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ABSTRACT: This paper presents a suite of deep learning/Artificial Neural Network (ANN)-based response spectrum (RS) site 

amplification models for Central and Eastern North America trained through large-scale one-dimensional (1D) site response 

simulations. ANNs significantly reduce the standard deviation of the residuals of simulated amplification estimations at CENA 

relative to conventional functions regressed using the identical amplification database. These observations indicate the inherent 

limitations of traditional relationships fitting a priori functional forms to simulated data as opposed to ANNs learning the actual 

behaviour of the dataset. To lend credence that ANNs might be an alternative to conventional models, the ANNs’ performance 
in capturing site-specific responses is evaluated in this study. This evaluation shows that ANNs can account for the features of 

site-specific amplification (e.g., the amplitude and location of peak amplification) and can better reproduce the period elongation 

behaviour observed in nonlinear analyses as compared to their traditional counterparts.  
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1 INTRODUCTION 

The shallow soil layers are proven to alter the charac-

teristics (i.e., amplitude, frequency content and dura-

tion) of the strong ground motion data (e.g., Seed et al., 

1988;), and therefore site factors (e.g., BSSC, 2015) or 

site amplification models (e.g., Seyhan and Stewart, 

2014) are incorporated into the seismic hazard calcula-

tions to account for the site effects. Site amplification 

models are developed to estimate the ground motion in-

tensity measure (GMIM) at ground surface through the 

modification of GMIMs computed using ground motion 

models relative to reference site conditions (commonly 

taken as shear wave velocity (VS) of 760 m/s and 3000 

m/s for active (Frankel et al., 1996) and stable (Hashash 

et al., 2014) continental regions, respectively). The am-

plification functions based on the observed ground mo-

tions are scarce for Central Eastern North America 

(CENA) that is a stable continental region as compared 

to seismically active Western North America (WNA). 

The Next Generation Attenuation - East Geotechnical 

Working Group (NGA East - GWG) proposed empirical 

(Parker et al., 2019) and simulated (Harmon et al., 

2019a, b, denoted as HEA19) response spectrum (RS) 

site amplification models, which were implemented 

(Stewart et al., 2020; Hashash et al., 2020) in the 2020 

United States Geological Survey (USGS) national seis-

mic hazard maps.  

Considering the limitations of amplification database 

produced through large-scale one-dimensional (1D) site 

response analyses and simulation-based amplification 

relationships in HEA19, Ilhan (2020), denoted as I20, 

suggested new set of amplification dataset with broader 

coverage of site conditions and improved versions of 

amplification functions relative to HEA19. Whilst these 

amplification functions have significantly contributed 

to the computation of site response at CENA, the under-

estimation and overestimation of simulated amplifica-

tion at different site conditions by HEA19 and I20 mod-

els are observed from the largely scattered models’ 
residuals that are calculated as the natural logarithm of 

the ratio of simulated amplification to the estimations of 

models, albeit the use of complex functional forms in 

HEA19 and I20. This condition is thought to result from 

the inherent deficiencies of conventional amplification 

functions, which fit a priori functional forms to amplifi-

cation dataset through conventional regression tech-

niques (e.g. linear or nonlinear regression). Thus, Ilhan 

et al. (2019) utilized deep learning/Artificial Neural 

Network (ANN) methodology to produce ANN-based 

models directly learning from dataset without requiring 

any complex mathematical forms and highlights the 

noteworthy decrease in the root-mean-square (RMS) er-

ror estimations along with the better representation of 

the amplification at shallow sites (i.e., the sites with 

depth-to-bedrock ≤ 30 m) relative to conventional rela-
tionships of HEA19. 

This study further develops the work of Ilhan et al. 

(2019) to (i) update the structure of ANN-based models 

to increase the number of outputs from the RS amplifi-

cation estimations at 22 oscillator periods (TOSC) to 

those at 115 TOSC values, and (ii) train the ANNs through 

enhanced and enlarged database of I20 as compared to 
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HEA19 used in Ilhan et al. (2019). As a result, similar 

level of reductions in RMS-error attained in Ilhan et al. 

