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ABSTRACT: Landslides have emerged as a critical disaster type due to the increasing frequency of extreme rainfall events
attributed to climate change. In recent years, research on landslide analysis and slope stability has grown. The most common
research methods in landslide studies fall into two categories: numerical modeling and machine learning models. Both
approaches hold potential for contributing to landslide disaster management, although research combining these methods
remains limited. Therefore, the primary objective of this study is to harness the strengths of both approaches, which involves
the establishment of landslide susceptibility maps and the subsequent development of probability-based numerical model,
providing valuable insights for disaster prevention on high-risk areas. The results from this preliminary phase indicate that
the categorization boundaries in the machine learning-based landslide susceptibility maps are primarily influenced by the
proportion of historical landslide areas. However, given that this factor does not represent the main characteristics of the
target objects, it should be excluded in future research. The forthcoming stages will emphasize the examination of slope and
dip slope area proportions while incorporating additional landslide-related geomorphic and hydrological factors and
enhancing data resolution to improve predictive model accuracy. In the context of probability-based numerical model, the
research highlights the sensitivity of cohesion and the internal friction angle to the probability of slope system failure. Real-
world slope and soil parameter experiments are planned for the next phase to establish a more realistic probability-based
numerical model.

RESUME: Les glissements de terrain ont émergé comme un type de catastrophe critique en raison de I'augmentation de la
fréquence des événements pluvieux extrémes attribués au changement climatique. Ces derniéres années, la recherche sur
l'analyse des glissements de terrain et la stabilité des pentes a augmenté. Les méthodes de recherche les plus courantes dans
les études sur les glissements de terrain se répartissent en deux catégories : la modélisation numérique et les mode¢les
d'apprentissage automatique. Les deux approches ont le potentiel de contribuer a la gestion des catastrophes liées aux
glissements de terrain, bien que la recherche combinant ces méthodes reste limitée. Par conséquent, 1'objectif principal de
cette étude est de tirer parti des forces des deux approches, ce qui implique I'établissement de cartes de susceptibilité aux
glissements de terrain et le développement ultérieur de modéle numérique basés sur la probabilité, fournissant des
informations précieuses pour la prévention des catastrophes dans les zones a haut risque. Les résultats de cette phase
préliminaire indiquent que les limites de catégorisation dans les cartes de susceptibilité aux glissements de terrain basées sur
l'apprentissage automatique sont principalement influencées par la proportion de zones de glissements de terrain historiques.
Cependant, étant donné que ce facteur ne représente pas les principales caractéristiques des objets cibles, il devrait étre exclu
des recherches futures. Les prochaines étapes mettront I'accent sur I'examen des proportions de pentes et de zones de pentes
inclinées tout en incorporant des facteurs géomorphologiques et hydrologiques supplémentaires liés aux glissements de
terrain et en améliorant la résolution des données pour améliorer la précision du modele prédictif. Dans le contexte des
modele numérique basés sur la probabilité, la recherche met en évidence la sensibilité de la cohésion et de l'angle de
frottement interne a la probabilité de défaillance du systéme de pente. Des expériences sur le terrain réel des parametres de
pente et de sol sont prévues pour la prochaine phase afin d'établir un modele numérique basé sur la probabilité plus réaliste.
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I INTRODUCTION types. Moreover, with the increasing frequency of
extreme rainfall events due to climate change,
landslides triggered by heavy precipitation demand
more attention and management (Crozier, 2010). Over

Landslides pose a significant threat to human life and
property, making them one of the most critical disaster
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the years, there has been a multitude of research in
slope stability analysis and landslide disaster
mitigation. The most common research methods fall
into two categories: (1) numerical modeling and (2)
machine learning models. In this study, the term
"numerical models" refers to methods based on a
deterministic approach. These methods rely on
complex mathematical computations that require
computer calculations. Examples include Limit
Equilibrium Methods (LEMs), Finite Element Method
(FEM), and the Material Point Method (MPM).
Numerical models can simulate the movement of
slopes and study the mechanisms of failure, but
typically limited to relatively small areas. On the other
hand, machine learning models use geospatial and
hydrological data to generate risk assessment maps on
a broader scale, employing a data-driven approach.
This method offers the advantage of identifying areas
with potential high risk (Merghadi et al., 2020).

