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Use of neural networks to predict pile drivability 
Utilisation de réseaux neuronaux pour prédire la maniabilité du pieu 

 
R. E. Kristinof 

FSG Geotechnics & Foundations, Melbourne, Australia 

 
ABSTRACT: At a solar farm site in Australia, piles were installed to support photovoltaic panels across a 200ha 
area. The original construction methodology assumed piles could be directly driven, however when construction 
commenced variable ground conditions meant that shallow pile refusal frequently occured. Whilst relationships 
could be readily identified between driveability and soil strength at specific borehole locations, attempts to 
extrapolate these predictions across the site via conventional means proved unreliable, and pre-drilling was 
implemented as a remedial measure at significant budget and time impact to the project. Using commercially 
available software (NeuralTools 7.5 by Palisade) a neural network was developed to analyse data from the site, 
allowing for consideration of highly non-linear parameters to predict driveability. Data from early phases of pile 
installation, along with additional test piles installed adjacent to boreholes was used to train and test a neural 
network, which was subsequently used to predict zones of likely driveability elsewhere across the site. The neural 
network predictions were implemented in selected areas of the site, with over 8,000 piles successfully driven. 
The improved reliability of driving predictions using this method resulted in significant monetary and program 
benefits by minimising the amount of pre-drilling required. The neural network methodology, whilst computing-
power intensive, was demonstrated to be a useful tool in completing a complex multi-variable assessment of 
driveability. 

 
RÉSUMÉ: Sur un site de ferme solaire en Australie, pieux ont été installées pour supporter des panneaux 
photovoltaïques sur une surface de 200 hectares. La méthodologie de construction originale supposait que les 
pieux pouvaient être directement entraînés, mais lorsque la construction commençait, des conditions de sol 
variables signifiaient que le refus des pieux peu profonds se produisait fréquemment. Bien que les relations entre 
la maniabilité et la résistance du sol puissent être facilement identifiées sur des sites de forage spécifiques, les 
tentatives d'extrapolation de ces prévisions sur le site par des moyens conventionnels se sont avérées peu 
probables. En utilisant un logiciel disponible dans le commerce (NeuralTools 7.5 by Palisade), un réseau neuronal 
a été développé pour analyser les données du site, ce qui permet de prendre en compte des paramètres hautement 
non linéaires pour prédire la maniabilité. Les données provenant des premières phases de l'installation des pieux, 
ainsi que des pieux d'essai supplémentaires installés à proximité des forages, ont été utilisées pour former et tester 
un réseau neuronal, qui a ensuite été utilisé pour prédire des zones de conduite probables ailleurs sur le site. Les 
prédictions du réseau neuronal ont été mises en œuvre dans des zones sélectionnées du site, avec plus de 8 000 
piles pilotées avec succès. L’amélioration de la fiabilité des prévisions de conduite grâce à cette méthode a permis 
d’obtenir d’importants avantages monétaires et de programme en minimisant la quantité de pré-forage nécessaire. 
La méthodologie des réseaux neuronaux, bien que le calcul intensif en énergie, s'est avéré être un outil utile pour 
mener à bien une évaluation complexe de la capacité de conduite à plusieurs variables. 
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1 INTRODUCTION 

Installation of driven piles for a solar farm in late 
2017 / early 2018 encountered significant 
construction delays and difficulties when 
extensive and unexpected shallow refusal of piles 
occured across the site. A review of ground 
conditions failed to provide a sufficiently 
accurate prediction of zones of likely refusal, 
with pile driveability variable over a scale of 
metres, compared with borehole information 
spaced at over 150 m centres. Pile driving 
hammers and data collected on site was not 
considered suitable for conventional analysis 
techniques such as GRLWEAP. This paper 
describes the development and application of an 
Artificial Neural Network (ANN) using available 
data during construction to overcome this issue 
and provide a more reliable means of predicting 
zones of potential driveability across the site.  