(2019) are observed, and the improvements by ANNs in 

capturing site amplification over their conventional 

counterparts are preserved. Moreover, the ANN and tra-

ditional models are further evaluated through their ap-

plication to a site in New York City to illustrate that the 

latter can perform slightly better in the representation of 

the features of peak amplification (e.g., its amplitude 

and location) and can more accurately capture the pe-

riod elongation behaviour that stems from the softening 

of the site profile during nonlinear analyses with high 

intensity motions relative to conventional relationships.  

2 PARAMETRIC STUDY OF 1D SITE 

RESPONSE ANALYSES 

A parametric study of 1D site response simulations was 

conducted in I20 to capture the variability and uncer-

tainty of site conditions at CENA. The parametric study 

tree was originally proposed by HEA19 to perform over 

1.7 million linear (L), equivalent-linear (EL), and non-

linear (NL) simulations and was updated in I20 to pro-

duce a database with larger number of site profiles as 

shown in Figure 1. I20 parametric study design can be 

described in detail as follows: 

1. A total of 247 recorded and synthetic rock outcrop 

motions from HEA19 is distributed over all site 

profiles. 

2. Ten geology-dependent base-case VS profiles are 

used as input to VS randomization (Toro, 1995). 

Nine geology-based soil index properties are 

associated with these base-case profiles to calculate 

modulus reduction and damping (MRD) curves 

(Darendeli, 2001). 

3. Thirty randomized VS profiles are generated for 

each base-case VS profile. 

4. Three realizations of MRD curves from Darendeli 

(2001) are produced for mean, systematically high 

(+ε), and low (-ε) conditions. 

5. Each randomized profile is truncated at 18 

randomly selected depth-to-rock (ZSoil) conditions 

from 5.0 m to 1000.0 m to account for the depth-

dependent amplification. 

6. Seven weathered rock zone (WRZ) models are 

appended at the bottom of each randomized profile 

to represent the transition from soil horizon to 

bedrock condition. 

This approach results in 148,050 unique randomized 

(or generic) VS profiles, leading to 3,656,835 1D site re-

sponse analyses, each of 1,218,945 L, EL and NL sim-

ulations. All the analyses were carried out using 

DEEPSOIL V7.0 (Hashash et al., 2017) software 

through high-performance computing (HPC) resources 

in Stampede2 (Stanzione et al., 2017) of Texas Ad-

vanced Computing Center (TACC).  

 
Figure 1. VS30 histogram of I20 and HEA19 profiles 

 

3 ANN-BASED SITE AMPLIFICATION 

MODELS FOR CENA 

The total amplification (FS) without multi-dimensional 

and basin effects is defined as the natural logarithm of 

the ratio of the GMIM at the ground surface to the 

GMIM at the reference condition (VS = 3000 m/s). It is 

usually divided into linear (Flin) and nonlinear (Fnl) 

components as given in the Equation (1). 

 𝐹𝑆 = 𝐹𝑙𝑖𝑛 + 𝐹𝑛𝑙 (1) 
 

Flin occurs under relatively weak ground motions and 

depends on only site properties. Fnl term regards the 

degradation of shear modulus and corresponding damp-

ing increase under high-intensity motions and is condi-

tioned on both site and motion properties. The linear and 

total amplification to train ANNs is obtained from lin-

ear-elastic frequency-domain and nonlinear simula-

tions, respectively, from I20. 

3.1 Deep learning concept 

ANN was devised in McCulloch and Pitts (1943) 

through mimicking the anatomy of a neuron cell of a 

human, which is composed of (a) dendrites receiving 

the input signals, (b) cell body and axon that transmit 

the signals to (c) terminal axon which outputs signal. 