Both machine learning and numerical models have
their merits and can significantly contribute to
landslide disaster management. However, there is
limited research that combines both methods for
analysis. Hence, the ultimate aim of this study is to
leverage the strengths of both approaches. Initially, a
machine learning model will be used to establish
landslide  susceptibility = maps.  Subsequently,
probability-based numerical model using a probability
of failure approach will be constructed for areas with
a potential high risk, offering valuable insights for
disaster prevention.

The research consists of three phases. The first
phase involves creating preliminary machine learning
and probability-based numerical model for simpler
cases. Factors affecting landslide susceptibility will be
analysed, and adjustments made based on their impact.
The future direction for model complexity will also be
discussed.

In the second phase, the most suitable combination
of factors identified in the first phase will be
incorporated into more complex model designs,
considering additional real-world conditions in the
study area. The representative model will be employed
to identify hazard zones and conduct probability-based
numerical model analysis. Finally, the third phase
involves model validation and optimization and an
attempt to generalize this hybrid model for landslide
disaster applications in other regions.

This draft paper primarily focuses on the outcomes
of the first phase and presents specific plans for future
research work based on these results.
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2 METHODS

2.1 Study area

The Jhuoshuei River is Taiwan's longest river,
approximately 187 km in length, and it flows through
the central region of Taiwan, spanning four counties
and cities. Its upper and middle reaches are
characterized by fractured bedrock and heavy rainfall
in mountainous areas, resulting in high sediment
content in the river. The lower reaches are densely
populated and heavily involved in agricultural
activities. Taking into account slope vulnerability and
the considerations for resident safety, this area was
chosen for the first phase of the study.

f
|
I

Figure 1. Study watersheds and their slope units.

2.2 Establishment of Machine Learning
Models

The study area was divided into 53 sub-watersheds
using watershed analysis methods (Figure 1). Three
major extreme rainfall typhoons in recent years,
namely, Typhoons Saola, Soulik, and Meranti, were
selected as the main events for landslide analysis.
Geospatial and hydrological factors were chosen as
parameters for building the machine learning models
and included slope, dip slope area proportion,
historical landslide area proportion, and rainfall from
individual typhoon events.

Using the landslide records corresponding to the
selected typhoon events as known landslide outcomes,
Support Vector Machine (SVM) was employed to
create landslide prediction machine learning models.
The dataset was divided into a training set (3/4 of the
data) and a testing set (the remaining 1/4). Two types
of classification boundaries, linear and non-linear
(RBF), were utilized to compare the classification
performance of the two SVM models.
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2.3 Identification of key factors in machine
learning models

As a classification model, visual representation of
SVM classification boundaries can be created by
pairwise combinations of factors. This allows for a
comparison of the determinative impact of different
factors on landslide classification outcomes. For
instance, if the classification boundary appears to be
vertical, it signifies that the classification results are
entirely dependent on the horizontal-axis factor.
Conversely, if the boundary is horizontal, it implies
that the classification results are solely dependent on
the vertical-axis factor.

By comparing the pairwise combinations, it is
possible to rank and assess the significance of each
factor in determining landslide prediction outcomes
within this model. ranking is instrumental in
determining the level of emphasis to be placed on each
factor.

2.4 Establishment of probability-based
numerical model

This research focuses on landslides with large
displacement, and traditional slope stability analysis
methods like the Limit Equilibrium Method (LEM)
and Finite Element Method (FEM) have limitations in
simulating large displacements and cannot describe
the motion processes adequately (Kaur and Sharma,
2016; Soga et al., 2016). In contrast, the Material Point
Method (MPM) can provide better simulations of the
motion processes and offer in-depth insights into the
physical mechanisms of slope failure (Wyser et al.,
2020).

In this study, Anura3D software was chosen for the
MPM analysis of slope stability. To simplify the
problem in the initial stages of the research, a basic
geometric scenario was selected for analysis
(Anura3D MPM Research Community, 2022a). The

geometric is illustrated in Figure 2.
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Figure 2. Geometric of selected problem (Anura3D MPM
Research Community, 2022a).

