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ABSTRACT: Internal erosion in gap-graded soils is a major risk faced by earth dams and levees. However, the 
understanding of internal erosion mechanisms, especially at the particle scale, is still limited. This research couples the 
Discrete Element Method (DEM) with Computational Fluid Dynamics (CFD) to simulate the internal erosion (suffusion) 
process in gap-graded soil samples and further train Artificial Intelligence (AI)/Deep Learning (DL) algorithms to identify 
subtle patterns and anomalies related to internal erosion initiation. A time-lapse micro-structure visualisation approach is 
introduced using 3D voxelization of soil elements under internal erosion. Particle-scale parameters such as particle and flow 
velocity, number of contacts, contact forces etc are extracted from the CFD-DEM simulations throughout the internal erosion 
process forming time-series tensors used to train the AI models. The Autoencoder models with 3D Convolutional Neural 
Network (CNN) layers as encoder and decoder are developed to investigate the micro-scale patterns within the particle-fluid 
assembly together with the variations and anomalies throughout the erosion process. Using Sequential Training framework, 
anomalies within the data are detected by Convolutional Autoencoder models to identify the locus and time of internal 
erosion initiation. In addition, the micro-mechanisms during the initiation of internal erosion such as fine particle migration 
and contact loss are investigated. The 3D voxelization approach for internal erosion micro-mechanism visualisation can be 
integrated with advanced imaging techniques (e.g., micro-computed tomography) for early detection of internal erosion in 
future. 
 

RÉSUMÉ: L'érosion interne dans les sols à granulométrie écartée représente un risque majeur pour les barrages en terre et 
les digues. Cependant, la compréhension des mécanismes d'érosion interne, en particulier à l'échelle des particules, reste 
limitée. Cette recherche couple la Méthode des Éléments Discrets (DEM) avec la Dynamique des Fluides Computationnelle 
(CFD) pour simuler le processus d'érosion interne (suffusion) dans des échantillons de sol à granulométrie écartée et pour 
entraîner davantage les algorithmes d'Intelligence Artificielle (IA)/Apprentissage Profond (AP) afin d'identifier des modèles 
subtils et des anomalies liées à l'initiation de l'érosion interne. Une approche de visualisation micro-structurale en accéléré 
est introduite en utilisant la voxelisation 3D des éléments de sol sous érosion interne. Des paramètres à l'échelle des particules 
tels que la vitesse des particules et du flux, le nombre de contacts, les forces de contact, etc., sont extraits des simulations 
CFD-DEM tout au long du processus d'érosion interne pour former des tenseurs en série temporelle utilisés pour entraîner 
les modèles d'IA. Des modèles d'Autoencodeurs avec des couches de Réseau Neuronal Convolutif (CNN) 3D comme 
encodeur et décodeur sont développés pour étudier les modèles microscopiques au sein de l'assemblage particule-fluide ainsi 
que les variations et anomalies tout au long du processus d'érosion. En utilisant le cadre de Formation Séquentielle, les 
anomalies dans les données sont détectées par des modèles d'Autoencodeur Convolutif pour identifier le lieu et le moment 
de l'initiation de l'érosion interne. De plus, les micro-mécanismes lors de l'initiation de l'érosion interne tels que la migration 
des particules fines et la perte de contact sont étudiés. L'approche de voxelisation 3D pour la visualisation des micro-
mécanismes d'érosion interne peut être intégrée avec des techniques d'imagerie avancées (par exemple, la micro-tomographie 
informatisée) pour la détection précoce de l'érosion interne à l'avenir. 
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1 INTRODUCTION 

Internal erosion is a typical issue faced by earth dams 
and levees, posing a significant risk to public safety 
and the economy. This phenomenon frequently occurs 
in gap-graded soils subjected to certain hydraulic and 
mechanical conditions. The initiation and 
development of internal erosion are mainly influenced 
by three factors: (a) particle gradation, (b) hydraulic 
condition, and (c) mechanical state (Brown & Bridle, 
2009). In this context, the internal erosion has been 
studied through field monitoring (Cai et al., 2020; 
Chen et al., 2018), laboratory tests (Planès et al., 
2016), numerical simulations (Tran et al., 2017), and 
data-driven analysis (Fisher et al., 2016; Yousefpour 
& Fazel Mojtahedi, 2023). Internal erosion usually 
initiates from imperceptible transport of fine particles 
at the pore scale with no evident signs and gradually 
develops into catastrophic dam breaches, which 
highlights the necessity of insight into the particle 
scale behaviours and their link to the macro-scale/field 
observations. 

