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ABSTRACT: The paper presents the results of the complex geotechnical evaluation of two sites situated on the alluvial 

plain of the Dâmbovita River in Bucharest, Romania, where geotechnical investigations were completed with the 

geophysical survey. Despite short distances between sites, the results illustrate significant variabilities of sedimentary layers 

and consequently of geotechnical properties. To obtain local representative correlations, we applied in the first instance 

several well-known formulas, but the degree of fitness was inferior. In the second stage, we developed several evolutionary 

polynomial regression algorithms (EPR), a method of solving optimization problems, when the objective function is 

nonlinear. The new predicted values were analyzed using statistical parameters and residual analysis. Thus, we obtain new 

formulas for each layer, allowing more precise correlations of geotechnical and geophysical parameters inside the 

sedimentary alluvial structure, by reporting to the relations proposed in the literature. 

 

RÉSUMÉ: L’article présente les résultats de l’évaluation géotechnique complexe de deux sites situés sur la plaine alluviale 
de la rivière Dâmbovita à Bucarest, en Roumanie, où les études géotechniques ont été complétées avec l’étude géophysique. 

Malgré de courtes distances entre les sites, les résultats illustrent des variabilités significatives des couches sédimentaires et 

par conséquent des propriétés géotechniques. Pour obtenir des corrélations représentatives locales, nous appliquons en 

premier lieu plusieurs formules bien connues, mais le degré de fitness était très faible. Dans un second temps, nous avons 

développé plusieurs algorithmes de régression polynomiale évolutive (EPR) qui est une méthode de résolution de problèmes 

d’optimisation, lorsque la fonction objective est non linéaire. Les nouvelles valeurs prédites ont été analysées à l’aide de 
paramètres statistiques et d’analyses résiduelles. Ainsi, nous obtenons de nouvelles formules pour chaque couche, permettant 
des corrélations plus précises des paramètres géotechniques et géophysiques à l’intérieur de la structure alluviale 
sédimentaire, par rapport aux relations proposées dans la littérature. 
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1 INTRODUCTION 

The two sites we refer to (A and B, North and South) 

are located in the alluvial plain at small distances from 

the canalized course of the Dâmboviţa River the 
middle of Bucharest City.  

In this research we considered three of the 

superficial layers, starting from the surface of the 

terrain, as:  

(I) the upper cohesive (7-9m thickness) composed 

mainly on silty clays; 

(II) the middle noncohesive, consisting of sands 

and fine gravel of 13-30m thickness with thin cohesive 

intercalations, and  

(III) the deeper lacustrine clays, which were 

partially opened on 15m to 40m.  

On each site geotechnical investigations (boreholes 

and laboratory analyses) were executed in tandem 

with geophysical survey works (cross-hole and down-

hole).  

2 CURRENT CORRELATIONS 

Estimation of the density layers based on geotechnical 

usual practices is a very difficult task in case of under 

consolidate cohesive and noncohesive sedimentary 

deposits. 

In consequence, realistic assessment of relative 

density through correlation with various in situ 

investigation results represent the only path to 

evaluate this important geotechnical parameter. One 

of the very few such correlations is given by Mayne 

and Schneider, (1999), which evaluates the relative 

density of soils  (g/cm3) as a function of shear wave 

velocities Vs (m/s) and depth z (m): 
 

 

We apply this correlation for both sites A and B, 

but the fitting of results with measured data is poor 

considering the coefficient of correlation 0.2 ≤ 𝑅2 ≤0.3, fact that may be visually observed also in 

Figure 1.
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Figure 1. Variation in depth of measured and calculated values of relative density of soils, formula (1). 

3 EPR MODEL CONSTRUCTION 

3.1 Theoretical frame of EPR models 

The mathematical model proposed for this paper is 

based on evolutionary polynomial regression (EPR) 

which is a method intensely used in geotechnics in 

order to find polynomial structures with an output-

dependent variable Y and a set of independent 

variable X (Clegg et al, 2005; Keramati et al, 2014; 

Rezania et al, 2009).  

