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ABSTRACT: Internal erosion in gap-graded soils is a major risk faced by earth dams and levees. However, the
understanding of internal erosion mechanisms, especially at the particle scale, is still limited. This research couples the
Discrete Element Method (DEM) with Computational Fluid Dynamics (CFD) to simulate the internal erosion (suffusion)
process in gap-graded soil samples and further train Artificial Intelligence (Al)/Deep Learning (DL) algorithms to identify
subtle patterns and anomalies related to internal erosion initiation. A time-lapse micro-structure visualisation approach is
introduced using 3D voxelization of soil elements under internal erosion. Particle-scale parameters such as particle and flow
velocity, number of contacts, contact forces etc are extracted from the CFD-DEM simulations throughout the internal erosion
process forming time-series tensors used to train the Al models. The Autoencoder models with 3D Convolutional Neural
Network (CNN) layers as encoder and decoder are developed to investigate the micro-scale patterns within the particle-fluid
assembly together with the variations and anomalies throughout the erosion process. Using Sequential Training framework,
anomalies within the data are detected by Convolutional Autoencoder models to identify the locus and time of internal
erosion initiation. In addition, the micro-mechanisms during the initiation of internal erosion such as fine particle migration
and contact loss are investigated. The 3D voxelization approach for internal erosion micro-mechanism visualisation can be
integrated with advanced imaging techniques (e.g., micro-computed tomography) for early detection of internal erosion in
future.

RESUME: L'érosion interne dans les sols a granulométrie écartée représente un risque majeur pour les barrages en terre et
les digues. Cependant, la compréhension des mécanismes d'érosion interne, en particulier a 1'échelle des particules, reste
limitée. Cette recherche couple la Méthode des Eléments Discrets (DEM) avec la Dynamique des Fluides Computationnelle
(CFD) pour simuler le processus d'érosion interne (suffusion) dans des échantillons de sol a granulométrie écartée et pour
entrainer davantage les algorithmes d'Intelligence Artificielle (IA)/Apprentissage Profond (AP) afin d'identifier des mod¢les
subtils et des anomalies liées a l'initiation de 1'érosion interne. Une approche de visualisation micro-structurale en accéléré
est introduite en utilisant la voxelisation 3D des éléments de sol sous érosion interne. Des paramétres a I'échelle des particules
tels que la vitesse des particules et du flux, le nombre de contacts, les forces de contact, etc., sont extraits des simulations
CFD-DEM tout au long du processus d'érosion interne pour former des tenseurs en série temporelle utilisés pour entrainer
les modéles d'IA. Des modéles d'Autoencodeurs avec des couches de Réseau Neuronal Convolutif (CNN) 3D comme
encodeur et décodeur sont développés pour étudier les modeéles microscopiques au sein de 'assemblage particule-fluide ainsi
que les variations et anomalies tout au long du processus d'érosion. En utilisant le cadre de Formation Séquentielle, les
anomalies dans les données sont détectées par des modeles d' Autoencodeur Convolutif pour identifier le lieu et le moment
de I'initiation de 1'érosion interne. De plus, les micro-mécanismes lors de I'initiation de 1'érosion interne tels que la migration
des particules fines et la perte de contact sont étudiés. L'approche de voxelisation 3D pour la visualisation des micro-
mécanismes d'érosion interne peut étre intégrée avec des techniques d'imagerie avancées (par exemple, la micro-tomographie
informatisée) pour la détection précoce de I'érosion interne a l'avenir.

Keywords: DEM-CFD; internal erosion; convolutional neural networks (CNN); autoencoder; anomaly detection; deep
learning; microstructure visualisation.
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1 INTRODUCTION

Internal erosion is a typical issue faced by earth dams
and levees, posing a significant risk to public safety
and the economy. This phenomenon frequently occurs
in gap-graded soils subjected to certain hydraulic and
mechanical  conditions.  The initiation and
development of internal erosion are mainly influenced
by three factors: (a) particle gradation, (b) hydraulic
condition, and (c¢) mechanical state (Brown & Bridle,
2009). In this context, the internal erosion has been
studied through field monitoring (Cai et al., 2020;
Chen et al., 2018), laboratory tests (Planés et al.,
2016), numerical simulations (Tran et al., 2017), and
data-driven analysis (Fisher et al., 2016; Yousefpour
& Fazel Mojtahedi, 2023). Internal erosion usually
initiates from imperceptible transport of fine particles
at the pore scale with no evident signs and gradually
develops into catastrophic dam breaches, which
highlights the necessity of insight into the particle
scale behaviours and their link to the macro-scale/field
observations.