Similarly, a neuron in ANN is designed to accept mul-

tiple inputs that are processed through a node which is 

assigned with a function and outputs a value. Then, all 

the individual neurons are interconnected to create the 

whole network of ANN. For each neuron, a net and an 

activation function are defined such that the former 

combines the inputs to the neuron: 

 𝑌𝑗 = ∑ 𝑤𝑖𝑗 ∙ 𝑋𝑖 + 𝑏𝑗𝑀𝑗=1  (2) 

 

where wji is the weight connection of ith input to the jth 

hidden unit, Xi are inputs, bj is the bias of the jth unit, Yj 

is the output of the Equation (2), and M is the number 

of data. Activation function introduces nonlinearity in 

the neural network calculations to solve non-trivial 

problems that might not easily be dealt with conven-

tional regression models and associates the Y parameter 

with the output of the neuron as a = f(Y). The commonly 
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used activation functions are sigmoid, tangent hyper-

bolic, linear, Rectified Linear Unit (ReLU). These two 

functions are executed through ANN with intercon-

nected neurons to perform distributed computing. 

 
Table 1. List of ANN and conventional RS and models 

ANNs Conven-

tional 

Model Type Model Parame-

ters 

AL1 L1 Linear VS30 

AL5 L5 Linear VS30, Tnat 

AT1 L1+N2 Total VS30, PGAr 

AT5 L5+N2 Total VS30, Tnat, PGAr 

 

The ANN methodology has begun to be utilized as an 

alternative to traditional functions in producing ground 

motion models (GMMs) and amplification functions. 

Derras et al. (2012) developed an ANN structure includ-

ing one hidden layer having 20 nodes along with input 

and output layers to predict peak ground acceleration 

(PGA) values for KiK-net sites. The database for train-

ing the ANN consists of 3891 events from 398 stations 

with 3.5 ≤ moment magnitude (Mw) ≤ 7.5 and R ≤ 343 
km. The independent variables were selected as Mw, the 

focal depth, R, site resonance frequency, and VS30 (the 

time-averaged VS in the upper 30 m). The tangent hy-

perbolic function was preferred as the activation func-

tion. ANN-based PGA model was shown to produce 

lower standard deviation value relative to traditional 

GMM. Khosravikia et al. (2019) focused on the strong 

ground motion data from the seismic events occurred in 

the states of Texas, Oklahoma, and Kansas to suggest 

ANN-based GMM for the prediction of PGA, PGV 

(peak ground velocity), and 5% damped spectral accel-

erations (SA) at 20 periods. Large correlation coeffi-

cients (R2 > 0.8) between the target and predicted values 

were obtained. 

ANN technique has been implemented to capture the 

simulated and empirical site amplification. Ilhan et al. 

(2019) trained ANNs using 90% of HEA19 RS and FAS 

simulated amplification dataset and demonstrated that 

the reduction in the root-mean-square (RMS) error up 

to 30% was obtained by ANNs as compared to their 

conventional counterparts using identical input parame-

ters. Analogously, Roten and Olsen (2021) created con-

volutional neural network (CNN) using 600 KiK net 

sites to model the surface-to-borehole Fourier amplifi-

cation factors (AFs). The velocity profiles of 90% of the 

sites were inputted to CNN to train the models, and 10% 

of the sites was determined as testing dataset. The as-

sessment of CNN’s performance in representing the ob-
served AFs was conducted through comparison with 

theoretical SH 1D amplification, resulting in the de-

crease in prediction error by the former. 

Contemplating the definition in the Equation (1) and 

the improvements by ANNs over traditional relation-

ships, the design of ANNs in this work can be detailed 

as follows: 

• The inputs are (i) only VS30 and, VS30 and Tnat (site 

natural period), and (ii) VS30, Tnat and PGAr for 

linear and total RS models, respectively (Table 1). 

• The hidden layer includes two layers with 200 

nodes. 

• The output is RS ln(amplification) at 125 TOSC from 

0.001 s to 10.0 s. 

• The activation function is selected as ReLU and 

linear for hidden and output layers, respectively. 

The structure of ANN-based model is illustrated in 

Figure 2. Ninety percent of the data, which correspond 

to 1,097,050 linear and 999,460 nonlinear analyses, are 

used to train the models. The remaining 10% of the data 

is utilized as testing dataset. The loss function for error 

computation is selected as sum of the square of the dif-

ferences between simulated data and the estimations. 

The value of learning rate and the number of epochs is 

taken as 0.0001 and 5000, respectively.  