To quantitatively assess the slope's safety level, this

study introduces reliability analysis. This involves
using AK-PSO-HHs (Thedy and Liao, 2023) to
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calculate failure probabilities under various conditions
based on the MPM results. Note that the accuracy of
this method has been validated, for details, please refer
to Thedy and Liao, 2023.

In reliability analysis, it is essential to provide a
clear definition of ,,failure”. As the shear stress-based
safety factor cannot fully represent the occurrence of
large landslides, this study chooses to define failure in
terms of ,,displacement™, which is a more direct
indicator of landslide occurrence. In practical
management, displacement or displacement rates are
often used to establish warning thresholds.

2.5 Identification of key factors in probability-
based numerical model

This study analyses seven factors, encompassing
cohesion (C), internal friction angle (¢), wet density
(p), Young's modulus (E), along with hydrological
parameters, including infiltration rate  (lr),
groundwater level (H), and the correlation coefficient
between cohesion and internal friction angle (7). These
parameters are selected within reasonable ranges, their
respective probability distribution types and statistical
parameters are detailed in Table 1.

A sensitivity analysis of the system's failure
probability concerning various factors is conducted
following established methodologies (Malkawi et al.,
2000). By adjusting the coefficients of variation
(COV) for these seven factors within their reasonable
ranges, the impact of each factor's variability on the
system's failure probability is explored. This
comparative analysis identifies the sensitivity of each
parameter, and parameters demonstrating sensitivity
within the system are considered as key factors of
interest.

Table 1. Parameter information.

Parameter  Probability Mean Range
distribution
C (kPa) Lognormal 2.5 1.1~5.3
o () Lognormal 27 19.2~41.2
E (kPa) Lognormal 30000  8450~11540
p (kg/m?) Lognormal 2650 2175~3250
Iz (m/s) Uniform 0.0002 0.0001~
0.0004
H (m) Beta 2.2 1.5~2.5
r(-) - 0 -0.9~0.9
3 RESULTS

3.1 SVM model performance

Performance assessment of the models includes
confusion matrices for both linear and non-linear
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classification boundaries (Table 2, Table 3). Three
primary validation indices, True Positive Rate (TPR),
True Negative Rate (TNR), and Accuracy, are utilized
to gauge model effectiveness. The findings
consistently favour the linear model over the non-
linear one across all metrics. Subsequently, emphasis
will be placed on the superior linear model in the
ensuing discussion.

Table 2. Linear SVM Model performance.

Actual Actual no
landslides  landslides
Predicted Landslides 11 6
Predicted no landslides 2 21
TPR 84.6%
TNR 77.8%
Accuracy 80%
Table 3. Nonlinear SVM Model performance.
Actual Actual no
landslides  landslides
Predicted Landslides 9 8
Predicted no landslides 8 15
TPR 52.9%
TNR 65.2%
Accuracy 60%

3.2 Factor analysis in the SVM model

To establish a landslide prediction model, the factors
used are combined pairwise. A linear classification
boundary model is employed to visualize the
relationships between the classification boundary and
various factors, aiming to compare the significance of
each factor in predicting ,,landslide occurrence®, as
shown in Figure 3.

In the combination of dip slope area proportion and
slope, the model categorizes all data points as ,,no
landslide* (Figure 3a), resulting in an overall accuracy
of only 57.5%. Conversely, when combining historical
landslide area proportion with dip slope area
proportion (Figure 3b), the overall accuracy reaches
75%.

However, the classification boundary is solely
dependent on historical landslide area proportion, as
one factor. A similar situation is observed in the
combination of historical landslide area proportion
with slope (Figure 3c¢).

Finally, by combining rainfall of each event and
historical landslide area proportion, the overall
predictive accuracy reaches 77.5% (Figure 3d),
approaching the predictive accuracy of the model with
four integrated factors (80%). Nevertheless, the
classification boundary remains primarily influenced
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by historical landslide rates, with only slight
adjustments based on rainfall.
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Figure 3. Pairwise comparison SVM classification
boundaries. (a) Combination of dip slope area proportion
and slope. (b) Historical landslide area proportion and dip
slope area proportion. (c) Historical landslide area
proportion and slope. (d) Rainfall of each event and
historical landslide area proportion.