The function can be written as: 

where 𝐹 is a function that will be determined using 

input – output data and 𝛼1×𝑘 = [𝑎0  𝑎1  𝑎2  …  𝑎𝑛]  is 

a vector with 𝑘 = 𝑛 + 1  parameters. For a matrix of 

inputs considered as 𝑋𝑁×𝑚 = [𝑋1  𝑋2  …  𝑋𝑚] and a 

matrix of exponents whose elements can take values 

within user–defined bounds, 𝐸𝑛×𝑚, can be defined n 

vectors whose elements are products of independent 

inputs X as: 

 

Thus, a matrix equation results: 

where 𝑌𝑁×1(𝛼, 𝑍) is the least squares estimate vector 

of the 𝑁 target values. 

To successfully determine the optimal values of 

the exponents, the genetic algorithm is 

recommended. This algorithm represents a method of 

solving optimization problems, especially when the 

objective function is nonlinear. The process consists 

of generating a population of individuals who are 

used as parents to produce a new generation through 

mutations and crossover techniques. The algorithm is 

used to obtain an equation that ensure the best 

possible fit of the data. Then, adjustable parameters 𝑎𝑖, 𝑖 = 0, 1, … , 𝑛, can be determined by the linear 

square’s method. The estimated equation of 
regression will be evaluated using the determination 

coefficient expressed as: 

 

 

where 𝑦̂𝑖 is the estimated value of the output of the 

process, 𝑦𝑖 is the value of a dependent variable and 𝑦̅ 

is the mean of the variable 𝑦. As 𝑅2 it increases with 

the inclusion of several variables, the coefficient of 

determination is adjusted accordingly: 

 

 

where n is the number of observations and p is the 

number of independent variables.  
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Another statistically important parameter is the 

residual standard error which is a measure used to 

assess the precision of the predictions. Regression 

testing consisted of studying the dispersion analysis, 

the F - test of global significance and the t-test. Thus, 

if Significance F has a value lower than the 

established significance threshold, then the null 

hypothesis of the statistic F is rejected. Also, for the 

t - test, a value of P-value lower than the significance 

threshold leads to the rejection of the nullity 

hypothesis (Clocotici, 2007). Residue analysis 

assumes the validity of an error normal distribution. 

This can be verified by studying the diagrams 

predicted values – residues,  (𝑦𝑖̂ , 𝑑𝑖), 𝑖 = 1, … , 𝑛, 

where the normalized residuals 𝑑𝑖 is given by 

(Montgomery et al., 2003; Pimpan and Suwattee, 

2009): 

 

 

in which  𝑒𝑖 = 𝑦𝑖 − 𝑦̂𝑖 and  𝑠2(𝑒𝑖) is the dispersion 

of the residue 𝑒𝑖, 𝑖 = 1, … , 𝑛.  

If there is an observation 𝑖 with a large 

standardized residual (|𝑑𝑖| > 3) then that observation 

is a potential outlier and can be excluded from the 

data set or analyzed in another subject of interest.  

3.2. EPR models used for geotechnical data 

In the next step, several EPS models have been 

developed and analyzed according to the procedure 

described above for all three layers, on both sites.  

For the upper cohesive layer (I), the EPR model is 

given in Eq. 8. Specific values of the coefficients 

ai,i=0,1,2..6, as the statistical parameters of regression 

model are exposed in Table 1 (Figure 2).  

 

Table 1. Regression coefficients and statistical parameters 

for layer (I), Eq. 8. 