2 PROJECT DESCRIPTION 

2.1  Site description 

The site comprises a 200 ha area located near the 
city of Townsville, in the state of Queensland, 
Australia. The project comprised the installation 
of over 60,000 piles to support photovoltaic solar 
panels, intended to produce up to 148 MW of 
electricity. 

The site was formerly a mango plantation, and 
was characterised by approximately 50 boreholes 
drilled to approximately 6 m in depth, with 
Standard Penetration Testing (SPT) at 1.5 m 
depth intervals and Dynamic Cone Penetrometer 
(DCP) testing adjacent to most boreholes. 
Laboratory testing comprised simple index 
testing and a limited number of Unconsolidated 
Undrained triaxial tests. Typically two SPT N 
values were available in the top 3 m of the soil 
profile, of interest to the pile installation. 

Ground conditions at the site typically 
comprised alluvial deposits of very stiff to hard 

silty and sandy clay. In approximately 1/3 of test 
locations, this material was underlain by medium 
dense to dense silty and clayey sands from 2 to 
3m below ground surface level. At other 
locations, the very stiff to hard clays persisted to 
the depth of the borehole. Below 2m in depth, the 
material was locally cemented in places. The 
depth and strength of cementation varied between 
boreholes, without a predictable pattern. 

2.2 Piling details 

Piles comprised 150 mm steel „H“ piles, installed 
to target embedments of between 2.3 m to 2.6 m 
below ground level. Piles were driven using an 
accelerated driving hammer (Vermeer PD10), 
emparting nominally 1.3kJ of driving energy. 
These hammers have a rapid hammer rate of up 
to 1000 blows per minute and therefore driving 
was measured by drive time rather than blow 
count. The actual efficiency of the six hammers 
used on site was also unknown and the specific 
hammer details were absent from the GRLWEAP 
database, meaning conventional wave analysis 
was not possible. 

Where piles could not be directly driven, they 
were installed in a pre-bored hole which was 
backfilled with stabilised sand. The cost of this 
pre-boring a pile was in the order of $75 per pile, 
compared with $40 for a directly driven pile. If 
pile driving was attempted, but failed, the pile 
had to be extracted and a pre-bored pile installed. 
The added cost of this extraction process meant 
that costs of a failure to drive a pile was 
considerably more than the aggregate of a driven 
and a pre-bored pile ($115). Project preferences 
were to directly drive as many piles as possible. 
On commencement of construction however, it 
was found that directly driving piles was 
unreliable with considerable variability of 
driving performance occuring for piles only a few 
metres apart. It was difficult to reliably predict 
this variability based on ground conditions alone 
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given that boreholes were spaced at more than 
150 m.  

 

 
Figure 1. Example of variable driven pile length.  

 
Figure 1 gives an indication of the variability 

of site conditions. The figure shows the 
variability of finished stick up heights of directly 
driven piles of between 1.2 m to 2.2 m in close 
proximity to each other. 

As a consequence of this inherit variability and 
difficulty to predict pile driving performance a 
decision was made to reset the project baseline 
from all-driving to all preboring. Thus, any piles 
which could subsequently be driven were 
considered to be a saving, rather than business-
as-usual, which is important to understand when 
evaluating the success of the ANN methodology. 

3 WHAT IS AN ARTIFICIAL NEURAL 
NETWORK? 

An artificial neural network (ANN) is a 
computing algorithm which attempts to imitate 
the way in which the human brain analyses and 
learns patterns in data to predict outcomes (Rafiq 
et al, 2003), and „like people, learn by example“ 
(Awodele and Jegede, 2009). 

Several authors (for example Jeng et al, 2003, 
Shahin et al, 2001) have described the application 
of neural networks to civil engineering 
applications, which include the predictions of 
liquefaction potential, seabed instability, pile 

capacity, settlement of foundations and 
deflection of retaining walls. 

