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ABSTRACT: The paper presents some recent developments in the formulation of G-PFEM, the Particle Finite Element Method 

intended for geotechnical applications involving large displacements, finite strains and, often, soil-structure interaction. The 

associated computer code has been developed and implemented in KRATOS, an object-oriented multi-disciplinary open-access 

platform. After describing the basic features of the generic PFEM, stabilized mixed formulations for single phase and two-phase 

materials, required by the use of low-order finite elements, are presented. A nonlocal integration regularization scheme, imple-

mented to deal with materials exhibiting softening behaviour, is described. Two sources of softening are considered: degradation 

of structured soils and undrained flow liquefaction, requiring different forms of constitutive models. Two examples of application 

involving softening materials are presented: a biaxial test and a cone penetration test with pore pressure measurements. The 

integration of the constitutive laws in a large-strain setting and the incorporation of the IMPLEX algorithm are also briefly 

addressed.  
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1 INTRODUCTION 

Problems involving large strains and large displace-

ments are frequently encountered in geotechnical engi-

neering; they are frequently associated with materials 

undergoing failure at least in some parts of the domain.  

Very characteristic examples are the cases that involve 

the penetration of a rigid object into the ground as oc-

curs in many types of offshore foundations, in cone or 

other penetration tests for soil characterization, in sam-

pling operations or in the installation of driven piles. 

The numerical analysis of these type of problems is 

challenging and a number of specific numerical tech-

niques have been developed to tackle them such as the 

Material Point Method, MPM (e.g. Coetzee et al., 2005) 

and various forms of the Arbitrary Lagrangian Eulerian 

formulation (Donea et al. 2004) like the Remeshing and 

Interpolation Technique by Small strain RITTS (e.g. Hu 

and Randolph, 1998), the Coupled Eulerian-Lagran-

gian, CEL (e.g. Walker and Yu, 2006) or the efficient 

ALE approach (e.g. Nazem et al., 2006). 

This paper deals with a different numerical tech-

nique: The Particle Finite Element Method (PFEM) that 

is well suited for problems involving not only large 

strains and displacements but intermittent separation/fu-

sion of bodies as well. It involves frequent remeshing 

and, generally, the use of low-order elements. The 

method was initially developed to address fluid-struc-

ture interaction problems (Oñate et al., 2004) and sub-

sequently expanded to other fields, like solid-solid in-

teraction, erosion and thermo-plastic problems. It is 

noteworthy that S.W. Sloan made significant contribu-

tions to the method (Zhang et al.  2017, 2018). 

Early geomechanical applications of the method in-

clude tool-rock interaction problems (Carbonell et al. 

2013), the simulation of the cone penetration test (Gens 

et al. 2016) and the simulation of flow slides (Zhang et 

al., 2015) where the ground is generally considered as a 

single-phase material. In this geotechnical context, a 

new computer code, G-PFEM, has been developed and 

implemented in KRATOS (Davdand et al. 2010), an ob-

ject-oriented multi-disciplinary open-access platform 

for numerical analysis tool development. Extensive im-

provements of the PFEM method have been required to 

extend the range of application to the full scope of ge-

otechnical conditions and to enhance the performance, 

efficiency and robustness of the numerical tool.  

After summarising the basic features of the PFEM 

numerical procedure, this paper reviews briefly some of 

the novel features of the code: stabilized mixed formu-

lations, nonlocal regularization, the integration of con-

stitutive models in a large-strain setting and the incor-

poration of the IMPLEX algorithm. Some examples of 

application involving softening behaviour are presented 

for illustration. 
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2 THE PARTICLE FINITE ELEMENT 

METHOD 

PFEM is a continuum method where the solution of the 

governing set of equations is obtained from a finite ele-

ment mesh constructed with well-shaped low order ele-

ments. The nodes discretizing the analysis domain are 

considered as material particles that carry mass and state 

variables. Their movements, computed by the FEM cal-

culation, are tracked throughout the analysis. 

The basic sequence follow by the PFEM method is 

illustrated in Figure 1 and can be defined by the follow-

ing steps: 

1. Begin the computation at each time step with a 

cloud of points defining the domain of analysis (Cn) 

2. Identify the boundaries of the domain of analysis 

as they can be very distorted and/or new boundaries 

may be created or suppressed (Vn). The -shape method 

(Edelsbrunner and Mucke, 1994) is used for this pur-

pose. 

3. Discretize the analysis domain with a finite ele-

ment mesh (Mn). This may include the introduction of 

new particles in areas with large plastic deformation, re-

tessellation and some post-tessellation mesh smoothing. 

4. State variables are interpolated from the previous 

mesh to the new one. 