This study couples the Discrete Element Method 
(DEM) with Computational Fluid Dynamics (CFD) to 
simulate the internal erosion process in gap-graded 
soils, simulating the suffusion mechanism (Qi et al., 
2022). 3D voxelization of the gap-graded soil was 
conducted with associated particle-scale parameters 
stored in the voxels as the input for the DL model. The 
Autoencoder models with 3D Convolutional Neural 
Network (CNN) layers as encoder and decoder are 
developed to investigate the micro-structure patterns 
within the particle-fluid assembly. A Sequential 
Training framework is introduced for Dl models to 
detect anomalies within the time-series of 3D particle-
scale tensors for an assessment of locus and time of 
internal erosion initiation. 

2 METHODOLOGY 

2.1 CFD-DEM simulation 

The coupled CFD-DEM simulations are performed to 
assess the internal erosion initiation process in gap-
graded soil driven by a range of hydraulic gradients. A 
gap-graded sand sample with a Fine Content (FC) of 
25% is selected for the simulation. The sample 
gradation and mass fractions for the grain sizes are 
provided in Table 1. 
 
Table 1. Soil sample gradation and mass fractions. 

Particle 
Group 

Diameter Finer % Mass % 

D1 3.43 62.5% 37.5% 
D2 2.36 25.5% 37.5% 
D3 0.36 12.5% 12.5% 
D4 0.30 0 12.5% 

The 3D CFD-DEM model of the gap-graded sand 
is created within a cylindrical shell (D=15mm, 
H=25mm). The time step of DEM is set to be 5e-7s for 
the stability of the calculation. For the first step, the 
particles are randomly generated at the top of the 
cylinder with predefined mass fractions and then 
settled to the bottom under gravity as shown in Figure 
1. The generated dry samples are then compacted by a 
top plate to achieve a target sample density before 
saturation. 
 

 
Figure 1. CFD-DEM model (a) Sample generating, (b) 

sample compaction to target porosity, (c) saturation and 

stabilization of compacted sample, (d) internal erosion. 
a Coarse particles are hidden at t=6.0s for better 

visualization. 

 
The compacted dry sample is then coupled with 

CFD under static hydraulic pressure for saturation. 
Both the DEM and CFD simulations continue to reach 
equilibrium during the saturation process. For the 
erosion stage, the plate on the top is replaced by a mesh 
that is only permeable to the fine particles. The 
hydraulic pressure of the outlet is set to 0, while that 
of the inlet is fixed to a value that applies a hydraulic 
gradient to the whole sample. The hydraulic pressure 
is linearly increased from 0kPa at t=4.0s to 100kPa at 
t=5.5s, during which fine particles are gradually 
eroded from the pore space between coarse particles. 
The eroded particles are deleted when they exit the top 
mesh. 

2.2 Particle-scale data and 3D microstructure 
representation 

The CFD-DEM simulation outputs are extracted in a 
high temporal resolution of 0.01s, which produces 
abundant particle-scale data. This data includes time-
lapse tensor of particle velocity, contact force, contact 
number etc, which can reflect the subtle changes in 
interaction and migration of particles during internal 
erosion. However, this data could not require pre-
processing before using as an input for DL models. 
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Figure 2. Particle data representation (a)&(b) cells with 

information from particle 1 &2, (c) contact position of two 

particles, (d) area to search for the contact cells. 

 
To facilitate such purpose, a voxelization algorithm 

is developed to convert the particle-scale data into 3D 
matrix (tensor) representations. Voxels are defined 
using grids within the particle-fluid assembly domain. 
Each voxel is occupied by particles and fluid. The 
relevant particle-scale data are assigned to the 
respective DEM voxels, including particle velocity, 
contact force, contact number etc (Figure 2). As coarse 
particles are intact during suffusion, only fine particle 
parameters are considered in this process. 

The voxels for storing the contact information are 
detected within a domain centred at the contact 
position by comparing the voxel-particle distance and 
the particle radius. With the particle information stored 
in the voxels, the constructed 3D matrices serve as the 
input for the subsequent Machine Learning models. 

