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1 INTRODUCTION 
 
To date, machine learning in geotechnical engineer-
ing has primarily focused on quantitative or numeri-
cal data. However, geotechnical engineers often rely 
on descriptions, qualitative or language-based infor-
mation to guide decisions. This paper presents a ma-
chine learning approach to classify soil layers that 
takes test pit profile descriptions to classify soil layers 
according to the South African Geotechnical Site In-
vestigations for Housing Developments (GSFH-2) 
standard.  

 
 

2 SITE CLASSIFICATION 
 
It is required by the Geotechnical Site Investigations 
for Housing Developments (GFSH-2 2002) that a 
provisional site classification should be derived by in-
terpreting the soil profile and founding recommenda-
tions made according to the site class. Site classes are 
derived from an estimation of the range of expected 
soil movement experienced by single-storey and dou-
ble-storey type 1 masonry buildings, where the foun-
dation width is limited to 0.6 m for single-storey 
buildings and 0.8 m for double-storey buildings and 
the load on the foundation does not cause the soil 
bearing pressure to exceed 50 kPa. Table 1 lists the 

different site classes with their respective expected 
soil movement. 
 
Table 1. Site class designations of single- and double-storey type 
1 masonry buildings according to SANS 10400-H, 2012. 

Nature of founding material Expected soil 

movement 

Site 

class 

mm 

Stable Negligible R 

 

Expansive  

<7.5 
7.5 to 15 
15 to 30 
>30 

H 
H1 
H2 
H3 

Compressible and collapsi-

ble 

<5 
5 to 10 
>10 

C 
C1 
C2 

Compressible 

<10 

10 to 20 

>20 

S 

S1 

S2 

Fill Variable P 

 
Consecutive soil layers in a profile should be de-

scribed using terms provided by Guidelines for Soil 
and Rock Logging in South Africa published by the 
South African Institute for Engineers and Engineer-
ing Geologists. Each soil layer is described according 
to its moisture condition, colour, consistency, struc-
ture, soil texture, and origin (MCCSTO). 

  

Machine-learning approach to site classification 

L.A. Brits  

PeraGage, Cape Town, South Africa 

C.J. MacRobert 

Stellenbosch University, Stellenbosch, South Africa 

 

 

ABSTRACT: This paper presents a Machine Learning approach for site classification according to the Ge-
otechnical Site Investigations for Housing Developments (GSFH-2). Based on input from practising engineers 
and geologists a flowchart was developed to classify 430 individual soil layers according to GSFH-2. These 
soil layers were classified according to the expected soil movement by considering the moisture condition, 
colour, consistency, structure, texture and origin of the soil (MCCSTO). Three machine learning models, 
namely: Support Vector Machine (SVM), Decision Tree, and Random Forest models, were then developed 
using the database. Term Frequency – Inverse Document Frequency (TF-IDF) was the primary Natural Lan-
guage Processing (NLP) method used to process and analyse the text input in combination with N-grams and 
other pre-processing techniques. Evaluation used Feature Importance, Confusion Matrices, and statistical met-
rics. The results indicated that the Random Forest-model in combination with lower-casing achieved the best 
performance with an accuracy-score of 71%. The accuracy of the proposed Random Forest-model could be 
increased by user verification of predictions made on unlabelled data. 
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3 MCCSTO SOIL PROFILING 
 
Moisture condition is a relative indication of water 
content, ranging between dry and wet and therefore 
depends on the soil type (Brink & Bruin 2002, Jen-
nings et al. 1973). Soil colour aids in the identification 
of expansive clays which are often described as dark 
grey, black, maroon, and mottled yellow grey (DPW 
2007). Soils with collapse potential are well-drained 
soils and are often red-brown, brown or light brown 
(Day 2016). Consistency is the measure of a soil’s 
hardness or toughness. Since drainage and permeabil-
ity influence shear strength, a distinction between the 
consistency descriptions of cohesive and non-cohe-
sive material should be made (Jennings et al. 1973).  

Soil structure refers to the presence and nature of 
joints in the soil (Jennings et al. 1973). Soil type is 
described according to the proportional composition 
of the soil based on grain size. Particle size classes 
should be written in increasing order of abundance 
with the predominant size class written in uppercase 
(Dippenaar et al. 2024). Knowledge of the local geol-
ogy and recognition of preserved primary rock struc-
tures are useful for the identification of the origin of 
residual soils while a close relationship exists be-
tween the landform and the origin of a transported soil 
(Jennings et al. 1973). 
 