4. Solve the governing equations in a Lagrangian for-

mulation and update the state variables in the new con-

figuration  

6. Move the points to the new positions resulting 

from the analysis (Cn+1) 

7. Go back to step 2 and repeat 

 

 
Figure 1. Scheme of a PFEM computation 

 

The quality of the discretization is maintained by 

constant remeshing by re-triangulation based on Delau-

nay tessellations. In addition, new particles are added in 

areas of high gradients of plastic dissipation or water 

flow occur. Conversely, particles are eliminated if their 

distance falls below a specified length.  

Although not strictly necessary (Zhang et al, 2015), 

PFEM generally uses low-order finite elements: linear-

interpolated triangles in 2D and linear tetrahedrons in 

3D. They have a low computational cost; the particles 

correspond to the mesh nodes and no additional inter-

polations are required after remeshing. However, as dis-

cussed below, these elements entail the use of stabilized 

mixed formulations. 

The accuracy of the solution may be affected by the 

interpolation of state variables. Although a number of 

different procedures are available, the nearest point in-

terpolation method has generally been adopted whereby 

information is directly transferred to the new Gauss 

points from the closest Gauss point in the previous 

mesh. In this way, the information is not modified in 

those finite elements that remain unchanged in the 

remeshing. In some cases, the SPR (Superconvergent 

Patch Recovery) interpolation method has been used. 

3 STABILIZED MIXED FORMULATIONS 

The linear elements used in PFEM are prone to undergo 

volumetric locking because, at the incompressible limit, 

they do not satisfy the Babuska-Brezzy conditions. 

Therefore, stabilized mixed formulations must be im-

plemented. Naturally, the adoption of a mixed formula-

tion increases the number of degrees of freedom per 

node but the resulting computational cost increase is 

offset by the simplicity and flexibility associated with 

the use of linear elements. 

Undrained and fully drained geotechnical problems 

can be analysed considering that the soil or rock is a sin-

gle-phase material. In that case the governing equation 

is simply: 

 + =σ b 0  (1) 

where  is the Cauchy stress tensor and b represents the 

body forces.  

The mixed formulation requires an additional scalar 

governing equation; the following one is used: 

0J − =  
(2) 

where J = det(F) is the determinant of the deformation 

gradient, F, (also called Jacobian) and  is the volumet-

ric deformation.  

When the Jacobian  is introduced as a nodal primary 

variable, the Cauchy stress is determined from a modi-

fied deformation gradient where the deviatoric part is 

prescribed whereas the volumetric part is replaced by 

the nodal  variable In that case, the Cauchy stress ten-

sor depends on both displacements (strains) and the Ja-

cobian,   It has been found that the performance of this 

mixed formulation is better than one based on the Cau-

chy pressure, p (Monforte et al. 2017a, 2017b). 

The stabilisation method used is the Polynomial Pres-

sure Projection, PPP (Dohrmann and Bochev, 2004), 

applied to the scalar equation (2). In contrast to other 

stabilization methods, the PPP does not require a mesh-

dependent stabilization parameter or the computation of 
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higher order derivatives and it can be implemented at 

element level. 

A general formulation able to tackle the full range of 

geotechnical situations, from undrained to fully drained, 

requires the simultaneous consideration of the mechan-

ical and hydraulic problems in the context of a multi-

phase material (Monforte et al. 2018). For a saturated 

soil, the governing equations are: 

( )wp + + =σ I b 0  (3) 

/ d

w wp k +  +  =v v 0  (4) 

where ’ is the effective stress tensor, pw is the water 

pressure, I the identity matrix, kw water compressibility, 

v is the displacement rate, and vd Darcy’s velocity. 
Again, the mixed formulation requires an additional 

scalar equation; the same one as for the single-phase 

case is adopted: 

0J − =  
(5) 

The same considerations regarding the determination 

of the Cauchy stresses apply as in the single-phase case 

above.  

Stabilization of the formulation is also achieved by 

the PPP procedure applied now to the two scalar equa-

tions (4) and (5). A comparison of different mixed for-

mulations and stabilization procedures applied to vari-

ous single-phase and two-phase problems has been 

presented in Monforte et al. (2017b); the results support 

the adoption of the Jacobian nodal variables and the use 

of the PPP stabilization method. Also, Monforte et al. 

(2019b) has reported low order stabilized mixed 

schemes for the full dynamic Biot formulation required 

in dynamic cases where the fluid acceleration is not neg-

ligible compared to that of the solid phase. This gener-

alization is outside the scope of this paper. 

4 PFEM FOR SOFTENING MATERIALS 

4.1 Constitutive models and formulation 

As for any numerical technique, the performance of 

PFEM analyses involving softening materials entails es-

pecial challenges mainly related to mesh dependency 

and the computability of the solution. Yet, softening 

materials are worthy of particular attention because they 

are often associated with excessive deformations and 

displacements and, on many occasions, with cata-

strophic failures that occur without warning (Gens, 

2019). 