3.3 Factor sensitivity in the probabilistic
numerical model

In this section, the approach outlined by Malkawi et al.
(2000) is employed to create sensitivity assessment
plots of the variation in failure probability concerning
each parameter.

The results of this simulation exhibit a linear
relationship in all cases, except for the negative
correlation between friction angle and cohesion. The
sensitivity of each parameter can be assessed by
examining the slope of the regression line. In this
research case, the most influential factors in terms of
their impact on the system's failure probability are
COV(®) with a slope of 0.3077 and COV(C) with a
slope of 0.2492. Following these are the positive
correlation (r+) between cohesion and friction angle
with a slope of 0.028, COV(H) with a slope of 0.0175,
and COV(lz) with the smallest slope of 0.0023.
COV(p) and COV(FE) exhibit minimal sensitivity in
this context.

4 DISCUSSION

4.1 Factors of interest in the SVM model

The impact of slope and dip slope area proportion on
classification boundaries, as observed in pairwise
evaluations, seems to be minimal (Figure 3).

Proceedings of the XVIIl ECSMGE 2024



Probability-based hybrid landslide assessment system integrating landslide susceptibility and numerical modeling

0.08 0.06

g 0.07 = fé 0.05 »
0,06 5 E S
Z 005 i =004 | [y=03077x-0.0289 4
E 004 |[y=02492x-0.0456 Vit 200 R*=0.9789 6
B R? = 0.9604 . g i
£0.03 ~ B0 .
5 ; . -
S0 r E r
E0.01 . Foo o
0 0
0 0.1 02 03 04 0.5 0 005 01 015 02 025 03
COV(Cohesion) COV(Friction angle)
(a) COV/(C) (b) COV(D)
0.035 o
< 003 = )
& - .
20025 L&t 5 7’| 0.004
2 00 BT £ 0.003
£ 0.015 G ®
Ly PPy y = 0.028x + 0.0035 & 0.002
5 001 ® R? = 09914 ] .
2 0005 Lo-"" a gt 0.001
= & a2 L
[ I = 1
0 02 0.4 0.6 08 1 08 06 04 02 0
ion between cohesion& friction angle correlation between cohesion&friction angle
(c) r+ d)r.
= 00 0.007
S 0.008 & 0.0065
z Z 0006 5
E 0,006 - Z 00055 BT
2 —— 2 0005 N
oo " AT ’ Y= 00025 00043
£ 3= £ 0004 y=0. .
oo R =0.9963 5ot " Ri=o08505
£ 9 £ 9003
0 005 01 015 02 025 0 01 02 03 04 05 06
COV(Water height) COV(Infiltration rate)
(e) COV(H) () COV(Ix)
. 0.008 o 0.01
ig'gz . o008 |
E 0005 T T " E 0.006
%0.004 P B %
0,003 h
2 0.002 0802
£ 0.001 £ 9
0 002 004 006 008 01 012 0 01 02 03 04 05 06
COV(Density) COV(Young's modulus)

Figure 4. Sensitivity analysis of each parameter.

However, it is essential not to draw conclusions
regarding the insignificance of these two geomorphic
factors. The historical landslide area proportion, which
takes precedence, represents the proportion of
landslide-prone  areas  within  sub-watersheds.
Disasters tend to recur in regions where critical
conditions exist, making the ,,historical landslide area
proportion* an integrative measure that accounts for
all contributing landslide factors. Thus, incorporating
it along with natural background conditions, such as
slope and dip slope area proportion, as predictive
factors in the model, can dilute the effects of individual
natural conditions and potentially lead to misleading
conclusions about their importance.

In the final phase of this study, the primary objective
is to identify high-potential landslide areas that have
been previously overlooked. These areas typically lack
significant historical landslide records. While the
historical landslide area proportion predominantly
influences the classification in this research phase,
considering its impact on other factors, along with its
misalignment with the target characteristics, suggests
its exclusion from the list of factors of interest in
subsequent research phases. Moreover, the predictive
performance highlights the need to incorporate
additional  landslide-related = geomorphic  and
hydrological factors, such as rock type, rock
fragmentation, and groundwater levels, as factors of
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interest. This comprehensive approach will provide a
more complete understanding of the influence of
various spatial factors on landslide occurrence.