Lazarevska et al (2014) provide a concise 
description of the basic architecture of an ANN 
(in the context of a case study on its use in 
predicting the performance of concrete structures 
under fire loading). A typical ANN comprises a 
number of artificial neurons arranged in layers 
and interconnected: an input layer, an output 
layer and some number of hidden layers. The 
input received by each input layer neuron is 
multiplied by a weighting coefficient, and then 
aggregated together and processed through an 
activation function within the hidden neuron 
layer(s), before finally being presented to the user 
as a result or prediction via the neurons in the 
output layer. Figure 2, extracted from Lazarevska 
et al (2014), illustrates this process schematically. 

 
Figure 2. Schematic representation of an ANN (after 

Lazarevska et al (2014)  

 

Importantly, development of an effective ANN 
requires the implementation of a training phase, 
where a sample of data with known outcomes is 
passed through the model, to allow it to learn. 
During this training process, the weight 
coefficients which relate the neurons to each 
other are adjusted so as to minimise the error 
between predictions and known outcomes in the 
training data set Awodele and Jegede, 2009). 
Once trained, the model can then be tested against 
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another known dataset, or used to make 
predictions for data with unknown outcomes.  

Further detailed discussion of how ANN‘s are 
built and perform is beyond the scope of this 
paper, but is otherwise described by Rafiq et al 
(2001), Awodele and Jegede (2009) and others. 

4 APPLICATION TO PROJECT SITE 

4.1 Selection of site data for model 

development 

At the time of the author‘s intial project 
involvement, limited data to evaluate pile 
driveability was available, with relevant 
production piles concentrated in one part of the 
site in close proximity to only a few boreholes. 
As part of a wider redesign and evalation process, 
installation of test piles was ordered adjacent to 
12 boreholes, so that driveability could be 
compared to borehole data. It was observed that 
piles could be driven where the uncorrected N 
value over the top 3.0 m was less than N=42. 

Subsequently, at a later project stage, test piles 
were installed adjacent to a further 11 known 
borehole locations. Data from these installations 
yielded similar results. 

Whilst an SPT N value of less than 42 
appeared indicative of ‘driveable’ conditions, the 
apparent variability of the ground over smaller 
distances than the distance between boreholes 
made predictions away from specific borehole 
locations difficult. Distance from known 
borehole locations was therefore an important 
input parameter to the ANN.  

In order to establish and apply the ANN to the 
site, boreholes where the SPT N value was less 
than 42 were labelled as “YES” boreholes, and 
those with SPT N=42 or greater as “NO” 
boreholes. Following a trial and error process, the 
following variables were adopted for calibrating 
the model, considered by the author to provide 

the ‘best fit’ for the data with as few variables as 
possible: 
• Proximity to nearest borehole; 
• Average N value in nearest borehole; 
• Maximum N value in nearest borehole; 
• Distance to nearest YES borehole; 
• Distance to nearest NO borehole. 

It is noted that pile driving time may also have 
been a good indicator of performance, however 
insufficient good quality data was available for 
this assessment. 

4.2 Software 

The ANN was built using proprietary software 
called Neural Tools 7.5 (Palisade, 2015), which 
functions as a plug-in to Microsoft Excel via the 
Decision Tools software suite. Default net 
configurations (PN/GRN net) and limit on 
training time (2 hours) were adopted.  

4.3 Training 

The ANN was trained using the results of the 
initial 12 test piles as well as a selection of a 
further 81 production piles with good driving and 
depth of refusal data.  Indicative output from the 
training routine is shown in Figure 3. Whilst 
limited to “2 hours” trainng time by the software 
settings, training only took a few seconds. 

The training phase suggested that proximty to 
the nearest „NO“ borehole had the greatest 
impact on the model‘s result by a significant 
margin, with the proximity to the nearest „YES“ 
borehole the next highest. Interestingly, the next 
most important variable was distance to the 
nearest borehole, independent of whether this 
was a YES or NO hole. It is suggested that this is 
a mathematical fiction arising from the fact that 
predictions are likely to be more reliable in close 
proximity to a borehole with known driving 
characteristics, compared with further away. 
Obviously then, this variable does not represent 
an actual phycial property of the ground per se, 
but rather is more likely a reflection of the 
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weighting applied internally within the ANN 
model (Rafiq et al, 2001). 