Two sources of softening have been examined: struc-

tured materials and liquefiable soils. Structured materi-

als such as soft rocks, natural clays or cemented soils 

exhibit higher strength and stiffness due to bonding, the 

physical nature of which may be quite varied. Softening 

arises from the weakening of the bonds due to plastic 

straining or to a variety of environmental factors such 

as temperature or weathering. From the constitutive 

point of view (Gens and Nova 1988), their behaviour 

may be visualized by an outer yield locus that degrades 

towards the smaller intrinsic yield surface as restructu-

ration progresses (Figure 2a). This results in the soften-

ing behaviour at low stresses shown in Figure 2b. 

 

                      
                       a)                                                b) 

Figure 2. Constitutive model for structured soils. a) Initial 

and intrinsic yield loci b) Stress-strain curves 

 

The softening mechanism is different in soils under-

going flow liquefaction. Under undrained conditions, 

the very open fabric of the material collapses after 

reaching a peak well away from the drained failure en-

velope. After the collapse, the soil reaches a critical 

state condition at a much lower value of undrained shear 

strength. This behaviour can be captured by a constitu-

tive model such as CASM (Yu, 1998) that incorporates 

a yield locus with and appropriate shape (Figure 3). 

 

 
                        a)                                          b) 

Figure 3. Constitutive model for liquefiable soils. a) Yield lo-

cus b) Stress-strain curve 

 

The mitigation of the pathological mesh dependence 

of the analyses involving softening requires the use of a 

regularisation technique incorporating a fixed length 

scale. In the PFEM code presented here, the nonlocal 

integral technique has been adopted. Because it does not 

change the governing equations, the implementation is 

reasonably straightforward (Mánica et al. 2018). 

The method implies that the constitutive model is 

evaluated at each Gauss point using one or more non-

local variables instead of considering only the Gauss 

point itself. The nonlocal variable is determined as: 

( ) ( )

( )
,

,
( )

w d

w d


 



− 

− 

=


x y x y

x y x
x  (6) 

where  is the local variable, x and y are coordinates 

and w is the weighing function that controls the influ-

ence of the neighbouring integration points as a function 
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of their distance to the Gauss point under consideration. 

Naturally the calculation of the nonlocal variable is 

done in a discretized form: 

( ) ( )
( )
,

,
( )

i ij jij

i ijij

w

i w

 


 = 

x x

x
x  (7) 

where ij is the distance between Gauss points i and j. 

For the elastoplastic models outlined above, the non-

local variables are the hardening parameters although, 

of course, other choices are possible. 

The weighing function proposed by Galavi and 

Schweiger (2010) is adopted because it has been shown 

to perform better than other alternatives (Summersgill 

et al., 2017):   

( )
2

, exp
c c

w
l l

 
  
 = −    

x  (8) 

where lc is a characteristic length. Perhaps unexpect-

edly, the function has a null value when  is zero and it 

reaches a maximum at a distance of 2 / 2cl . 

From a strict point of view, the nonlocal formulation 

effectively couples the constitutive response of all the 

integration points in the analysis domain. Consequently, 

a very large system of coupled equations would need to 

be solved in each iteration. In practice, variables are de-

termined using the nonlocal approach at the beginning 

of each loading increment but, during the subsequent it-

erations, they evolve independently of their neighbours. 

Thus, stress integration is performed at each integration 

point independently of the other Gauss points.  

The nonlocal regularisation requires a sufficient 

number of neighbouring points to be applied effectively 

and, therefore, there is a natural synergy with the PFEM. 

Since the failure mechanism is generally not known in 

advance, analyses using a fixed mesh would require a 

fine discretization over large areas of the domain. In the 

PFEM, however, the mesh is intensely discretised in the 

areas where more plastic strain (and therefore softening) 

accumulates and, in this way, the required neighbouring 

points are automatically created only in the areas of the 

domain where they are required. Indeed, it is reasonable 

to incorporate the prescribed characteristic length in the 

criterion for deciding whether new particles are to be 

generated. Further details on the PFEM formulation for 

softening materials and associated constitutive laws are 

presented in Monforte et al. (2019a, 2021). 

4.2 Examples of application 

The cases presented in this section are computed with 

the mixed stabilized formulations presented before. The 

first example refers to the case of a biaxial test per-

formed on a structured soil, so a constitutive law like 

the one depicted in Figure 2 is used. The test is assumed 

fully drained, so the single-phase formulation is em-

ployed and nonlocal integration is used.  

Figure 4a shows the variation of vertical pressure vs 

vertical shortening for the case where the nonlocal 

scheme was used whereas Figure 4b presents the results 

of the equivalent analyses using only local integration. 

The analyses have been performed using six different 

initial discretizations ranging from 602 to 20320 nodes. 

