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ABSTRACT:  This paper aims to demonstrate how the Receiver Operating Characteristic (ROC) analysis can 

be applied for geotechnical diagnosis and how ROC results can be communicated in a geospatial context. A 

specific example is provided in which the ROC analysis is used to quantify the confidence in a calibration of 

geophysical amplitude response to areas of anthropogenic hard ground. 

The ROC analysis is a statistical approach used to assess the efficacy of diagnostic evaluation procedures. To 

assess how well a diagnostic model performs, the true positive rate (TPR) from the diagnostic model is plotted 

against the false positive rate (FPR) to produce an ROC curve. The area under the curve (AUC) is used to assess 

model performance, with increasing AUC indicative of better model performance. To maximise AUC, it is 

necessary to determine the optimum operating point (OOP) on the ROC curve, which defines the threshold value 

which minimises the rate of misprediction for the model whilst optimising the rate of correct prediction. 

This approach allows the risk of inaccurate prediction to be quantified. For example, it may be desirable to 

increase the threshold to reduce the chance of false positive predictions; the ROC approach allows this reduction 

in false positive predictions to be quantified and it also quantifies the reduction in true positive predictions 

associated with the same threshold increase. 

 
RÉSUMÉ:  Cet article montre comment l'analyse des caractéristiques de fonctionnement de récepteur (ROC) 

peut être appliquée au diagnostic géotechnique et comment les résultats ROC peuvent être communiqués dans 

un contexte géospatial. L’article inclue un exemple spécifique dans lequel l'analyse ROC est utilisée pour 

quantifier la confiance dans l’étalonnage de la réponse d'amplitude géophysique dans des zones de sol dur 
anthropique. 

L'analyse ROC est une approche statistique utilisée pour évaluer l'efficacité des procédures d'évaluation de 

diagnostique. Pour évaluer l'efficacité du modèle de diagnostic, le taux de vrais positifs (TPR) du modèle de 

diagnostic est calculé en fonction du taux de faux positifs (FPR) pour produire une courbe ROC. L'aire sous la 

courbe (AUC) est utilisée pour évaluer la performance du modèle, l'augmentation de l'ASC indiquant une 

meilleure performance du modèle. Pour maximiser l'ASC, il est nécessaire de déterminer le point de 

fonctionnement optimal (POO) sur la courbe ROC, qui définit la valeur de seuil qui minimise le taux de mauvaise 

prédiction pour le modèle tout en optimisant le taux de prédiction correcte. 

Cette approche permet de quantifier le risque de prédiction inexacte. Par exemple, il peut être souhaitable 

d’augmenter le seuil pour réduire le risque de prédictions faussement positives. L'approche ROC permet de 

quantifier cette réduction des prévisions faussement positives et quantifie également la réduction des prévisions 

positives réelles associées à la même augmentation de seuil. 
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1 INTRODUCTION 

Geomaterials, such as soil and rock, are 

inherently variable and it is common to encounter 

differences in their engineering properties on 

most sites. This intrinsic variability typically has 

an associated spatial component due to the effect 

of geological formative processes on 

geotechnical properties. Given this inherent 

variability of geomaterials, it is necessary to 

classify them to understand the material 

behaviours and the impact this has on 

geotechnical designs. 

Classification of geomaterials is undertaken 

using both direct and indirect approaches. Direct 

approaches include methods in which sample 

characteristics are directly measured to classify 

the geomaterial. Common examples of these 

direct approaches are described by soil 

classification standards (ISO (2017a and 2017b); 

BSI (2015); ASTM (2017)) and rock 

classification standards (ISO (2017c); CIRIA 

C574 (Lord et al., 2002); ASTM (2008)). Indirect 

approaches include methods in which measured 

properties are correlated with soil classification 

properties or behaviour types. Common 

examples of indirect approaches include cone 

penetration test (CPT) correlations (e.g. 

Robertson, 2010), empirical correlations between 

classification tests and more advanced 

parameters, and geophysical correlations (such as 

inversion approaches, e.g. Vardy et al., 2018). 

Conventional practice is to utilise engineering 

judgement to classify geomaterial behaviour. 

Such an approach is inherently subjective and can 

result in notable discrepancies, which is why 

there has been increasing interest in utilising 

more objective and repeatable approaches to 

classify geomaterials. 