This study couples the Discrete Element Method
(DEM) with Computational Fluid Dynamics (CFD) to
simulate the internal erosion process in gap-graded
soils, simulating the suffusion mechanism (Qi et al.,
2022). 3D voxelization of the gap-graded soil was
conducted with associated particle-scale parameters
stored in the voxels as the input for the DL model. The
Autoencoder models with 3D Convolutional Neural
Network (CNN) layers as encoder and decoder are
developed to investigate the micro-structure patterns
within the particle-fluid assembly. A Sequential
Training framework is introduced for DI models to
detect anomalies within the time-series of 3D particle-
scale tensors for an assessment of locus and time of
internal erosion initiation.

2  METHODOLOGY

2.1 CFD-DEM simulation

The coupled CFD-DEM simulations are performed to
assess the internal erosion initiation process in gap-
graded soil driven by a range of hydraulic gradients. A
gap-graded sand sample with a Fine Content (FC) of
25% 1is selected for the simulation. The sample
gradation and mass fractions for the grain sizes are
provided in Table 1.

Table 1. Soil sample gradation and mass fractions.
Particle

Diameter Finer % Mass %

Group
DI 343 62.5% 37.5%
D2 2.36 25.5% 37.5%
D3 0.36 12.5% 12.5%
D4 0.30 0 12.5%
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The 3D CFD-DEM model of the gap-graded sand
is created within a cylindrical shell (D=15mm,
H=25mm). The time step of DEM is set to be 5e-7s for
the stability of the calculation. For the first step, the
particles are randomly generated at the top of the
cylinder with predefined mass fractions and then
settled to the bottom under gravity as shown in Figure
1. The generated dry samples are then compacted by a
top plate to achieve a target sample density before
saturation.

0s —> 22s —> 385 —> 40s —> 645
(a) Generating  (b) Compaction (c) Saturation  (d) Erosion

Figure 1. CFD-DEM model (a) Sample generating, (b)
sample compaction to target porosity, (c) saturation and
stabilization of compacted sample, (d) internal erosion.

@ Coarse particles are hidden at t=6.0s for better
visualization.

The compacted dry sample is then coupled with
CFD under static hydraulic pressure for saturation.
Both the DEM and CFD simulations continue to reach
equilibrium during the saturation process. For the
erosion stage, the plate on the top is replaced by a mesh
that is only permeable to the fine particles. The
hydraulic pressure of the outlet is set to 0, while that
of the inlet is fixed to a value that applies a hydraulic
gradient to the whole sample. The hydraulic pressure
is linearly increased from OkPa at t=4.0s to 100kPa at
t=5.5s, during which fine particles are gradually
eroded from the pore space between coarse particles.
The eroded particles are deleted when they exit the top
mesh.

2.2 Particle-scale data and 3D microstructure
representation

The CFD-DEM simulation outputs are extracted in a
high temporal resolution of 0.01s, which produces
abundant particle-scale data. This data includes time-
lapse tensor of particle velocity, contact force, contact
number etc, which can reflect the subtle changes in
interaction and migration of particles during internal
erosion. However, this data could not require pre-
processing before using as an input for DL models.
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Figure 2. Particle data representation (a)&(b) cells with
information from particle 1 &2, (c) contact position of two
particles, (d) area to search for the contact cells.

To facilitate such purpose, a voxelization algorithm
is developed to convert the particle-scale data into 3D
matrix (tensor) representations. Voxels are defined
using grids within the particle-fluid assembly domain.
Each voxel is occupied by particles and fluid. The
relevant particle-scale data are assigned to the
respective DEM voxels, including particle velocity,
contact force, contact number etc (Figure 2). As coarse
particles are intact during suffusion, only fine particle
parameters are considered in this process.

The voxels for storing the contact information are
detected within a domain centred at the contact
position by comparing the voxel-particle distance and
the particle radius. With the particle information stored
in the voxels, the constructed 3D matrices serve as the
input for the subsequent Machine Learning models.