 

 
Figure 3. Training phase output 

 

4.4 Testing 

The ANN was then tested on a further set of 129 
production pile results. Results of the testing 
phase are shown in Figure 4 and Table 1. 

 
Figure 4. Testing phase output 

 

 

 

Table 1. Testing phase output 

Actual 
classification 

Predicted  
NO 

Predicted 
YES 

NO 70 17 

YES 22 20 

 
The majority of training piles were production 
piles located in an area with high rates of refusal, 
and with proximity to only two boreholes, which 
is thought to be the reason for the relatively poor 
correlation of YES predictions. Nevertheless, 
within the context of the particular project, this 
was still considered acceptable as the purpose of 
the model was to select piles to be driven from 
those where the default option was to pre-bore.  
Thus incorrectly identifying a pile as undriveble 
when it might be driveable was not necessarily a 
concern (and in practice would never be proven, 
as the piles would have been pre-bored anyway). 
Incorrectly identifying a pile as driveable 
(Prediction = YES) but subsequently 
encountering refusal (Actual = NO) would 
however add further cost to the project as it would 
result in an attempted drive, an extraction process 
and finally a pre-bore and install process, instead 
of stepping straight to the latter. Thus, of utmost 
importance in evaluing the ANN data in Table 1 
is the 17 piles incorrectly predicted as YES piles 
when their actual classification was NO, 
compared with 70 actual NO piles correctly 
predicted as such. This suggested a nearly 20% 
chance that a given pile classified as driveable 
(YES) may actually not be (Actual classification 
= NO). Put another way, when used as a tool to 
select piles which might be driveable, the ANN 
had a predicted failure rate of 1 in 5. 

4.5 Prediction and application 

The ANN model was used to prepare a map of 
likely zones of pile driveability, which are shaded 
black in Figure 5. As the model was developed in 
parallel with ongoing construction, it was only 
applied to selected areas predominately to the 
north and east of the site (top and left of Figure 
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5), to suit the construction schedule. The areas of 
predicted driveability were generally centred 
around borehole locations, reflecting the 
relatively high weighting of „distance to nearest 
BH“ as an independant model variable. 

The map shown in Figure 5 was used 
cautiously by the construction team, in light of 
the relatively high risk of incorrect predictions (1 
in 5). Knowing that predictions were likely most 
reliable towards the centre of the shaded areas 
(being nearest to a borehole), so far as practical 
pile driving was commenced towards the centre 
of these zones, and progressed outwards. Pile 
driving ceased and pre-boring recommenced as 
soon as refusal was encountered, in order to 
minimise extraction and rework costs. 

In the areas where the ANN was applied, over 
8,000 piles were predicted to be driveable. Of 
these, fewer than 50 piles refused prematurely. 
As pile driving ceased as soon as refusal started 
to occur, reliable statistics on the overall accuracy 
for predicting actual „NO“ piles were not 
collected. In some cases, piles were successfully 
driven in areas beyond those regions of predicted 
driveability shown in Figure 5, which is not 
unsurprising given the poor accuracy of 
predictions related to acutal „YES“ piles. Had 
more time during the construction process been 
available, the model could have been updated 
with results from nearby pile installations, and 
‚re-trained‘ accordingly. Nevertheless, the 
application of the ANN in the manner described 
resulted in construction savings of over $270,000 
AUD compared with the revised baseline costs 
which assumed that 100% of piles would need to 
be pre-bored. 