Statistical methods offer a relatively more 

objective approach to classifying geomaterial 

behaviour and have seen increased application in 

recent years. DNV (2015) details recommended 

practice for the statistical representation of soil 

data and Baecher and Christian (2003) provide 

numerous examples of how statistical methods 

can be applied in a geotechnical context. 

Moreover, with the increasing use of 

quantitative risk assessments to assess ground-

related risks, statistical methods offer the distinct 

advantage of enabling risks to be mathematically 

quantified and value assigned accordingly. It 

should be noted that the use of statistical 

approaches does not replace the application of 

engineering judgement and should instead be 

viewed as merely another tool to assist 

engineering judgement. 

One statistical approach that has seen 

relatively limited application in a geotechnical 

context, but which has significant potential, is the 

receiver operating characteristic (ROC) analysis. 

The ROC analysis is a statistical approach used 

to assess the efficacy of a diagnostic evaluation 

procedure. It has been widely used in areas of 

research such as electrical engineering, medicine, 

meteorology, machine learning and data-mining. 

In a geotechnical context, ROC analyses have 

been applied to assess the efficacy of predictive 

methods for pile driveability (Mens et al., 2012) 

and liquefaction (Maurer et al., 2015). 

The following sections provide an overview of 

the ROC analysis method and detail an example 

ROC analysis which demonstrates how this 

approach can be used to assist with geospatial 

classification problems. In the example, the ROC 

analysis is used to calibrate and assess the 

efficacy of a predictive method for determining 

the presence of hard ground. The results are 
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subsequently plotted within a geographical 

information system (GIS) to illustrate the 

locations where there is greatest confidence of 

encountering hard ground and which therefore 

pose the greatest risk to shallow foundation 

installation. 

2 ROC ANALYSIS 

For binary classification problems, such as 

whether a feature will or will not be encountered 

at a given location, there are two possible 

outcomes: a ‘positive’ result (i.e. the classifier is 
observed) and a ‘negative’ result (i.e. no classifier 
is observed). An associated diagnostic model will 

also provide either a ‘positive’ or ‘negative’ 
prediction. As such, the model can perform in one 

of four ways: 

 

• A positive prediction that in reality is a 

positive result is a true positive (TP); 

• A positive prediction that in reality is a 

negative result is a false positive (FP); 

• A negative prediction that in reality is a 

positive result is a false negative (FN); 

• A negative prediction that in reality is a 

negative result is a true negative (TN). 

The above can be expressed using a confusion 

matrix (also known as a contingency table), as 

shown in Figure 1. 

 

  Instance 

  Positive Negative 

Diagnostic 

Model 

Prediction 

Positive 
True Positive 

(TP) 

False Positive 

(FP) 

Negative 
False Negative 

(FN) 

True Negative 

(TN) 

Figure 1. Confusion matrix 

 

When a diagnostic model is based on a 

continuous variable (e.g. a magnetic field, an 

electric charge, a seismic amplitude, etc.), 

continuous probability distributions of 'positive' 

and 'negative' results can be plotted as a function 

of that variable. In such cases, a threshold value 

is used in the diagnostic model to define the 

boundary of positive and negative predictions: 

values one side of a given threshold yield a 

‘positive’ prediction whereas values on the other 
side of the threshold yield a ‘negative’ prediction. 

Depending on the distributions and threshold 

value used, different proportions of the above 

four outcomes will be achieved. Figure 2 

illustrates this concept. 

 
 

Figure 2. Illustration of a typical bimodal distribution 

from a continuously varying diagnostic model 

showing the effect of the threshold value on prediction 

success rate 

 

When the distributions of ‘positives’ and 
‘negatives’ overlap, setting the threshold too low 
will result in numerous false positives and setting 

the threshold too high will result in numerous 

false negatives. Both outcomes will have 

consequences (e.g. increased direct cost or 

increased risk), so it may be desirable to 

determine the optimum threshold value to 

balance the risks. 

