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A ghost-stabilised material point method for large deformation 

geotechnical analysis 

W.M. Coombs1 

1Department of Engineering, Durham University, Durham, UK 

 
ABSTRACT: The Material Point Method (MPM) is advertised as the method for large deformation analysis of geotechnical 

problems.  However, the method suffers from several instabilities which are widely documented in the literature, such as: material 

points crossing between elements, different number of points when projecting quantities between the grid and points, etc.  A key 

issue that has received relatively little attention in the literature is the conditioning of the linear system of equations due to the 

arbitrary nature of the interaction between the physical body (represented by material points) and the background grid (used to 

solve the governing equations).  This arbitrary interaction can cause significant issues when solving the linear system, making 

some systems unsolvable or causing them to predict spurious results.  This paper presents a cut-FEM (Finite Element Method) 

inspired ghost-stabilised MPM that removes this issue.   
 

Keywords: Numerical Analysis; Material Point Method; Large Deformation Mechanics; Stabilisation; Non-Matching Mesh Methods 

 

 

1 INTRODUCTION 

The Material Point Method (MPM, Sulsky et al., 1994) 

developed from Particle In Cell (PIC) and FLuid Im-

plicit Particle (FLIP) approaches as a large deformation 

analysis approach for solid mechanics.  The core idea 

behind the method is to decouple the physical defor-

mation of the material from the underlying background 

mesh that is used to solve the governing equations.  This 

allows the method to handle very large deformations 

whilst avoiding issues such as mesh distortion, remesh-

ing and remapping of material and state variables.  The 

MPM has been widely adopted in both the computa-

tional mechanics and computer graphics communities 

and applied to several areas of geotechnical engineer-

ing, such as slope stability and soil-structure interaction.  

A well-documented issue with the original MPM is 

the instability that arises as Material Points (MPs) cross 

between background grid cells.  This so-called cell 

crossing instability is caused by the sudden transfer of 

mass and stiffness between elements and, more im-

portantly, the change of sign of the internal force con-

tribution of the crossing material point to the back-

ground grid.  Several approaches have been proposed to 

avoid this instability, such as the Generalised Interpola-

tion Material Point Method (GIMPM, Bardenhagen and 

Kober, 2004), CPDI approaches (Sadeghirad et al., 

2011), and B-Spline based MPMs (Yamaguchi et al., 

2021).  All the approaches remove (or reduce) the insta-

bility by increasing the continuity of the basis functions 

between adjacent elements of the background grid.  

However, the MPM (and its variants) suffer from an-

other instability that, at least to date, has received very 

little attention.  This instability is linked to the arbitrary 

nature of the position of the physical body being ana-

lysed relative to the background grid.  This can cause 

very small dependencies (i.e. very small basis function 

values) to develop between the nodes of the background 

grid and the MPs.  As these dependencies are used to 

formulate the mass and stiffness matrices, which are 

used to solve the governing equations on the back-

ground grid, the resulting linear system of equations can 

become ill conditioned, with the associated difficulties 

in finding a solution and the accuracy of said solution.   

This paper presents a cut-Finite Element Method 

(cut-FEM) inspired approach to overcome this issue via 

stabilisation of the background grid elements near the 

boundary of the physical domain, whilst not requiring 

explicit representation of the physical boundary.  The 

method is applied to a classic geotechnical engineering 

problem, demonstrating the importance of the stabilisa-

tion for robust MP-based simulations.                  

2 MATERIAL POINT METHOD 

As outlined in the introduction, the MPM discretises a 

physical body (or domain, Ω) via a collection of MPs 

with associated position, {𝑥𝑝}, volume, 𝑉𝑝, mass, 𝑚𝑝, 

stress, {𝜎𝑝}, etc.  whilst the governing equations are as-

sembled and solved on the vertices, 𝑣, of the back-

ground grid.  This paper is restricted to solving quasi 

static solid mechanics stress analysis problems within 

an updated Lagrangian finite deformation framework 

https://doi.org/10.53243/NUMGE2023-57


Finite element, finite difference, discrete element, material point and other methods 

 

       2 NUMGE 2023 - Proceedings 

where the governing equations are solved in the current 

or deformed configuration.   

