl.X = [0 0 0; 0 0 0; 0 0 0]
>> tpl.Y = [0, 0, 0]

tpl.X .= Diagonal([1, 2, 3])
>> tpl.X = [1 0 0; 0 2 0; 0 0 3]

tpl.Y .= [4, 5, 6]
>> tpl.Y = [4, 5, 6]

Z = tpl.X * tpl.Y
>> Z = [4, 10, 18]

This tuple can be passed into every function of a code

and the variables can be used as many times as required,

reducing the total number of allocations and thus im-

proving the performance. Tuples are also useful to hold

key variables that are used throughout the code without

having to pass them in and out of functions. In AMPLE

for example, the number of material points is constant

throughout an analysis (unlike the number of active

nodes) and therefore one can exploit this feature to set

up tuples for variables containing material point data,

zeroing all of the contents of the pre-allocated variable

at the start of a load step and altering its contents in each

Newton-Raphson iteration rather than creating a new

variable every load step.

4 AN EXAMPLE

To demonstrate the Julia version of AMPLE a very sim-

ple geotechnical problem is modelled, and the compu-

tational cost in terms of runtime measured. The problem

is somewhat artificial for simplicity, but includes mate-

rial non-linearity and involves large deformations. An

embankment of material 8 units high is modelled (using

symmetry to reduce the problem domain modelled by

half) where the base is assumed to be supported on a

surface with zero friction. Two discretisations of bilin-

ear quad elements are used: “small” where the element
size is 1 unit and “large” where the element size is 0.5
units. The starting material point distribution is a 6 × 6

grid in each element and the total numbers of material

points are 1440 and 5760 respectively.

Using compatible units, the material has a density of

1000 and is elastic-perfectly plastic with a von Mises

failure criterion, with a deviatoric yield stress of 𝜌𝑦 =2 × 104 where the yield surface is defined as

 𝑓 = 𝜌 − 𝜌𝑦 = 0 (2)

where 𝜌 = √2𝐽2 , 𝐽2 = 12 𝑡𝑟([𝑠][𝑠]) & [𝑠] = [𝜏] − 13 𝑡𝑟([𝜏])

in which [𝜏] is the Kirchhoff stress tensor. Elastic prop-

erties are Young’s modulus, 𝐸 = 106 and Poisson’s ra-
tio, 𝜈 = 0.3. The embankment is loaded from increasing

the gravitational acceleration over forty increments. As

expected the embankment material slumps outwards as

shown in Figure 1 and large deformations are evident.

Figure 1. Example problem (small version) (a) original configuration;

(b) final slumped shape: colours represent horizontal displacement.

Finite element, finite difference, discrete element, material point and other methods

 6 NUMGE 2023 - Proceedings

Table 2 shows the runtimes (mean of five instances)

for this problem for three versions of AMPLE: A.

Original AMPLE in MATLAB, B. AMPLE in Julia

where none of the nuances of Julia cited in Section 4

have been used and C. AMPLE in Julia where they

have. The results show the huge advantages of the third

implementation where large time savings (even for

these relatively small problems) are achieved for intel-

ligent Julia code over MATLAB, i.e. around 1.5-1.7

times faster. It also demonstrates that plain conversion

from MATLAB to Julia is not a good idea.

Table 2. Runtimes (in seconds) for the example problems

Code Small problem Large problem

A 35.226 145.335
B 125.828 547.869

C 20.160 92.596

5 CONCLUSIONS

Julia is an ideal language in which developers of com-

putational geotechnics technology can work being al-

most as clear as MATLAB in syntax (as compared to

C++ for instance) but used correctly, can be much

faster, as demonstrated here, via the use of a few simple-

to-understand commands and structures.

Work is now underway in the group at Durham to ex-

pand the capabilities of Julia implementations to include

multiphase materials, contact and friction and HPC. The

Julia code used here will be made available via Github

in the near future

(https://wmcoombs.github.io/).

6 ACKNOWLEDGEMENTS

This work is supported by activity in the Computational

Mechanics Research Node, Department of Engineering,

Durham University, Author 1 is supported by a UK

EPSRC studentship under grant EP/T518001/1 while

author 2 is supported by UK EPSRC project grant

EP/W000970/1.

7 REFERENCES

Anderson, E., Bai, Z., Bischof, C., Blackford, S., Del, J.,

Dongarra, J., Du Croz, J., Greenbaum, A., Hammarling,

S., McKenney, A., Sorensen, D. 1999. LAPACK Users'

Guide, SIAM, Philadelphia, PA.

Brinkgreve, R., Burg, M., Lim, L. J., & Andreykiv, A. 2017.

On the practical use of the Material Point Method for off-

shore geotechnical applications. In Proc.19th ICSMGE,

2269-2272.

Ceccato, F., Beuth, L., Vermeer, P. A., Simonini, P., 2016.