It can be noted that in Figure 4a the differences between 

the different computation is quite small in contrast with 

the local integration results of Figure 4b. This latter Fig-

ure also shows that some of the analyses experienced 

numerical difficulties at various stages of the calcula-

tions resulting in irregular oscillations. Figure 5 pre-

sents the contours of accumulated plastic strains in the 

analyses performed with nonlocal integration for the six 

meshes used. It can be noted that the same failure mech-

anism develops in all cases and that the thickness of the 

shear band is constant and controlled by the character-

istic length used in the analyses. 

 
a) 

 
b) 

Figure 4. Vertical pressure vs. vertical shortening in a biaxial 

test on a structured soil. Mesh A is the coarsest discretization 

and F the finest. a) Nonlocal integration b) Local integration 

 

 
Figure 5. Contours of accumulated plastic deviatoric strain 

in a biaxial test on a structured soil. The meshes become finer 

form left to right. 

The second example involves the simulation of a 

CPTU cone penetration test in liquefiable materials. 

The two-phase mixed stabilised formulation with non-
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local integration is used in order to compute pore pres-

sures in a proper manner. The CASM constitutive 

model (Figure 3) is employed and, given the brittle na-

ture of the soil, nonlocal integration is again used. Eight 

different analyses have been performed with materials 

of different brittleness indices ranging from the most 

brittle soil, A (brittleness index 0.71) to the least brittle 

one, H (brittleness index 0.08). The peak undrained 

shear strength is the same in all cases. Cone penetration 

is performed at the standard rate of 0.02 m/s and the soil 

permeability has been chosen to ensure undrained con-

ditions throughout. 

The contours of pore pressure and mean stress at 

steady state penetration are shown in Figures 6 and 7, 

respectively, for the two extreme cases of brittleness, A 

and H. It can be noted that pore pressures are similar but 

the effective mean stresses along the cone are much 

lower in the brittle case because of the undrained col-

lapse undergone by the soil. The similarity of the pore 

pressures arises from the fact that they are controlled by 

the large increases in total stresses that are similar in all 

cases (Monforte et al. 2021). Figure 8 shows the results 

of the analyses in terms of the parameters typically rec-

orded in the CPTU test: net cone resistance and pore 

pressure measured at the cone shoulder. Again, pore 

pressures are similar, but the net cone resistance is much 

lower in the brittle material in spite of the fact that the 

peak undrained shear strength is the same in all cases. 

 

     
                  a)                                   b) 

Figure 6. Contours of pore pressure in the CPTU test. a) Case 

A, maximum brittleness, b) case H, minimum brittleness 

            
                   a)                                   b) 

Figure 7. Contours of effective mean stresses in the CPTU 

test. a) Case A, maximum brittleness, b) case H, minimum 

brittleness 

 
                        a)                                       b)                        
Figure 8. Results of the simulation of the CPTU test. a) Net 

cone resistance, b) Pore pressure measured at the cone 

shoulder 

5 OTHER RECENT DEVELOPEMNTS 

Due to space limitations, other recent developments will 

only be briefly mentioned here. Constitutive model in-

tegration has to be performed within a frame invariant 

framework when large strains are involved that may re-

sult in significant rotations. To this end, the elastoplastic 

models are formulated in terms of a multiplicative de-

composition of the total deformation into an elastic and 

plastic part (Monforte et al., 2015).  

To increase the robustness and computability of the 

PFEM analyses, the IMPLEX integration algorithm 

(Oliver et. al., 2008) has been recently implemented.  It 

is a two-step solver with a first extrapolation step that 

computes the boundary value problem using an extrap-

olated value of the increment of the plastic multiplier 

followed by a correction step where the constitutive 

equations are correctly evaluated at each integration 

point. In this way, the number of iterations reduces dras-

tically at the cost of introducing some error that depends 

on the size of the time step. In the current implementa-

tion, both steps use explicit schemes for the evaluations 

of the constitutive model (Monforte et al, 2019a). 

Although penetration problems generally involve 

contacts between soil and rigid bodies, the treatment of 

the contacts has been recently extended to consider the 

interaction between two deformable bodies (Carbonell 

et al. 2022). 

 

6 CONCLUSIONS 

G-PFEM is a numerical procedure and computer code 

developed to carry out analyses involving large dis-

placements, large deformations and soil-structure inter-

action. A number of additional developments are re-

quired to enhance the robustness and efficiency of the 

method, some of which have been briefly reviewed: sta-

bilized mixed formulations, nonlocal regularization, in-

tegration of constitutive models in a large-strain setting 
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and the incorporation of advanced integration algo-

rithms. In the space available, it has only been possible 

to present two examples of application, involving sof-

tening behaviour, that illustrate the successful perfor-

mance of the PFEM. 
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