The Galerkin weak statement for equilibrium for 

each background cell, 𝐸, is 

 ∫ [∇𝑥𝑆𝑣𝑝]𝑇{𝜎𝑝}𝑑𝑣𝜑𝑡(𝐸) − ∫ [𝑆𝑣𝑝]𝑇{𝑏}𝑑𝑣𝜑𝑡(𝐸) = 0  (1) 

 

where 𝜑𝑡 is the motion of the material body, [𝑆𝑣𝑝] and [∇𝑥𝑆𝑣𝑝] contain the basis functions that map infor-

mation between the MPs and the vertices of the back-

ground grid and their spatial derivatives, and {𝑏} are the 

body forces acting over the material volume, 𝑣.  The 

Cauchy stress at the MPs, {𝜎𝑝}, is based on a linear re-

lationship between logarithmic (or Hencky) strains and 

Kirchhoff stress and an exponential map of the plastic 

flow rule to recover the infinitesimal format of elasto-

plastic stress update algorithms.     

The key steps in an MPM analysis are shown in Fig-

ure 1 (ordered top left to bottom right).  The total im-

posed load is split into 𝑛 time/load steps and the follow-

ing algorithm followed: 

1. The interaction of the physical body, discretised 

by MPs, and the background grid is determined 

via evaluation of the basis functions,  𝑆𝑣𝑝, of the 

grid vertices at the MP locations. 

2. Information held at the MPs, such as stress, 

body forces and stiffness, is mapped to the 

nodes of the background grid using the basis 

functions and spatial derivatives.  

3. The governing equations are assembled on the 

active background grid nodes (that is, at the 

nodes with non-zero 𝑆𝑣𝑝 values). 

4. The governing equations are solved on the 

background grid and the incremental displace-

ments of the nodes determined that satisfy the 

governing equations.   

5. Information is mapped from the nodes to the 

MPs, updating information such as MP posi-

tions, deformation, stress, etc. 

6. Finally, the background grid is reset (or re-

placed) and the process repeated.   

2.1 Implicit solution 

Although the techniques described in this paper can be 

applied to all variants of the MPM, this paper is focused 

on quasi-static analysis where the governing equations 

are solved (Step 4 in the above algorithm) using an im-

plicit Newton-Raphson approach.  The implementation 

is based on the AMPLE (A Material Point Learning En-

vironment) open-source code of Coombs & Augarde 

(2020), which has its origins in the work of Charlton et 

al. (2017).  This solution method requires the internal 

force and tangent stiffness to be repeatedly evaluated 

and used to update the incremental displacements over 

the load/time step until the discretised weak form state-

ment of equilibrium converges within a given tolerance.  

A key part of this process is the inversion of the current 

tangent stiffness matrix (or rather a linear solution in-

volving the tangent stiffness), where the solution accu-

racy/feasibility is highly dependent on the conditioning 

of the stiffness matrix.   

 

 

Figure 1. MPM steps (top left to bottom right) 

 

2.2 Conditioning issues 

The condition number of a linear system of equations is 

the ratio of its largest and smallest eigenvalues.  For the 

MPM the intersection between the physical domain (de-

scribed by the MPs) and the background grid (where the 

equations are solved) is arbitrary.  This can lead to very 

small overlaps between the domain and some elements, 

resulting in very small basis function values.  The issue 

is compounded by domain-based MPMs, such as the 

Generalised Interpolation MPM (GIMPM), where each 

MP is represented by a rectangular domain and the basis 

functions are determined by integrating the grid shape 

functions over each MP domain.  Small overlaps be-

tween MP domains and elements can therefore lead to 

very small 𝑆𝑣𝑝 and  ∇𝑥𝑆𝑣𝑝 values.  These basis functions 
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and their spatial gradients are used to form the mass and 

stiffness matrices, respectively, leading to unbounded 

smallest eigenvalues and therefore condition numbers.  

 

 

Figure 2. Stiffness matrix condition number 

  

This issue is demonstrated in Figure 2 via a trivial 

conceptual problem where a MP domain (shown by the 

shaded region and associated white circles) translates 

through a background grid (nodes are shown by the 

back points).  The base of the background grid is re-

strained by a roller boundary condition (zero 𝑦 displace-

ment) and the node at 𝑥 = 2ℎ is also restrained in the 𝑥 

direction.  In this example the material’s Young’s mod-
ulus was 1Pa, the Poisson’s ratio was set to zero and ℎ = 1m.  The 2 × 1m physical domain was discretised 

by eight MPs. Figure 2 provides the condition number, 𝜅([𝐾]), of the reduced stiffness matrix1 for the MPM 

and GIMPM for a translation of 𝑎 ∈ [0,2ℎ].   
The response of the GIMPM highlights the issue of 

the unbounded nature of the condition number due to 

small overlaps between the mesh and the physical do-

main at 𝑎 = ℎ and 𝑎 = 2ℎ, where 𝜅([𝐾]) tends to infin-

ity due to very small ∇𝑥𝑆𝑣𝑝 values.  The condition of the 

MPM stiffness matrix is bounded until the boundary 

conditions no longer restrain the 𝑥 motion of the domain 

(which is reasonable for any numerical method).  How-

ever, the standard MPM suffers from several other is-

 
1 The reduced stiffness matrix refers to the stiffness matrix 

where the rows and columns associated with constrained de-

grees of freedom have been eliminated.    

sues, principally the well documented cell crossing in-

stability.  In addition, the condition number of the mass 

matrix for any MPM is unbounded as the mass matrix 

is based on the basis functions, which can be arbitrarily 

small.    