 

 
Figure 2. Schematic structure for all ANN-based RS models 

 

The optimization algorithm is determined as Adam 

optimizer (Kingma and Ba, 2014), which is a stochastic 

gradient descent method and is proper for training a 

large amount of data. Tensorflow (Abadi et al., 2016) is 

used in the Python environment to train the ANNs. 

3.2 ANN vs. conventional models 

The evaluation of how well ANN-based linear RS AL1 

and total RS AT1 can predict the simulated amplifica-

tion is performed through comparisons with their con-

ventional linear L1 and total L1+N2 counterparts, re-

spectively, using identical inputs of ANNs as illustrated 

in Table 1. These functions can be written as follows: 

 𝐹𝑙𝑖𝑛 = 𝑓(𝑉𝑆30) | 𝑓(𝑇𝑛𝑎𝑡) (3) 
 𝐹𝑆 = 𝑓(𝑉𝑆30) | 𝑓(𝑇𝑛𝑎𝑡) + 𝑓(𝑁𝐿) (4) 
 

where f(VS30) and f(Tnat) terms are identical to those in 

I20. f(NL) represents the nonlinear amplification 

component analogous to N2 in I20 and HEA19. To 

emphasize the complexity of these functional forms, the 

fact that L5 and L5+N2 models possess 10 and 14 

different coefficients, respectively, should be declared. 

Input L. Hidden L. Output L. 

…
 

Site 

Parameters 

Motion 

Parameters 

F
S
 at 0.01s 

F
S
 at 0.1s 

F
S
 at 10.0s 

…
 

…
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Figure 3. Comparison of estimations and residuals from linear RS (a, c) AL1 and L1 models, and total RS (b, d) AT1 and L1+N2 

models for TOSC of 0.1 s. The simulated linear RS ln(amplification) from linear analyses and total RS ln(amplification) from 

nonlinear analyses along with their mean ±1σ are also presented (Testing dataset). 

 

Figure 3 exhibits the linear RS AL1 and L1, and total 

RS AT1 and L1+N2 model estimations along with the 

testing simulated amplification dataset for TOSC of 0.1s. 

The residuals of ANN-based and conventional models 

in Figure 3 are calculated as the natural logarithm of the 

ratio of simulated amplification to models’ estimations. 

The averaged residuals of L1 (Figure 3(c) and Figure 

3(d)) as a function of VS30 exhibit observable deviations 

from zero line for VS30 ≤ 150 m/s, and 700 m/s ≤ VS30 ≤ 
1100 m/s. Similar offset of L1+N2’ residuals from zero 
is seen for 700 m/s ≤ VS30 ≤ 1100 m/s. This observation 

highlights that L1 and L1+N2 models cannot capture 

the complicated nature of the large-scale simulated am-

plification dataset, albeit possessing complex mathe-

matical forms. However, AL1 can more accurately cap-

ture the linear RS data (e.g. the peak at VS30 ~ 900 m/s 

in Figure 3(a)), and the averaged residuals of AL1 (Fig-

ure 3(c)) and AT1 (Figure 3(d)) are fully aligned with 

zero. Additionally, the scatter of ANNs’ residuals is ob-
servably less than L1 and L1+N2, indicating that the 

data-driven approach (i.e., deep learning method) seem 

to be better alternative as compared to conventional 

techniques in representing large-size databases. 

3.3 Models’ residual analysis 

The alternative performance assessment of conven-

tional models and ANNs is carried out through the 

standard deviation (σ) of the models’ residuals, which 

is obtained as given in the Equation (5). 

 

𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 = 𝑙𝑛 (𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝐴𝑚𝑝𝑙𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑀𝑜𝑑𝑒𝑙 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛𝑠 ) (5) 

 

Figure 4 presents the σ of the residuals of 

conventional linear L1, L5 and total L5+N2, and ANN-

based linear AL1, AL5 and total AT5 RS amplification 

models computed using training dataset. Even though 

the reduction in the σ of the residuals of AL1 is limited 

as compared to L1 (e.g., only up to 6.9%), such decrease 

becomes more explicit in σ of the residuals of AL5 and 
AT5 that are less than those of traditional L5 and L5+N2 

up to 21.5% and 25.1%. This outcome highlights the 

merit in employing for deep learning-based techniques 

in modeling site amplification as a substitute of 

traditional regression methodologies.  