5 ASSESSMENT OF TECHNIQUE 

5.1 Strengths 

As described by Shahin et al (2001), in order to 
perform a conventional regression analysis, one 

must first be able to guess the nature of any non-
linear relationship between parameters. At the 
project site, the application of an ANN was able 
to provide a work-around to the relatively poor 
understanding of the distribution of hard ground 
(with N > 42). This meant that valid predictions 
could be made even without a rigorous 
understanding of the variability in conditions 
across the site.  

 
Figure 5. Example testing phase output. Black areas 

show predicted zones of likely driveability. 

 

Given that available input and „training“ data 
was limited, the ANN was observed to provide a 
reasonably good level of accuracy. By contrast, a 
regression analysis performed on the same 
dataset, skewed to one part of the site with 
comparatively few nearby boreholes would likely 
have resulted in much poorer regression 
coefficients. The ability to train the model using 
a limited dataset was considered a significant 
strength of the approach, consistent with the 
findings of other authors (for example, Rafiq et 
al, 2001). 
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The proprietary software which was used was 
easy to operate, and the resulting predictions 
were provided with easy to understand outputs 
for weighting/influence of variables and likely 
model accuracy, allowing sense and judgement 
checks of computed predictions, irrespective of 
one‘s understanding of the underlying 
mathematical principles of the ANN 
methodology itself.  

Although not applied in this particular case 
study site due to the necessary constraints of a 
live and dynamic project environment, the 
methodology permits „re-training“ of data sets 
which can lead to more reliable future outcomes. 
The ability to do this means that ANN models can 
be developed progressively over time, with the 
ability to improve predictions as the model learns 
patterns in new data. 

5.2 Weaknesses 

The most significant weakness noted by the 
author in relation to applying the ANN technique 
is its „black-box“ approach to data training and 
prediction of results. As described by other 
authors (Awondele and Jegede, 2009; Rafiq et al 
2001), there is no way of inspecting or 
scrutinising the underlying equations or 
mathematical regression used to assess data 
patterns or determine predictions. Whilst ANN‘s 
can be useful as demonstrated herein, this 
weakness limits their application in situations 
where the model requires significant scrutiny. 
For example, a 3rd-party review of any such 
model would be limited to a high-level inspection 
of training/testing inputs and outputs, rather than 
a rigorous review of the logic involved in each 
individual prediction. 

The ANN technique was found to be 
computing-power intensive when applied to this 
case study. The particular software suite used by 
the author was limited to 1,000 lines of data per 
prediction run. Thus, for 60,000 piles, 60 separate 
analyses had to be run following the training and 

testing phases, and then compiled into a single 
database for interpretation and application. It can 
be reasonably expected that over time these 
restrictions would diminish as computing power 
continues to increase.  

Finally, and as noted earlier, the technique 
proved useful where limited data was available 
and in the absence of easily understood 
interelationships between independant variables. 
The model could have been improved if it were 
possible to obtain data in a more deliberate, 
methodical manner (rather than relying on 
available as-built data to train the model). Such a 
targetted data aquisition program in this instance 
would have impacted negatively on the project 
schedule, erasing much of the benefit of applying 
the technique in the first place. Were more data 
available in other areas of the site, there is a 
possibility that conventional regression analyses 
may also have been more robust. With the benefit 
of less computational effort and the availability 
of a interrogable regression equation as output, 
this may have led to a more favourable project 
outcome. Nevertheless, within the constrains of 
available time and data from the project site, the 
ANN did prove a practical and useful 
methodology. 

6 CONCLUSION 

This paper has demonstrated the application of an 
Artifical Neural Network (ANN) to the 
prediction of pile driveability at a site with high 
rates of refusal and difficut to predict variability 
in driving conditions. 
 The case study has demonstrated how a 
relatively small dataset can be used to train and 
test an ANN which, provided it is applied 
cautiously, can provide significant cost and 
program outcomes to a project.  
 This case study also highlights some 
limitations of the method, in particular the lack of 
an interrogable regression equation, and a greater 
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computing resource required compared to 
conventional regression. Nevertheless, the model 
is demonstrated to provide a successful and 
reliable project outcome. 
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