 
4 CLASSIFICATION FLOWCHART  
 
A structured approach was used to perform the clas-
sification of soil layers in the soil profiles from test 
pit logs to ensure consistency in the labelled data that 
was used to train the machine learning models.  A 
flowchart was developed in collaboration with ex-
perts in the field. The flowchart follows a step-by-step 
path with logical tests to identify the appropriate site 
class and starts by selecting the dominant soil texture.  

4.1 Clay 

The flowchart for clays is displayed in Figure 1. For 
a clay-dominant soil, the first test was to decide 
whether a clay was potentially expansive based on the 
origin of the soil. If the clay origin was not potentially 
expansive, settlement was considered rather than 
heave and the flowchart for Class S used. The struc-
ture of the clay was then considered. If slickensiding 
and shattering (Netterberg 2019) were indicated, the 
layer was assigned to Class H3. For fissured and in-
tact layers, the soil colour was considered. If a fis-
sured clay was black, dark-grey, maroon, or mottled, 
it was assigned Class H2; if not, it was assigned Class 
H1. A black, dark-grey, maroon, or mottled intact 
clay was also assigned to Class H1. If an intact clay 
was not black, dark-grey, maroon, or mottled, the 
moisture condition was considered; very moist or wet 
clay of low expansive potential was assumed to un-
dergo greater settlement (i.e. Class S) than heave 
(Class H). 

4.2 Sand 

The classification flowchart, shown in Figure 2, is 
based on the typical field characteristics of collapsi-
ble soils. Collapsible soils are clayey or silty sands 
with low moisture content, dense consistency, and 
pinhole-voided structure. The origin of the sand was 
also included as criteria for classification. The origin 
of collapsible soils includes various transported soils 
and certain residual soils such as the residual granites 
of the Basement Complex. If these conditions were 
not met, the flowchart for Class S was used. Subdivi-
sion within Class C was made based on consistency 
and the description of the voids. Soils classified as 
Class C were loose and weakly voided, while those in 
Class C1 were medium-dense with weak voiding. 
Class C2 soils were dense with a pinhole-voided 
structure. 
 

 
Figure 1. Classification flow-chart for class H, H1, H2 and H3 
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Figure 2. Classification flow-chart for Class C, C1 and C2 

 

4.3 Silts, sands not in Class C and clays not in 
Class C 

For silts and sands and clays that do not form part of 
classes C and H respectively, the criteria for classifi-
cation were based solely on the consistency of the soil 
(Figure 3). If the consistency was described as a range 
(e.g., medium dense to dense), the lower bound de-
scription (medium dense) was used for classification.  

 

 
Figure 3. Classification flow-chart for Class S, S1, S2 

4.4 Fill 

When classifying fill, a distinction was made between 
controlled and uncontrolled fill. Controlled fill such 
as compacted engineered fill was labelled as Class 
PC. Uncontrolled fill such as construction rubble and 
end tipped soil was labelled as Class PU.  
 
 
5 MACHINE LEARNING METHODOLOGY  

5.1 Data labelling  

Using soil profiles obtained from various South Afri-
can consultants, 430 soil layers were classified to ob-
tain a uniform split between Classes. A subset of 384 
layers was used for training and testing of the ma-
chine-learning models. The validation dataset con-
sisted of 46 soil layers.  
An excerpt of input data is illustrated in Figure 4. A 
semicolon was used to separate attributes within the 

MCCSTO descriptions, while a hashtag was em-
ployed to delimit the layer description from the class 
label.  
 

 
Figure 4. Model input data 

5.2 Pre-processing 

Lowercasing was applied to all three machine learn-
ing models to reduce noise within the data. Bigrams 
and lemmatization were additionally used for the De-
cision Tree-model. Bigrams capture pairs of consec-
utive words to preserve word order (e.g. slightly 
moist is a bigram). Lemmatization transforms a word 
to its root form (lemma) which preserves the seman-
tics as well as the definition of a word (e.g., fissuring 
becomes fissure).  