3 GHOST STABILISATION 

In this paper the ghost stabilisation approach (Burman, 

2010) is adopted to remedy the condition number issues 

highlighted in the previous section.  The key idea of 

ghost stabilisation is to enforce additional continuity on 

the system of equations being solved by penalising 

jumps in the spatial gradient of the solution at the phys-

ical boundary (Sticko et al., 2020). These additional 

constraints stabilise the degrees of freedom associated 

with the smallest eigenvalues of the linear system and 

therefore introduce a bound on the condition number. 

The technique is widely used in the cut/non-matching 

mesh FEM literature but has received little attention in 

other areas of computational mechanics.   

 

 

Figure 3. MPM boundary interpretation (reproduced from 

Coombs (2022)) 

 

An issue with applying the technique to the MPM is 

that most MPMs do not include an explicit presentation 

of the physical boundary of the problem domain. One 

way to approach this is to reconstruct the boundary of 

the computational domain using information about pop-

ulated and unpopulated elements of the background 

grid, as shown in Figure 3.  Boundary elements are de-

fined as those elements that contain MPs but share a 

face with an unpopulated element.  Ghost stabilisation 

can then be applied over the boundary element edges (Γ, 

red lines in Figure 3), defined as the boundary element 

faces shared with other populated elements.   

3.1 Stiffness contribution and implicit solution 

The additional stiffness associated with the ghost stabi-

lisation term can be expressed as an integral over the 

element faces of the background grid being cut by the 
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boundary of the physical domain, Γ (see Figure 3).  As-

suming a background grid of bi-linear quadrilateral ele-

ments (see Coombs (2022) for details), the stiffness as-

sociated with the ghost stabilisation can be expressed as 

 [𝐾𝑔] = 𝛾𝑘ℎ33 ∫ [𝐺]𝑇[𝑚][𝐺]Γ 𝑑Γ,        (2) 

 

where 𝛾𝑘 is a stabilisation parameter, ℎ is the size of the 

background grid face, [𝐺] contains spatial derivatives of 

the basis functions for the elements attached to the face 

under consideration  

 [𝐺] =  [[𝐺+] −[𝐺−]].           (3)  

 

The superscripts denote the positive and negative ele-

ments (see Figure 3), with [𝐺+] and [𝐺−] sharing a com-

mon format.  For example for 2D analysis 

 

[𝐺+] = [   
   𝑁1+,𝑥 0 …0 𝑁1+,𝑦 …0 𝑁1+,𝑥 …𝑁1+,𝑦 0 …  ]   

 
 ,         (4) 

 

where 𝑁𝑖+ are the basis functions of the positive element 

and the subscript 1 denotes the local node number. Fi-

nally, [𝑚] = [𝑛][𝑛]𝑇 where for 2D analysis  

 [𝑛]𝑇 = [  𝑛𝑥 0 0 𝑛𝑦0 𝑛𝑦 𝑛𝑥 0   ],         (5) 

 𝑛𝑥 and 𝑛𝑦 are the components of the vector normal to 

the boundary of the positive element (see Figure 3).     

The appropriate value of the stabilisation parameter, 𝛾𝑘, is a point of debate in the literature, with most au-

thors suggesting that it should be related to the P-wave 

modulus of the material, such as 𝛾𝑘 = (2𝜇 + 𝜆) ⋅ 10−4 

(Hansbo et al., 2017) where 𝜆 and 𝜇 are the Lame pa-

rameters.  In the author’s experience  𝛾𝑘 should be set 

to the minimum value that stabilises the analysis so that 

the stability terms do not onerously impact on the phys-

ical solution close to the boundary. 