2.3 Deep learning approach

Convolutional Neural Networks (CNN) have been
proven powerful in capturing/extracting features from
image data (Tang et al., 2022). Also, Autoencoders
have been successfully used for unsupervised anomaly
detection for problems where normal (true) versus
anomaly (fake) data is not known apriori (Yousefpour
& Fazel Mojtahedi, 2023). Considering the 3D
particle-scale data structure from CFD-DEM, a 3D
Convolutional Autoencoder (CAE) architecture is
deemed as a viable architecture to extract spatial-
temporal patterns and anomalies related to subtle
microstructure changes in the soil sample around the
initiation of erosion. In this problem, the sample 3D
microstructure is visualised by the generated particle-
scale tensors. These time-series tensors are treated as
image data for the CAE algorithm. The encoder
compresses the input data into latent representations
while the decoder reconstructs the input from the latent
space. The encoder and decoder are constructed from
3D Convolutional layers and the necessary max
pooling or deconvolutional layers as depicted in Figure
3. The CAE model learns the reconstruction error
distribution over the training dataset and then detects
anomalies within the test dataset using a set error
threshold. A data point is recognised as an anomaly if
its reconstruction error is larger than this threshold.
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Figure 3. 3D CNN Autoencoder architecture.

2.4 Data division and sequential training

CFD-DEM outputs are extracted at a time step of
0.01sec, from 4.0sec to 6.4sec, generating a time-
series of 240 tensors. Sequential Training is a
systematic approach of Machine Learning (ML)
training in consecutive steps, where the training
database size grows linearly at each step, rather than
using the entire dataset at once (Yousefpour & Fazel
Mojtahedi, 2023). This approach has proven effective
in detecting the initiation of internal erosion based on
the evolution of the number and trend of anomalies. In
this study, Sequential Training was conducted over
eight stages. During each step, a distinct segment of
the data was used for training followed by a non-
overlapping segment for validation (see Figure 5).

3 RESULTS

3.1 Fine particle migration

To better capture the internal erosion process, only a
fraction of the whole CFD-DEM located at the top of
the sample where the most intensive migration of fine
particles happened is incorporated to train the CAE
model. The particle velocity tensors are converted to a
binary scale, such that voxels with particle velocity are
represented as 1. Visualizing two slices of the binary
tensors at t=4.1s, shown in Figure 4(a) and t=6.2s,
shown in Figure 4(b) reveals the patterns of fine
particles migration. It’s also observed that the scatter
within the selected region gets denser as the fine
particles gradually migrate from lower positions to the
top. In particular, potential preferential erosion paths
that fine particles take through the pore space between
coarse particles are captured.
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(b)
Figure 4. Binary particle velocity slices (a) before suffusion
(T=4.1s) (b)after suffusion (T=6.2s).

3.2  Anomaly detection

The Convolutional Autoencoder model is trained
using the binary particle velocity tensors prior to
obvious internal erosion initiation in the sample (mass
loss). The reconstruction errors are calculated for
tensors within the test dataset after each training step.
The number of detected anomalies from the testing
data is recorded as the internal erosion evolves after
the application of hydraulic gradient at t=4.0s as
shown in Figure 5. The number of anomalies stays
constant at the initial steps (from 4.0s to 5.2s) with all
the test data being recognised as anomalies, meaning
the fine particle velocity patterns during this stage are
largely different from the test dataset and internal
erosion did not happen at this stage. After t = 5.2s, the
number of anomalies decreases abruptly, which can
indicate a sudden pattern change of the fine particles.
Between 5.2s and 5.6s, the number of anomalies starts
to converge to a constant value. This trend shows that
the training dataset is more representative of the test
dataset patterns (therefore fewer anomalies are
identified) and be an indicative of the approximate
time of internal erosion initiation. Based on the above
observations, it can be inferred that internal erosion
initiated between 5.2s and 5.4s.
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Figure 5. Anomaly detection across training stages (a)
Number of anomalies detected from different training stages
(b) sequential training stages.
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4  CONCLUSIONS

This research investigates the initiation of internal
erosion in gap-graded soils through a Convolutional
Autoencoder deep learning algorithm trained using
CFD-DEM simulations data.

Fine particle velocity data are visualized using a 3D
voxelization method and converted to time-lapse
binary tensors to assess the internal erosion patterns
during the initiation phase. The subtle changes in the
microstructure of the soil element and migration
patterns of the fine particles are captured using this
approach.

The CAE model trained with the time-series of
particle-scale tensors based on the sequential training
framework shows a sudden drop followed by the
convergence trend close to the initiation of internal
erosion. This shows that the 3D voxelisation approach
for internal erosion micro-mechanism visualisation
can be potentially integrated with advanced imaging
techniques (e.g. micro-CT) for early detection of
internal erosion in future studies.
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