5.3 Term Frequency-Inverse Document Frequency 
(TF-IDF) vectorizer 

For a machine to read the descriptive data, words 
need to be transformed to numerical data that repre-
sents words in the shape of low-dimensional vectors. 
The term frequency measures how often a word ap-
pears in a document:  
 

!" = !"#$%&	()	*+#%,	-(&.	/00%/&,	+1	.(2"#%1*

3(*/4	1"#$%&	()	-(&.,	+1	.(2"#%1*
 (1) 

The inverse document frequency measures the num-

ber of documents in a corpus that contains a certain 

word w and is therefore a measure of importance of 

a word:  

$%" = &'( ) 3(*/4	1"#$%&	()	.(2"#%1*,	+1	2(&0",

!"#$%&	()	.(2"#%1*,	2(1*/+1+15	-(&.	-	
* 

 (2) 

The TF-IDF score is expressed as the product of 
the TF and IDF: 
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!" − $%" = !"	 × $%"   (3) 

5.4 Machine learning models 

Three machine learning models were tested: Support 
vector machine learning, Decisions Trees and Ran-
dom Forests. The Support Vector Machine (SVM) 
learning is suitable for linear and nonlinear classifica-
tion of complex small- to medium-sized datasets. 
SVM finds a decision boundary (hyperplane) that 
best separates training instances from different clas-
ses. A hyperplane is a n − 1 dimensional plane that 
separates the n dimensional feature space of the train-
ing instances into two distinct regions (Nguyen et al. 
2022). The training instances located on two parallel 
hyperplanes are called support vectors (Géron 2019). 

A Decision Tree is a supervised model used for 
classification tasks by recursively splitting the in-
stance space into subspaces. This process simplifies a 
complex decision-making task into a series of binary 
decisions, leading to a final prediction in the form of 
a class label or termination node (Rokach & Maimon 
2005). Splitting of internal nodes is done according to 
a single attribute and the model will consequently 
search for the best attribute upon which to split the 
node (Rokach & Maimon 2005).  

Random Forests are Decision Tree-based ensemble 
machine learning models with each tree being trained 
on different random samples of the data (Cutler et al. 
2011). Instead of finding the best attribute at a node 
for splitting, Random Forests search for the best at-
tribute among a random subset of features (feature 
bagging). Some of the instances may be sampled mul-
tiple times for any given predictor, while other in-
stances are not sampled at all. The unsampled training 
instances are referred to as out-of-bag instances and 
can be used to evaluate the model without the need of 
a separate validation set since the model have not seen 
these samples (Géron 2019).  

5.5 Performance measures 

Precision, recall, F1-score and accuracy were metrics 
used to evaluate the classifications performance of the 
three machine learning models. Precision is defined 
as the ratio of true positive predictions to the total pre-
dicted positives. Recall measures the ratio of true pos-
itive predictions to the total actual positives. 

 
The F1-score is the harmonic mean of precision 

and recall. Therefore, a high F1-score is an indication 
of a good precision and recall. Accuracy is defined as 
the proportion of true predictions (positive and nega-
tive) decided by all predictions. 
Confusion matrices plot model-predicted labels 
against the true-labels and were used during the final 
model evaluation to obtain a visual representation of 
the classifier performance. Learning curves were 

used to predict the size a training set must be for the 
model accuracy to stabilize. 
 
 
6 MODEL SELECTION  
 
The subset of data used for training and testing was 
split into a training dataset (70%) and testing dataset 
(30%). The machine learning models were trained 
and tested using different combinations of NLP-tech-
niques. Both accuracy and F1-score were considered 
for the selection of the final model that will be tested 
against the validation dataset. The best performing 
SVM-model, with lower-casing as the only NLP-
technique, achieved an accuracy of 70%. The use of 
bigrams and lemmatization resulted in the decision 
tree model with the highest accuracy with a score of 
70%. The random forest model with only lower-cas-
ing achieved the best overall performance with accu-
racy of 71% and a F1-score standard deviation of 
0.18. The results of the three models are summarized 
in Table 2.  
 
Table 2. Comparison of F1-score performance between models 

Model   SVM    Decision Tree  Random Forest 

Accuracy  70%    70%     71% 
Average F1 0.7    0.7     0.7     
F1 standard 0.24    0.22     0.18   
deviation   

 
The trained Random Forest-model with only 

lower-casing was selected as the best model based on 
the higher accuracy score compared to the SVM and 
Decision Tree-model, as well as a lower standard de-
viation of F1-score. The lower standard deviation in-
dicates a more consistent performance across all clas-
ses compared to the SVM and Decision Tree. The 
performance metrics for the chosen model is dis-
played in Table 3. 
 