4.2  SVM model refinement directions

Based on the current phase's results, recommendations
for enhancing the machine learning model in the next
phase are: (1) Continue investigating rainfall of each
event, and focusing on diluted factors like slope and
dip slope area proportion while diversifying relevant
factors for improved predictions; (2) Increasing the
spatial resolution of factors to better represent sub-
watershed characteristics; (3) Considering a smaller
study area, focusing on a few key sub-watersheds due
to enhanced data resolution.

4.3  Factors of interest in the probability-based
numerical model

Based on the results of parameter sensitivity analysis
(Figure 4), cohesion (C), the internal friction angle (@),
and their correlation were identified as the most
sensitive factors influencing system failure probability.
Therefore, they have been included as attention factors.

While groundwater level (H) and infiltration rate
(Ir) showed some sensitivity in the model, their impact
on slope stability, particularly the influence of
,water in the context, is not as significant as expected.

Hence, their exact implications require further
investigation, and they will be retained as attention
factors for subsequent stages of research.

On the other hand, soil moisture density (p) and
Young's modulus (£), which were found to be
insensitive in this stage, may be excluded from the
attention factors in sensitivity analysis during the
subsequent phases.

4.4 Further discussion on the groundwater
level in the numerical model

This study examines the sensitivity of groundwater
levels in slope safety evaluation, essentially altering
the soil submerged range. The changes in groundwater
level arises from alterations in excess pore water
pressure, leading to a reduction in effective stress and,
consequently, triggering slope instability. The material
properties adopted in this study are single point two-
phase. Specifically, pore water and the acceleration of
soil is set as unknowns to solve the governing
equations. Ultimately, this calculation yields the
physical behavior of saturated soil (Anura3D MPM
Research Community, 2022b). The effectiveness of
analyzing the impact of groundwater level changes on
landslides using the MPM has been validated through
the study by Troncone et al., 2020.
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Our founding here is that the sensitivity of
groundwater level is relatively smaller than soil
strength parameters. However, this doesn't imply its
insignificance to landslides. Since the Mohr-Coulomb
criterion directly relies on soil strength parameters, it
is reasonable for these two parameters to exhibit the
highest sensitivity. Besides these two parameters,
groundwater level is the most significant factor
affecting slope stability, where soil infiltration
naturally also becomes an important factor influencing
slope stability. Thus, in a situation where a slope
undergoes rainfall infiltration without soil strength
parameter changes, groundwater level demonstrates
the highest sensitivity to slope stability.

4.5 Probability-based numerical model
refinement directions

The initial phase of this research focused on
simplifying the analysis of case study, primarily
applicable to artificial slopes with a height of 3.6
meters or less. Caution is needed when extending this
model to slopes exceeding this range. Hence, future
phases should focus on making the numerical model's
geometry more complex, resembling real-world
scenarios or directly conducting motion analyses for
specific slope conditions. Regarding parameter values,
using actual soil experiment data from the analysis
area is essential to realistically reflect the impact and
sensitivity of various considerations on slope failure
mechanisms.

5 CONCLUSIONS AND FUTURE WORKS

This study is the initial phase of the three-tiered

objectives, concentrating on simpler scenarios to

establish initial machine learning and probabilistic-
numerical model. Based on these findings, the second
phase should consider the following adjustments:

1. Enrich the factors in the landslide prediction
machine learning model. In addition to the factors
explored in this phase, such as rainfall of each
event, slope and dip slope area proportion,
incorporate more landslide-related geophysical
and hydrological factors to enhance predictive
performance.

2. Narrow down the research scope of the landslide
prediction machine learning model for improved
spatial data resolution.

3. Refine the probability-based numerical model by
real-world slope geometry and soil parameters. In
sensitivity analyses, emphasize discussions about
the variation in soil strength parameters (C, ¢) and
the sensitivity of hydrological factors (H, Ir)
within the system.
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