Although in general the spatial derivatives of the ba-

sis functions in [𝐺] and the normal direction to the ele-

ment faces will depend on the incremental displace-

ments within the current step, it is assumed that the 

ghost stabilisation contribution is constant over a given 

load/time step based on the configuration at the start of 

the step.  This is reasonable as the exact value of the 

stabilisation contribution is arbitrary – the key contribu-

tion of the additional stiffness is to bound the lowest ei-

genvalue of the linear system being solved.  It also al-

lows the associated force contribution to the equilibrium 

equations to be determined based on the incremental 

nodal displacements, {Δ𝑑}, via 

 

{𝑓𝑔} = [𝐾𝑔]{Δ𝑑}.             (6) 

 

This ghost force acts as an additional internal force con-

tribution to the discretised weak form statement of equi-

librium.  Therefore, inclusion of the ghost stabilisation 

approach requires the ghost stiffness to be evaluated at 

Step 1 (see Section 2 for the key MPM steps) and then 

the current incremental nodal displacements to be used 

in Step 4 to determine the ghost force contribution.   

4 NUMERICAL ANALYSIS 

This section provides two analyses to demonstrate the 

ability of the ghost stabilisation approach to improve the 

robustness of the MPM for geotechnical analysis.  The 

method was implemented within the AMPLE code of 

Coombs & Augarde (2020).   

4.1 Compaction under self-weight 

The first example considers the convergence behaviour 

of the elastic compression of a plane strain column with 

an initial height of 𝑙0 = 50m under self-weight (shown 

on the right of Figure 4).  The material had a Young's 

modulus of 10kPa and a Poisson's ratio of zero.  The 

background was comprised of square bi-linear elements 

initially populated by a 2 by 2 equally spaced GIMPs.  

The mesh was constrained by roller boundary condi-

tions on the left and right boundaries as well as the base. 

A body force per unit volume of 𝑏 = 800N/m3 was ap-

plied over 40 equal load steps, causing the physical 

body to compress by approximately half its original 

height. 𝛾𝑘 = 10−2𝐸 = 100Pa for all analyses.  

 

 

Figure 4. Column compression stress error 

 

Figure 4 shows the normalised stress error conver-

gence behaviour of the ghost-stabilised GIMPM with 

background grid refinement.  The error is defined as 

 

error = 1𝑏𝑙0𝑉 ∑ |𝜎𝑦𝑦𝑝 − 𝜎𝑦𝑦𝑎 |𝑉𝑝𝑝         (7) 
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where 𝜎𝑦𝑦𝑝  and 𝜎𝑦𝑦𝑎 = 𝑏(𝑙0 − 𝑌𝑝) are the numerical and 

analytical normal stress in the vertical direction at each 

MP, 𝑉𝑝 is the original MP volume, 𝑉 = ∑ 𝑉𝑝𝑝  is the total 

original volume of the column, 𝑏 is the imposed body 

force per unit volume and 𝑌𝑝 is the original vertical po-

sition of the MP.    

The convergence rate is between linear and quadratic, 

which is consistent with the basis functions of the 

GIMPM method and the results available in the litera-

ture (for example see Charlton et al., 2017) and is not 

degraded by the ghost stabilisation.   

4.2 Slope failure 

The second example considers the deformation of a 45 

degree elasto-plastic plane strain slope due to gravita-

tional loading.  The geometry of the slope is shown in 

Figure 5, where: 𝐴 = (0,12)m, 𝐵 = (10,12)m, 𝐶 =(15,7)m and 𝐷 = (30,7)m.  The material was repre-

sented by a linear elastic-perfectly plastic von Mises 

constitutive model with a Young’s modulus of 1MPa, a 

Poisson’s ratio of 0.3 and a von Mises yield strength of 𝜌𝑦 = 15kPa.  The yield function is defined as 

 𝑓 = 𝜌 − 𝜌𝑦 = 0,              (8) 

 

where 𝜌 = √2𝐽2. 𝐽2 is the second invariant of the devi-

atoric stress    

 𝐽2 = 12 𝑡𝑟([𝑠][𝑠]),      [𝑠] = [𝜏] − 13 𝑡𝑟([𝜏])        (9) 

 

and [𝜏] is the Kirchhoff stress. A weaker layer (𝑦 ∈[7,7.5]m) was introduced in the model where the yield 

strength was reduced to of 𝜌𝑦 = 7.5kPa, as shown by 

the light grey region in Figure 5.  The material had a 

uniform initial density of 2,400kg/m3.  

 

 

Figure 5. Slope geometry & boundary conditions 

 

The slope was analysed with three different background 

grids, where ℎ = 1.0, 0.5 and 0.25m, and three different 

generalised interpolation MP resolutions with 22, 32 

and 42 equally spaced material points per background 

grid cell, giving a total number of MPs between 1,095 

and 69,800.  The physical geometry was defined by re-

moving any material points outside of the slope geome-

try defined by points A through D in Figure 5.     Grav-

itational loading of 9.81m/s2 was applied over 40/ℎ 

equal increments (load steps). The stabilisation param-

eter was initially set to 𝛾𝑘 = 10−2𝐸 = 10kPa. 