 

 
Figure 4. Comparison of standard deviation (σ) of L1, L5, 
L5+N2, AL1, AL5, and AT5 models’ residuals.
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Figure 5. (a) VS profile of NYC site, (b) comparison of linear RS L5 and AL5 estimations and linear RS amplification data from 

3 motions along with its mean, and comparison of estimations from total RS L5+N2 and AT5 and amplification from NL analysis 

for motions with PGAr of (c) 0.1 g, (d) 0.3 g, and (e) 0.51 g. 

 

4 SITE-SPECIFIC PERFORMANCE OF 

AMPLIFICATION MODELS 

This section is allocated for the performance evaluation 

of conventional functions and ANNs in modeling the 

simulated site-specific response of a profile in New 

York City (NYC), which are quantified by a suite of 1D 

NL and L analyses. For these 1D simulations: 

• Three rock outcrop motions with PGA of 0.1g, 0.3g 

and 0.51g are selected from HEA19. 

• The VS profile is presented in Figure 5(a), and VS of 

bedrock is taken as 3000 m/s (Hashash et al., 2014). 

• The stratigraphy of NYC site (site 15 in Nikolaou et 

al., 2001) is composed of (i) a highly-plastic organic 

clay material (OH) from ground surface to 10.0 m, 

(ii) a poorly graded silty sand soil (SP-SM) with 

thickness of 13.7 m underlying the OH horizon. 

• The reference MRD curves are produced using 

Darendeli (2001), and General Quadratic and 

Hyperbolic model (Groholski et al., 2016) is fit to 

reference curves to consider the shear strength as a 

limiting stress at large strains (10%). 

Figure 5(b) exhibits the site-specific linear RS 

amplification from three motions along their mean, and 

AL5 and L5 estimations. The strong impedance between 

the soil material and the underlying hard-rock condition 

leads to the distant peak amplification around TOSC ~ 

0.45 s (Figure 5(b)). The level of the peak is acceptably 

captured by both median L5 and AL5, but the latter can 

fairly represent the location of the 2nd mode 

amplification around TOSC ~ 0.18 s, which cannot be 

produced by L5. 

The benefit of using ANN is more explicit in 

comparison between AT5 and L5+N2 for total 

amplification from NL simulations (Figure 5(c)-(e)). 

The location of 1st mode peak seems to occur at TOSC ≈ 

0.5 s for analyses with motion of 0.1 g to shift to longer 

periods for analyses with motions of increasing PGA 

values due to period elongation in nonlinear (NL) anal-

yses. This behaviour cannot be captured by L5+N2 since 

the peak location is provided as a constant input value 

of TOSC/Tnat = 0.81 to L5+N2, but AT5 seems to better 

account for this shift due to the ability of deep learning 

methodology to adjust itself compatible with the fea-

tures of data. 

5 CONCLUSION 

This paper presents deep learning/ANN-based linear RS 

and total RS site amplification models trained using 

simulated amplification obtained from large-scale 1D 

site response simulations (over 3.6 million L+EL+NL 

analyses) of site conditions at CENA. ANNs are shown 

to better represent the amplification dataset relative to 

amplification functions regressed using conventional 

techniques such that ANNs reduce the standard 

deviation of the residuals of linear and total 

amplification estimations up to 21.5% and 25.1% 

relative to their conventional counterparts. The ANNs 

can account for the features of site-specific linear RS 

amplification (e.g., the location and amplitude of 1st 

mode peak) as similar to conventional functions and can 

further represent the 2nd-order peak observed in the 

simulated amplification. Furthermore, the shift in the 

location of peak total amplification that stems from the 

period elongation behavior due to softening of the 

profile during NL analyses and cannot be captured by 

conventional models can be fairly modeled by ANNs. 

This study highlights that data-driven approaches 

might be a better alternative for modeling large-scale 

data as compared to traditional functions forcing 

predetermined mathematical forms to fit the dataset. 

However, ANNs cannot be used to predict the 
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amplification at the site and motion combinations 

outside of the training space. Therefore, conventional 

models might be adopted for such situations. 
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