2.3 Deep learning approach 

Convolutional Neural Networks (CNN) have been 
proven powerful in capturing/extracting features from 
image data (Tang et al., 2022). Also, Autoencoders 
have been successfully used for unsupervised anomaly 
detection for problems where normal (true) versus 
anomaly (fake) data is not known apriori (Yousefpour 
& Fazel Mojtahedi, 2023). Considering the 3D 
particle-scale data structure from CFD-DEM, a 3D 
Convolutional Autoencoder (CAE) architecture is 
deemed as a viable architecture to extract spatial-
temporal patterns and anomalies related to subtle 
microstructure changes in the soil sample around the 
initiation of erosion. In this problem, the sample 3D 
microstructure is visualised by the generated particle-
scale tensors. These time-series tensors are treated as 
image data for the CAE algorithm. The encoder 
compresses the input data into latent representations 
while the decoder reconstructs the input from the latent 
space. The encoder and decoder are constructed from 
3D Convolutional layers and the necessary max 
pooling or deconvolutional layers as depicted in Figure 
3. The CAE model learns the reconstruction error 
distribution over the training dataset and then detects 
anomalies within the test dataset using a set error 
threshold. A data point is recognised as an anomaly if 
its reconstruction error is larger than this threshold. 
 

 
Figure 3. 3D CNN Autoencoder architecture. 

2.4 Data division and sequential training 

CFD-DEM outputs are extracted at a time step of 
0.01sec, from 4.0sec to 6.4sec, generating a time-
series of 240 tensors. Sequential Training is a 
systematic approach of Machine Learning (ML) 
training in consecutive steps, where the training 
database size grows linearly at each step, rather than 
using the entire dataset at once (Yousefpour & Fazel 
Mojtahedi, 2023). This approach has proven effective 
in detecting the initiation of internal erosion based on 
the evolution of the number and trend of anomalies. In 
this study, Sequential Training was conducted over 
eight stages. During each step, a distinct segment of 
the data was used for training followed by a non-
overlapping segment for validation (see Figure 5). 

3 RESULTS 

3.1 Fine particle migration 

To better capture the internal erosion process, only a 
fraction of the whole CFD-DEM located at the top of 
the sample where the most intensive migration of fine 
particles happened is incorporated to train the CAE 
model. The particle velocity tensors are converted to a 
binary scale, such that voxels with particle velocity are 
represented as 1. Visualizing two slices of the binary 
tensors at t=4.1s, shown in Figure 4(a) and t=6.2s, 
shown in Figure 4(b) reveals the patterns of fine 
particles migration. It’s also observed that the scatter 
within the selected region gets denser as the fine 
particles gradually migrate from lower positions to the 
top. In particular, potential preferential erosion paths 
that fine particles take through the pore space between 
coarse particles are captured. 
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Figure 4. Binary particle velocity slices (a) before suffusion 

(T=4.1s) (b)after suffusion (T=6.2s). 

3.2 Anomaly detection 

The Convolutional Autoencoder model is trained 
using the binary particle velocity tensors prior to 
obvious internal erosion initiation in the sample (mass 
loss). The reconstruction errors are calculated for 
tensors within the test dataset after each training step. 
The number of detected anomalies from the testing 
data is recorded as the internal erosion evolves after 
the application of hydraulic gradient at t=4.0s as 
shown in Figure 5. The number of anomalies stays 
constant at the initial steps (from 4.0s to 5.2s) with all 
the test data being recognised as anomalies, meaning 
the fine particle velocity patterns during this stage are 
largely different from the test dataset and internal 
erosion did not happen at this stage. After t = 5.2s, the 
number of anomalies decreases abruptly, which can 
indicate a sudden pattern change of the fine particles. 
Between 5.2s and 5.6s, the number of anomalies starts 
to converge to a constant value. This trend shows that 
the training dataset is more representative of the test 
dataset patterns (therefore fewer anomalies are 
identified) and be an indicative of the approximate 
time of internal erosion initiation. Based on the above 
observations, it can be inferred that internal erosion 
initiated between 5.2s and 5.4s. 
 

 
Figure 5. Anomaly detection across training stages (a) 

Number of anomalies detected from different training stages 

(b) sequential training stages. 

4 CONCLUSIONS 

This research investigates the initiation of internal 
erosion in gap-graded soils through a Convolutional 
Autoencoder deep learning algorithm trained using 
CFD-DEM simulations data. 

Fine particle velocity data are visualized using a 3D 
voxelization method and converted to time-lapse 
binary tensors to assess the internal erosion patterns 
during the initiation phase. The subtle changes in the 
microstructure of the soil element and migration 
patterns of the fine particles are captured using this 
approach. 

The CAE model trained with the time-series of 
particle-scale tensors based on the sequential training 
framework shows a sudden drop followed by the 
convergence trend close to the initiation of internal 
erosion. This shows that the 3D voxelisation approach 
for internal erosion micro-mechanism visualisation 
can be potentially integrated with advanced imaging 
techniques (e.g. micro-CT) for early detection of 
internal erosion in future studies. 