Table 1 provides the mean and maximum (in brack-

ets) Newton-Raphson (NR) iterations for the standard 

GIMPM and the Ghost-Stabilised (GS) GIMPM for the 

analyses that were able to complete all of the load steps 

(indicated by the ).  The unstable analyses are indi-

cated by the  and in those cases the final stable load 

step number is reported. The maximum permitted num-

ber of NR iterations was set to 20, with a normalised out 

of balance force residual tolerance of 10−6. 

 

Table 1. Mean and (maximum) number of NR iterations or 

final stable load step for unstable analyses ℎ (m) 1.0 0.5 0.25 

22 MPs  5.50(7)  45 6.11(20) 

32 MPs  23  56  57 

42 MPs  5.48(6) 5.49(8)  5.83(8) 

22 GSMPs  5.50(7)  5.55(7)  5.94(8) 

32 GSMPs  5.48(6)  5.49(7)  5.85(8) 

42 GSMPs  5.53(7)  5.48(7)  5.83(7) 

 

Only 5 of the 9 standard GIMPM analyses were able 

to apply the full gravitational load and there is no obvi-

ous pattern of the grid/MP properties of the stable anal-

yses.  The other analyses failed to converge at a partic-

ular load step due to poor conditioning of the linear 

system of equations resulting in non-physical excessive 

displacements of the background grid and numerical ex-

plosion of the MPs. Note that one of the ℎ = 0.25m, 42MPs/element load steps failed to satisfy the govern-

ing equations to 10−6 within the 20 load steps, however 

the analysis remained stable and all subsequent load 

steps converged. All the ghost-stabilised analyses were 

able to apply the full gravitational load, irrespective of 

the number of MPs and the size of the background grid.  

 

Table 2. 𝛾𝑘 influence on the mean and (maximum) number 

of NR iterations for ℎ = 1m and 32 MPs/element  𝛾𝑘/𝐸 0 10−8 10−6 10−4 10−2 

  5.85(20) 5.50(7) 5.50(7) 5.48(6) 

    

Table 2 the mean and maximum (in brackets) NR it-

erations for the ghost-stabilised GIMPM with ℎ = 1m 

and 32 MPs/element for different values of stabilisation 

parameter. The number of iterations is relative 

insensititve to the stabilisation parameter magnitude for 𝛾𝑘 ≥ 10−6𝐸.  Once the parameter reduces below this 

the analysis struggles to converge, reaching the 

maximum number of NR iterations for load step 24 

when 𝛾𝑘 = 10−8𝐸 as this value is insufficient to 

stabilise the elements at the edge of the physical 
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domain.  The subsequent steps converge but with 

quesitonable validity as subsequent steps are based on 

the non-converged configuration.   

Figures 6 and 7 show the deformed MPs at the end of 

the analysis shaded according to 𝜎𝑥𝑦 for the standard 

GIMPM (Figure 6) and ghost-stabilised GIMPM (Fig-

ure 7) with ℎ = 0.25m and 42MPs/element.  The 

weaker layer is clearly visible in the shear stress distri-

bution. The difference in the shear stress distribution be-

tween the standard and ghost-stabilised is most visible 

between along the slope (B to C, Figure 5), where the 

ghost stabilisation removes the stress oscillations seen 

in the standard GIMPM.  

 

 

Figure 6. Deformed slope shaded by 𝜎𝑥𝑦 for the standard 

GIMPM 

 

 

Figure 7. Deformed slope shaded by 𝜎𝑥𝑦 for the ghost-stabi-

lised GIMPM 

 

5 CONCLUSIONS 

This paper has presented a ghost-stabilised MPM ap-

plied to geotechnical analysis.  The key advantage of the 

method is it introduces a bound on the conditioning of 

the linear system of equations solved as part of an im-

plicit MPM solution algorithm.  This significantly im-

proves the stability of the method and removes much of 

the uncertainty regarding if a particular analysis will run 

or not based on the interactions between the MPs and 

the background grid.  Without confidence in the stabil-

ity of the method it is unlikely that the MPM will be-

come a useful engineering tool for geotechnical analy-

sis.   

Although this paper has focused on implicit quasi-

static analysis, the approach is equally applicable to ex-

plicit dynamic MPMs.  In this case the mass matrix is 

stabilised in a similar way to the stiffness stabilisation 

detailed in this paper, see Coombs (2022) for details.  
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