Two-phase material point method applied to the study of

cone penetration. Computers & Geotechnics, 80, 440-452.

Churavy, V., 2023. BenchmarkTools.jl. GitHub repository,
https://github.com/vchuravy

Conte, E., Pugliese, L., Troncone, A., 2019. Post-failure

stage simulation of a landslide using the material point

method. Engineering Geology, 253, 149-159.

Coombs, W.M. 2022. Ghost stabilisation of the Material

Point Method for stable quasi-static and dynamic analysis

of large deformation problems,

 https://arxiv.org/abs/2209.10955.

Coombs, W.M., Augarde, C.E. 2020. AMPLE: A Material

Point Learning Environment, Advances in engineering

software, 139:102748.

Core Julia development team 2023a. Functions.

https://docs.julialang.org/en/v1/manual/functions/

Core Julia development team 2023b.

 Julia Homepage. https://julialang.org/

Core Julia development team 2023c. Metaprogramming.

Julia 1.8 documentation.

 https://docs.julialang.org/en/v1/manual/metaprogram-

ming/

Core Julia development team 2023d. Julia Performance

Tips. Julia 1.8 documentation.

 https://docs.julialang.org/en/v1/manual/performance-

tips/

Core Julia development team 2023e. Types. Julia 1.8 docu-

mentation.

 https://docs.julialang.org/en/v1/ manual/types/

Core Julia development team 2023f, Essentials.

 Julia 1.8 documentation.

 https://docs.julialang.org/en/v1/base/base/#Essentials

Core Julia development 2023g. Broadcasting. Julia 1.8 doc-

umentation. https://docs.julialang.org/en/v1/manual/ar-

rays/#Broadcasting

Elrod, C., 2023. LoopVectorization.jl. GitHub repository,

https://github.com/JuliaSIMD/LoopVectorization.jl

Fern, J., Rohe, A., Soga, K., Alonso, E., 2019. The Material

Point Method for Geotechnical Engineering. CRC Press.

Francesca, C., Lars, B., Paolo, S., 2020. Analysis of Piezo-

cone Penetration under Different Drainage Conditions

with the Two-Phase Material Point Method. Journal of

Geotech & Geoenv Engineering, 142, 04016066.

Galavi, V., Martinelli, M., Elkadi, A., Ghasemi, P., Thijssen,

R. 2019. Numerical simulation of impact driven offshore

monopiles using the material point method. Proc XVII

ECSMGE.

Johnson, S.G. 2017. More Dots: Syntactic Fusion in Julia.

Julia Blog. More Dots: Syntactic Loop Fusion in Julia

(julialang.org)

Sinaie, S., Nguyen, V.P., Nguyen, C.T., Bordas, S.

2017.Programming the material point method in Julia.

Advances in Engineering Software, 105, 17-29,

Sulsky, D., Chen, Z., Schreyer, H.L., 1994. A particle

method for history-dependent materials. Computer Meth-

ods in Applied Mechanics and Engineering, 118, 179-196.

Xiao, L., Mei, G., Xi, N., Piccialli, F. 2022. Julia Language

in Computational Mechanics: A New Competitor. Arch.

Computational Methods in Engineering, 29, 1713–1726.

Xiong, H., Yin, Z-Y, Nicot, F. 2020. Programming a micro-

mechanical model of granular materials in Julia. Ad-

vances in Engineering Software, 145, 2020,102816.

Xu, X., Jin, F., Sun, Q., Soga, K., Zhou, G.G., 2018. Three-

dimensional material point method modelling of runout

behavior of the Hongshiyan landslide. Canadian Ge-

otechnical Journal, 56(9): 1318-1337.

https://wmcoombs.github.io/
https://gow.epsrc.ukri.org/NGBOViewGrant.aspx?GrantRef=EP/W000970/1
https://github.com/vchuravy
https://arxiv.org/abs/2209.10955
https://docs.julialang.org/en/v1/manual/functions/
https://julialang.org/
https://docs.julialang.org/en/v1/manual/metaprogramming/
https://docs.julialang.org/en/v1/manual/metaprogramming/
https://docs.julialang.org/en/v1/manual/performance-tips/
https://docs.julialang.org/en/v1/manual/performance-tips/
https://docs.julialang.org/en/v1/%20manual/types/
https://docs.julialang.org/en/v1/base/base/#Essentials
https://docs.julialang.org/en/v1/manual/arrays/#Broadcasting
https://docs.julialang.org/en/v1/manual/arrays/#Broadcasting
https://github.com/JuliaSIMD/LoopVectorization.jl
https://julialang.org/blog/2017/01/moredots/#:~:text=The%20dots%20allow%20Julia%20to,occur%20for%20carefully%20written%20code.
https://julialang.org/blog/2017/01/moredots/#:~:text=The%20dots%20allow%20Julia%20to,occur%20for%20carefully%20written%20code.