ACKNOWLEDGEMENTS 

The authors are grateful for the financial support of the 
University of Melbourne’s Early Career Research 
Grant and the China Scholarship Council Scholarship. 

REFERENCES 

Brown, A., & Bridle, R. (2009). Report on the European 
working group on internal erosion, St. Petersburg. Dams 

and Reservoirs, 19(3), 133–136. 
https://doi.org/10.1680/dare.2009.19.3.133. 

Cai, Y., Cheng, H., Wu, S., Yang, Q., Wang, L., Luan, Y., 
& Chen, Z. (2020). Breaches of the Baige Barrier Lake: 
Emergency response and dam breach flood. Science 

China Technological Sciences, 63(7), 1164–1176. 
https://doi.org/10.1007/s11431-019-1475-y. 

Chen, C.-Y., Chen, S.-C., Chen, K.-H., & Liu, Z.-H. (2018). 
Thermal monitoring and analysis of the large-scale field 
earth-dam breach process. Environmental Monitoring and 

Assessment, 190(8), 483. https://doi.org/10.1007/s10661-
018-6869-y. 

Fisher, W. D., Camp, T. K., & Krzhizhanovskaya, V. V. 
(2016). Crack Detection in Earth Dam and Levee Passive 
Seismic Data Using Support Vector Machines. Procedia 

Computer Science, 80, 577–586. 
https://doi.org/10.1016/j.procs.2016.05.339. 

Planès, T., Mooney, M. A., Rittgers, J. B. R., Parekh, M. L., 
Behm, M., & Snieder, R. (2016). Time-lapse monitoring 
of internal erosion in earthen dams and levees using 
ambient seismic noise. Géotechnique, 66(4), 301–312. 
https://doi.org/10.1680/jgeot.14.P.268. 

Qi, J., Yousefpour, N., Narsilio, G., & Pouragha, M. (2022). 
Initiation of Internal Erosion in Earth Dams: A Particle-

        
   

       
          

           

   

  

1899 Proceedings of the XVIII ECSMGE 2024

Internal erosion initiation in gap-graded soils: a 3D microstructure assessment using convolutional autoencoders 

https://doi.org/10.1680/dare.2009.19.3.133
https://doi.org/10.1007/s11431-019-1475-y
https://doi.org/10.1007/s10661-018-6869-y
https://doi.org/10.1007/s10661-018-6869-y
https://doi.org/10.1016/j.procs.2016.05.339
https://doi.org/10.1680/jgeot.14.P.268


Scale Computational Approach. Australian 

Geomechanics Society 2022 Victoria Symposium. 
Tang, P., Zhang, D., & Li, H. (2022). Predicting 

permeability from 3D rock images based on CNN with 
physical information. Journal of Hydrology, 606. 
https://doi.org/10.1016/j.jhydrol.2022.127473. 

Tran, D. K., Prime, N., Froiio, F., Callari, C., & Vincens, E. 
(2017). Numerical modelling of backward front 

propagation in piping erosion by DEM-LBM coupling. 
European Journal of Environmental and Civil 

Engineering, 21(7–8), 960–987. 
https://doi.org/10.1080/19648189.2016.1248794. 

Yousefpour, N., & Fazel Mojtahedi, F. (2023). Early 
detection of internal erosion in earth dams: combining 
seismic monitoring and convolutional AutoEncoders. 
Georisk. 

 

1900 Proceedings of the XVIII ECSMGE 2024

C – Risk analysis and safety evaluation 

https://doi.org/10.1016/j.jhydrol.2022.127473
https://doi.org/10.1080/19648189.2016.1248794


INTERNATIONAL SOCIETY FOR 
SOIL MECHANICS AND 

GEOTECHNICAL ENGINEERING 

This paper was downloaded from the Online Library of 
the International Society for Soil Mechanics and 
Geotechnical Engineering (ISSMGE). The library is 
available here: 

https://www.issmge.org/publications/online-library 

This is an open-access database that archives thousands 
of papers published under the Auspices of the ISSMGE and 
maintained by the Innovation and Development 
Committee of ISSMGE. 

The paper was published in the proceedings of the 18th 
European Conference on Soil Mechanics and 
Geotechnical Engineering and was edited by Nuno 
Guerra. The conference was held from August 26th to 
August 30th 2024 in Lisbon, Portugal.

https://www.issmge.org/publications/online-library
https://issmge.org/files/ECPMG2024-Prologue.pdf

