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ABSTRACT: In geotechnical engineering, the implementation of optimization tools into the designing process has been ad-

dressed in literature in the past. Since design optimization is undoubtedly one of the most time-consuming parts of civil engi-

neer’s responsibilities, an understanding of how an optimization tool works is crucial for obtaining feasible results. This paper 

deals with the application of a nondominated sorting genetic algorithm (NSGA-II) for optimizing a multi-objective geotechnical 

problem by means of using the strength reduction finite element analysis for proving the stability of a dike. The inclinations of 

the waterside and landside slopes of a dike are parametrised and serve as variables in the algorithm. The objectives of the problem 

are minimum material demand and minimum structure exploitation. The study explains the purpose of parameters as well as 

shows how selection of input parameters, that control the algorithm, influence the efficiency of the algorithm in finding a set of 

Pareto-optimal solutions. 
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1 INTRODUCTION 

Design optimization is considered to be one of the most 

time-consuming parts of civil engineering. Once a 

feasible design of a construction is found, it undergoes 

an optimization process to reduce costs, increase 

sustainability, or improve construction workflow. 

During this process, different parameters of a structure 

are varied with the aim of identifying the most efficient 

solution in relation to previously set objectives. The 

optimization process can be conducted in various 

manners, but it has been proven that evolutionary 

algorithms have a significant advantage in terms of 

efficiency. 

Over the last decades, the application of various 

optimization tools in civil and geotechnical engineering 

has been improving, as stated by Dede et al. (2019). 

Different types of Evolutionary Algorithms (EA) and 

ways of their implementation have been proposed for 

solving geotechnical problems, e.g. by Andrab et al. 

(2017), Benayoun et al. (2020), Cui and Sheng (2006), 

Jesswein and Liu (2022), Kinzler (2011), and Meier et 

al. (2008). 

Optimization algorithms like EA or its subgroup of 

Genetic Algorithms (GA) can be a substantial 

contribution to the decision-making process, as stated 

by Okonwo et al. (2022). It can be said that a decision 

in relation to the final design of a structure is an 

inevitable responsibility of most engineers. 

This study focuses on the implementation of an elitist 

nondominated sorting genetic algorithm (NSGA-II) for 

solving a multi-objective optimization problem by 

means of finite element strength reduction techniques 

(SRFEA). Corresponding studies, which did not 

implement numerical methods for verification of 

structure stability, can be found e.g. in Das et al. (2016). 

With the aim of investigating the influence of single 

parameters on the algorithm outcomes, a set of input 

parameters is modified to conduct various optimization 

runs. The obtained results are compared to one another 

with the intent of identifying the relevance of parameter 

selection. 

2 THEORY 

2.1 Multi-objective problems 

2.1.1 General information 

Multi-objective problems do not have a single best 

solution, but rather a set of optimal solutions known as 

Pareto-optimal or non-dominated solutions. These 

solutions form a Pareto front, which is a visual 

representation of the trade-offs between the defined 

objectives for a multi-objective optimization problem. 

A solution is considered to dominate another solution if 

it is superior in one or more objectives, but not worse in 

any other objective. In other words, a feasible solution 

is considered Pareto optimal if any other set of input 

variables would simultaneously reduce one objective 
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while increasing at least one other objective function, as 

stated by Nayak (2020). 

2.1.2 Nondominated sorting genetic algorithm II 

(NSGA-II) 

The Nondominated Sorting Genetic Algorithm (NSGA-

II) is a Multi-Objective Evolutionary Algorithm 

(MOEA) that is based on crowding and can be used to 

solve multi-objective problems. The algorithm offers 

several advantages, such as an elitist-preserving 

approach and a fast non-dominated sorting procedure. It 

was first proposed by Deb et al. (2002). 

The NSGA-II combines a random parent population 𝑃t with an offspring population 𝑄t, to create a combined 

population 𝑅t of size 2𝑁. The combined population is 

then sorted using a fast nondominated sorting 

procedure, which assigns a nondomination level (or 

rank) to each member. In the next optimization run, 

where mutation takes place, solutions from the best set 

(e.g., 𝐹1, 𝐹2) are chosen for the new population 𝑃t+1 in 

order to preserve the elitism of the next generation. The 

remaining non-dominated fronts are then chosen based 

on their rank until no more members can be 

accommodated in the new population. To select exactly 𝑁 population members, the last front is sorted in 

descending order and the best solutions are transferred 

to the new population (Deb et al., 2002). The procedure 

which drives the NSGA-II is presented in Figure 1. 