Table 3. Accuracy report of Random Forest-model on test da-
taset 

Class Precision Recall F1-score 

C 1.00 0.60 0.75 
C1 0.55 0.75 0.63 
C2 0.71 0.83 0.77 
H 0.40 0.40 0.40 
H1 0.60 0.43 0.50 
H2 1.00 0.80 0.89 
H3 0.90 1.00 0.95 
S 0.67 0.86 0.75 
S1 0.50 0.29 0.36 
S2 0.78 0.88 0.82 
PC 0.75 0.75 0.75 
PU 0.83 0.83 0.83 

Accuracy 71%   
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7 FINAL MODEL EVALUATION 
 
The validation dataset was used to evaluate the per-
formance of the random forest model. The accuracy 
of the model, evaluated against the validation dataset 
reduced from 71% to 59% which suggest that the 
model was overfitted to the training data and does not 
generalize well when seeing new instances. The per-
formance measures of the random forest model for all 
classes are summarized in Table 4 and a confusion 
matrix is plotted in Figure 5 to visually represent clas-
sifications. 
 
Table 4. Accuracy report of Random Forest-model on validation 
dataset 

Class Precision Recall F1-score 

C 0.75 0.75 0.75 
C1 0.33 0.25 0.29 
C2 0.60 1.00 0.75 
H 0.50 0.50 0.50 
H1 0.25 0.25 0.25 
H2 1.00 0.75 0.86 
H3 0.80 1.00 0.89 
S 0.38 1.00 0.55 
S1 0.50 0.25 0.33 
S2 0.67 0.5 0.57 
PC 1.00 0.67 0.80 
PU 1.00 0.33 0.50 

Accuracy 59%   

 

 
Figure 5. Validation dataset confusion matrix 

 
The model generalizes well for new instances of 

Class C and C2 as no significant decrease in F1-score 
is observed. The F1-score for classes H2 and H3 re-
mained high which confirms that the model recog-
nized the terms fissured and slickensided and can 
classify most instances of class H2 and all instances 
of class H3 correctly.  

However, some scatter between sub-C-classes are 
present, the model can generally distinguish C-clas-
ses from other classes. Confusion occurs between 
class H1 and subclasses of Class S. The criteria for 
the classification of class H in Figure 1, which is 

based on the expected soil movement from heaving, 
does not consider the soil consistency. Therefore, if 
the origin of the expansive clay is not captured, the 
model can easily classify a class H1 instance as class 
S when the 
model considers consistency as a more important fea-
ture and the clay is described as stiff to very stiff. This 
can possibly be resolved by increasing the size of the 
training dataset so that the model has enough in-
stances to capture the origins of expansive soils as im-
portant features to better distinguish between classes 
H and S.  

To predict the number of instances required to 
achieve a model accuracy of 80%, a logarithmic- and 
power-law-curve is fitted over the validation curve 
(see Fig. 6). For the logarithmic- and power-law 
curve it can be estimated that 1470 and 514 training 
instances are required respectively to achieve a model 
accuracy of 80%.  

 
Figure 6. Logarithmic- and log-power- learning curves 

 
 
8 CONCLUSIONS 
 
A flowchart was developed to classify soil layers 
from test pit-log descriptions according to Geotech-
nical Site Investigations for Housing Developments 
(GFSH-2 2002). The classified data was used to train 
a Support Vector Machine-, Decision Tree- and Ran-
dom Forest-model. The Random Forest model, with 
only lowercasing applied as a language pre-pro-
cessing technique, achieved the best overall perfor-
mance on the test dataset. The reduction in accuracy 
when the model was evaluated against a validation 
dataset indicates that the model is overfitted to the 
training data. The model classifies instances of class 
H3 with success which indicates that the model con-
siders the terms shattering and slickensiding as im-
portant features. The Random Forest model had diffi-
culty to distinguish between subclasses of Class S and 
Class H1. This can be resolved by increasing the 
number of training instances. By fitting a logarithmic 
and power-law learning curve to the validation curve, 
it is predicted that between 1470 and 514 validation 
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instances would be required to achieve model accu-
racy of 80%.  
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