Coef-
ficients 

Value 
Regression 
Statistics 

Condi-
tions 

a0 20.442344 MR 0.993737 

2
m

<
z<

8
m

 

a1 -0.000650 R Sq. 0.987513 

a2 16341302 Ad. R Sq 0.965661 

a3 -268.4582 St.Err 0.012176 

a4 0.108107 SS Res 0.000593 

a5 0.693340 F 0.001202 

a6 -0.002579    

 

For the second layer (II - the middle noncohesive), 

the regression equation is presented in Eq. 9, and 

Table 2 (Figure 3) contain the specific values of the 

coefficients and statistical parameters. 
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Figure 4. Results of EPR model of layer (III), Eq. 10.
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Figure 2. Results of EPR model of layer (I), Eq. 8.
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Figure 3. Results of EPR model of layer (II), Eq. 9.
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Table 2. Regression coefficients and statistical parameters 

for layer (II), Eq. 9. 

Coef-
ficients 

Value 
Regression 
Statistics 

Cond-
itions 

a0 8.532624 MR 0.98278 

5
m

<
z<

4
0

m
 a1 17639312 R Sq. 0.96586 

a2 -15.4535 Ad. R Sq 0.88619 

a3 -3543866 St. Err 0.02099 

a4 -55.7057 SS Res 0.00132 

a5 -0.00728 F 0.03254 

a6 15173.55   

a7 0.000018   

 

Finally, for the deeper lacustrine clays (III) the 

regression equation is given in the following equation 

(Figure 4. Table 3): 

 

Table 3. Regression coefficients and statistical parameters 

for layer (III), Eq. (10). 

Coef-
ficients 

Value 
Regression 
Statistics 

Condi-
tions 

a0 1.016192 MR 0.983889 

2
5

m
<

z<
5
0

m
 

a1 -0.142700 R Sq. 0.968038 

a2 0.000004 Ad. R Sq. 0.944066 

a3 76.770632 St. Err. 0.004179 

  SS Res. 0.000070 

  F 0.001895 

4 CONCLUSIONS 

Depositional and spatial variability of recent alluvial 

deposits of the rivers could often mislead the 

assessment of geotechnical and geophysical 

parameters based on general correlation equations 

available in the literature. For this reason, the 

establishment of such particular relationships at the 

local scale of a geological or geomorphological 

formation is an important task in order to obtain 

precise and reliable results of investigations. 

Regardless of the quality, the amount or the diversity 

of investigations, the accuracy and the 

representativeness of such correlations are strongly 

influenced by the mathematical tool used for this 

purpose.  

In this paper we examined geotechnical and 

geophysical investigations of two sites situated on the 

alluvial plain of Dâmboviţa River, Bucharest City. 

For the assessment of relative density based on shear 

wave velocity we elaborated an EPR model for every 

layer of the geological structure.  

Using the genetic algorithm tool and the 

multidimensional linear regression method, 

equations were obtained that accurately describe the 

mathematical relationship of one of the most 

important geotechnical parameters () for every 

specific encountered layer. Finally, this may lead to a 

more precise approach in such regions where general 

relations are not relevant to the field situation 

In these new EPR models statistical parameters 

extended between the limits exposed in Table 4, 

proved to be much appropriate than the well-known 

correlation formula  - Vs used in such situations.  

Due to the fact that the accuracy of all 

mathematical models depends among other 

attributes, on the volume and density of the data used, 

it appears that it would be of scientific interest to 

elaborate a communitarian database associated with 

large geological and geomorphological units, in order 

to obtain a proper and realistic assessment of 

geotechnical parameters, which are the most 

important key parameters of serious and safe design 

of all civil or industrial projects. 

 
Table 4. Limits of statistical parameters of the EPR models 

obtained for layers (I-III), Eqs. 8-9-10. 

Regression  
Statistics 

EPR models 
Previous 
models Minimum  

value 
Maximum  

value 
Multiple R 0.9828 0.9937  

R Square 0.9659 0.9875 0.2-0.3 

Adjusted R 

Square 
0.8862 0.9657  

Standard Error 0.0042 0.0210  

SS Residual 0.0001 0.0013  

Significance F 0.0012 0.0325  
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