 
Figure 1. NSGA-II procedure 

2.2 Strength reduction finite element analysis 

(SRFEA) 

During this study a finite element code Plaxis (Plaxis, 

2020) is used for all displacement-based analyses, as it 

has been widely applied for investigations of slope sta-

bility (e.g. Obernhollenzer et al., 2018; Tschuchnigg et 

al., 2015a, 2015b). 

The displacement finite element method can be used 

to obtain the factor of safety (𝐹𝑜𝑆) by means of SRFEA, 

which involves decreasing the friction angle 𝜑′ and the 

cohesion 𝑐′ simultaneously until the investigated 

structure collapses. Equation (1) presents the 

formulation of the 𝐹𝑜𝑆, where ‘mobilized’ refers to 
mobilized strength parameters for a failure stage. It is 

important to note that all calculations in this study were 

conducted for characteristic values, therefore no safety 

factors are applied for SRFEA. 

 𝐹𝑜𝑆 = tan𝝋′tan𝝋𝒎𝒐𝒃𝒊𝒍𝒊𝒔𝒆𝒅′ = 𝑐′𝑐𝑚𝑜𝑏𝑖𝑙𝑖𝑠𝑒𝑑′  (1) 

 

2.3 Scripting interface 

The Plaxis finite element code has a scripting interface 

that allows a user to automate the calculation process by 

using a code written with the Python programming 

language (Van Rossum & Drake, 2009). Python allows 

for the use of predefined modules that provide 

definitions and statements that can be applied in a 

programmed code. In this paper, we implement the 

multi-objective optimization framework, pymoo (Blank 

& Deb, 2020), in order to use the NSGA-II optimization 

algorithm and find a Pareto front for a given 

geotechnical multi-objective problem. By using Python 

scripting, it is possible to link the NSGA-II optimization 

algorithm with a finite element analysis conducted in 

the commercial Plaxis software. Therefore, the results 

obtained from the numerical simulation can be used to 

define the problem within the optimization algorithm. 

3 COMPUTATIONAL MODEL 

3.1 Finite element model 

The SRFEA employs a plain strain model that is 

composed of 15-noded triangular elements. In order to 

achieve a reliable Factor of Safety (𝐹𝑜𝑆), a relative 

element size of 0.015 was selected for the model 

discretization, which corresponds to a very fine mesh. 

The total number of finite elements varies depending on 

the different model configurations, as the geometry of 

the domain also changes across different simulations. 

3.2 Material properties 

In this study, a linear elastic perfectly-plastic material 

model with a Mohr-Coulomb failure criterion was 

utilized for all soil polygons within the modeled 

domain. Four soil layers were defined within the model, 

based on a recent geotechnical survey for a dike 

reconstruction project. The soil properties are listed in 

Table 1, and the model geometry including the soil 

layers is shown in Figure 2. The soil parameters were 

not altered in any of the simulations presented in this 

paper.  
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3.3 Geometrical boundaries 

The size of the modeled domain was determined 

based on the guidelines for earth structure models 

included in Mestat et al. (2004). Figure 2 illustrates the 

relationships between dike width 𝐵 and height of the 

dike crest 𝐻 and the total height and width of the model 

domain. 

The dike crest height 𝐻 of 6.5 m was selected based 

on typical dike dimensions along the river Elbe in 

Germany. The dike crest width 𝐵𝑐 of 3.0 m and 

thickness of dike clay cover were chosen in accordance 

with German standards, such as Freie und Hansestadt 

Hamburg (2003). The slope horizontal runs (𝑥1 and 𝑥2) 

are variables defining the slope inclination, as described 

further in section 4.1.2. 

3.4 Calculation stages 

The model setup consists of four consecutive calcula-

tion phases defined in Plaxis. The first phase begins 

with gravity loading, followed by a plastic nil-step to 

ensure equilibrium in the model. The third phase is a 

plastic calculation with a defined high-water level, fol-

lowed by a SRFEA, where a long-term shear failure is 

investigated. The plastic calculation does not take the 

change of pore pressure with time into account. To cal-

culate the initial stresses in the soil body, a water level 

of 0.5 m above the terrain level was set on the left side 

of the dike body. The high-water level was defined as 

3.5 m above the terrain level. The water level on the 

right side of the dike body was kept at the same level as 

the terrain. 

 

Table 1. Soil properties for dike 

 Unit Clay 1 Clay 2 Sand 1 Sand 2 𝜸𝒖𝐧𝐬𝐚𝐭 (kN/m³) 16.0 15.0 18.0 19.0 𝜸𝐬𝐚𝐭 (kN/m³) 16.0 15.0 20.0 21.0 𝑬′ (MN/m²) 2.5 2.0 20.0 40.0 𝝂′ (-) 0.3 0.3 0.2 0.2 𝒄′ (kN/m²) 10.0 10.0 0.1 0.1 𝝋′ (°) 17.5 17.5 30.0 35.0 𝝍′ (°) 0.0 0.0 5.0 5.0 𝒌𝒙/𝒚 (m/s) 1 ∙ 10−9 1 ∙ 10−10 1 ∙ 10−4 1 ∙ 10−4 

 

Figure 2. Model geometry and soil layers used in FEM-simulations 

 

4 OPTIMIZATION PROBLEM 

4.1 Definition of a problem 

4.1.1 Objective functions 

For this study two, objective functions 𝑓1 and 𝑓2 were 

defined. The first objective function 𝑓1 represents the 

required material for dike construction in each 

simulation run, based on the computed areas of dike 

sand core and dike clay cover, as illustrated in Figure 2. 

The areas of polygons are calculated by incorporating 

the shoelace algorithm into the Python code, as outlined 

in Equation (2), where 𝑥𝑖 and 𝑦𝑖 are coordinates of 

vertices. The second objective function 𝑓2 relates to the 

exploitation of the structure and is defined in Equation 

(3) as a reciprocal of 𝐹𝑜𝑆. 

 𝑓1 = 12 |∑ 𝑥𝑖𝑦𝑖+1 − 𝑥𝑖+1𝑦𝑖𝑛𝑖=1 | (2) 𝑓2 = 1𝐹𝑜𝑆 (3) 
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4.1.2 Variables 

As previously mentionied in section 3.3, the slope 

horizontal runs on both sides of the dike body (𝑥1 and 𝑥2) are set as variables in the optimization problem. For 

both variables a range between 0.5 and 5.0 is specified, 

i.e. the minimum possible value of horizontal run is 0.5 

and maximum possible values of variable is 5.0. The 

lower boundaries 𝑥𝑙 and upper boundaries 𝑥𝑢 for 

variables are given by Equations (4-5). 

 𝑥𝑙 = {0.5; 0.5} = {𝑥1,𝑚𝑖𝑛; 𝑥2,𝑚𝑖𝑛} (4) 𝑥𝑢 = {5.0; 5.0} = {𝑥1,𝑚𝑎𝑥; 𝑥2,𝑚𝑎𝑥} (5) 

4.1.3 Constraints 

Within the pymoo optimization framework, either 

inequality constraint or equality contraint may be 

defined. For this study one inequality constraint 𝑔1 was 

specified that includes the calculated 𝐹𝑜𝑆 from the 

SRFEA conducted in Plaxis. If the FEM-simulation 

gives a 𝐹𝑜𝑆 greater than 1.0, the solution is accepted. 

4.2 Definition of algorithm parameters 

4.2.1 Seed number 

The NSGA-II algorithm generates a set of random 

numbers for the initial parent and offspring populations, 

which are then mutated in subsequent generations. The 

seed number is used to select the starting point for the 

random number generator to ensure the reproducibility 

of the results obtained by the algorithm. The effect of 

the seed number on the outcomes is discussed further in 

this paper. 

4.2.2 Initial Population size 

The size of the initial population, which refers to the 

number of members, needs to be selected. The initial 

population is generated before the first reproduction 

takes place. It can be assumed that the selected size of 

the first population affects the quality of the results. 

4.2.3 Rounding of numbers 

The cycle that drives the genetic operations of NSGA-II 

includes procedures such as selection, crossover, and 

mutation, during which new random variables are 

selected for the next generation. With regards to 

geotechnical structures, which are designed and 

constructed with maximum accuracy to centimeters, 

rounding to two decimal places is sufficient. Therefore, 

the default parameters controlling the rounding of 

numbers to more than two decimal places may be seen 

as unnecessary considering the computational effort. 

For this study, the original code managing the 

selection of population members was altered. The initial 

population and the subsequent members, selected during 

the crossover and mutation processes, are rounded to a 

predefined number of decimal places in order to speed 

up the selection of the optimal solutions with respect to 

expected accuracy. Additionally, any duplicated values 

that may occur in the population are eliminated to 

diversify the obtained solutions and maintain the 

efficiency of the optimization algorithm. 

4.3 Termination criteria 

In this study, a specific termination criterion is discussed 

with the aim of examining its effects on the outcomes. 

4.3.1 Maximal number of generations 

The maximum number of generations is a user-defined 

parameter that limits the number of iterations of the 

algorithm. Once the algorithm has reached the specified 

number of generations, the optimization process is 

halted, regardless of whether or not an optimal or near-

optimal solution has been found. It simply prevents the 

algorithm from running indefinitely. 

5 STUDIES 

An initial population size of 10, maximum generation 

number of 10, rounding of numbers to two decimal 

places, and a seed number of 1993 are assigned as 

parameters for a reference run in the following study. If 

a parameter is changed for a simulation, it will be noted. 

The results obtained from parameter variations are 

always compared to the reference run. 

5.1 Varation of rounding 

Two parameter sets regarding number rounding were 

investigated and compared to the reference run. By 

using the code described in section 4.2.3, a simulation 

with rounding to five decimal places for initial and 

subsequent generations, as well as a simulation where 

only the intial population members were rounded to two 

decimal places, were conducted. 

The results shown in Figure 3 indicate that the three 

conducted optimization runs may differ significantly 

from one another. A partial agreement of solutions 

obtained from all simulations is observed. It can be 

stated that in some areas, the rounding to five decimal 

places and rounding to two decimal places only for the 

initial population may require more generations to reach 

a similar level of accuracy as the reference run. 

However, by adjusting from five to two decimal places, 

the number of possible population members is reduced 

by a factor of 1000, yet the accepted tolerance is still 

maintained. 

5.2 Varation of seed number 

Similarly, two sets of parameters with different user-

defined seed numbers, either divided by a factor of 10 

or multiplied by it, are compared. As shown in Figure 4, 
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the respective Pareto fronts are distinguishable from 

each other. 

It should be emphasized that the efficiency of the 

investigated algorithm, in terms of computational time 

and the set of obtained optimal solutions, for a limited 

number of iterations and a relatively small population 

size, strongly depends on user-defined input parameters. 

Therefore, a preliminary parameter study is highly 

recommended. 

 
Figure 3. Pareto-optimal solutions of NSGA-II for minimizing 

material demand and structure exploitation (variation of 

number rounding: 2 decimal places, 5 places, 2 places for in-

itial population) 

 
Figure 4. Variation of seed number: original seed number, 

seed divided by 10, seed multiplied by 10 

5.2.1 Variations of population size and maximal 

number of generations 

In this study, four different optimization setups are 

compared to a reference run. One setup uses an initial 

population size of 1 with 100 possible generations, 

while another uses a simulation with 100 members but 

only 1 possible iteration. Additionally, a case with an 

initial population of 100 and 10 generations is compared 

to one with an initial population of 10 and 100 

generations. 

As shown in Figure 5, the run with only 1 population 

member and 100 iterations yields a more optimal 

solution in comparison to the reference run. 

Additionally, the optimization run with 100 members in 

the initial population yields 13 Pareto solutions. 

Although only 1 iteration was conducted, the results are 

competitive with those of the reference run and the 

distribution of solutions is better than in the reference 

run. 

Figure 6 confirms that increasing the maximum 

number of generations to 10 for a population of 100 

improves both the coverage of the Pareto front and the 

optimality of solutions. Increasing the number of 

generations to 100 for a population of 10 resulted in a 

slight improvement in distribution throughout the Pareto 

front, but did not affect the accuracy of the solutions. 

Overall, it can be concluded that a larger initial 

population size increases the probability of covering a 

wider range of Pareto-optimal solutions with an 

appropriate level of accuracy. 

 
Figure 5. Variation of initial population and generation num-

bers: initial population 10 number of generations 10, pop. 1 

ngen. 100, pop. 100 ngen. 1 

 
Figure 6. Variation of initial population and generation num-

bers: initial population 10 number of generations 10, pop. 

100 ngen. 10, pop. 10 ngen. 100 
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6 CONCLUSIONS 

The study presented in this paper shows that selecting 

the appropriate input parameters for the optimization 

algorithm NSGA-II is crucial for obtaining feasible 

results with an appropriate level of optimality. With 

regard to the accepted tolerance for Pareto solutions, e.g. 

centimeters for geotechnical structures, the number of 

possible population members to pick can greatly impact 

the algorithm's efficiency. The choice of seed number, 

which drives the selection process of the initial 

population, can lead to differences in the final set of 

Pareto solutions, therefore different seed numbers 

should be investigated. 

The results of the study show that a larger initial 

population size ensures a higher quality of the results 

while also offering a better distribution over the defined 

ranges. Considering the aim of optimization algorithms, 

which is to find the Pareto front, it is recommended to 

prioritize a larger population size over a larger number 

of generations. 

The usefulness of optimization algorithms for solving 

multi-objective problems is undeniable. However, as 

highlighted in this paper, the right choice of input 

parameters can greatly improve the efficiency of the 

algorithm. Therefore, users and engineers should 

proceed with caution and use common sense when 

selecting input parameters for a specific case. 
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