The ROC analysis is a method to assess the 

efficacy of a diagnostic model for predicting 

instances of a classifier and can be used to 

calibrate diagnostic models so that the predictive 

performance is optimised. To assess how well a 

diagnostic model performs, the true positive rate 

(TPR) from the diagnostic model is plotted 

against the false positive rate (FPR) to produce an 

ROC curve. It should be noted that TPR and FPR 
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are synonymous with the true positive and false 

positive probabilities, respectively. The 

following equations summarise how the 

outcomes presented in Figure 1 are calculated: 

 𝑇𝑃𝑅 = TP(𝑇𝑃+𝐹𝑁) (1) 

 𝐹𝑃𝑅 = FP(𝐹𝑃+𝑇𝑁) (2) 

 TNR = 1 − FPR (3) 

 FNR = 1 − TPR (4) 

 

Figure 3 illustrates how an ROC curve is used 

to assess the efficacy of a diagnostic model. A 

diagonal line from coordinates (0,0) to (1,1) 

indicates random guessing as the rate of correct 

and incorrect prediction is equal. A point at (0,1) 

indicates a perfect diagnostic model with a 

threshold value which segregates all ‘positives’ 
and ‘negatives’. The area under the curve (AUC) 
is commonly used to assess the efficacy of a 

diagnostic model, with increasing AUC 

indicative of better model performance. To 

maximise AUC, it is necessary to determine the 

optimum operating point (OOP) on the ROC 

curve, which defines the threshold value which 

minimises misprediction (i.e. FPR + FNR). 

3 CASE STUDY 

3.1 Background 

In this case study, areas of hard ground were 

encountered around recently installed 

infrastructure within an offshore site, but the 

spatial extent of the hard ground was unknown. 

The hard ground was detected at seabed or at very 

shallow depths below seabed following a 

reconnaissance survey campaign which included 

approximately 15 seabed CPTs and 5 boreholes. 

The presence of hard ground was not detected in 

earlier site investigation campaigns performed 

prior to installation of the existing infrastructure 

and it is believed that the hard ground was caused 

by drilling activities. 

Figure 3: Illustration of how the ROC curve is used to assess the performance of the diagnostic test (left) 

and comparison to the distribution of the continuously varying diagnostic model (right). The position of three 

threshold values (OOP, B and C) are illustrated. The OOP represents the combination of the highest TPR 

and lowest FPR 
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Additional structures with shallow foundations 

were planned for installation at the site. The 

shallow foundations (mudmats with shallow 

skirts) were designed for the soft clay that is 

naturally occurring at the site. The hard ground 

presented a significant risk to the successful 

installation of the shallow founded structures, 

with potential for differential skirt penetration 

across the structure and resulting reduced 

performance, risk of overturning and possible 

misalignment of connections with other 

equipment. 

The hard ground was clearly detected from 

CPT cone tip resistance (qc) as a sharp increase in 

qc, often resulting in CPT refusal, as shown in 

Figure 4. However, given the small area 

represented by a CPT test, an impractically large 

number of discrete CPT tests would be required 

to determine the extent of the hard ground with 

the level of detail required to microsite the 

additional structures away from hazardous areas. 

In areas where hard ground was detected from 

CPT qc data, a high geophysical amplitude 

response was also observed in sub-bottom 

profiler data. The absolute amplitude that related 

to hard ground was less defined than the clear 

indications from CPT qc. However, in contrast to 

discrete CPT data, it is possible to acquire 

spatially resolute site-wide coverage of 

(continuous) geophysical amplitude data. 

Therefore, a chirp sub-bottom profiler 

mounted on a Remotely Operated Vehicle (ROV) 

was used to acquire data on a closely-spaced grid 

which was interpolated to give full sub-bottom 

profiler coverage across the area of interest. An 

ROV-based seabed CPT was used to acquire 

approximately 100 CPTs in a grid-based 

acquisition pattern aimed to target areas where 

hard ground was expected but also aimed to 

target areas for best calibration of the amplitude 

data. Figure 5 presents a map of the seismic 

amplitude data and CPT locations. 

 

 
Figure 5: Map of seismic amplitude data and 

geotechnical investigation locations 

 

Comparison of the geophysical amplitude data 

with CPT qc data showed that the geophysical 

amplitude could be used to predict the presence 

of hard ground. However, due to the scatter in the 

dataset, it was unclear what threshold value of 

geophysical amplitude would best distinguish 

between the presence or absence of hard ground. 

 
Figure 4: Selection of CPT traces where hard 

ground was and was not identified 
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An effective way of optimising the geotechnical 

correlation is to use ROC analysis. 

3.2 ROC Method 

An ROC analysis was performed to assess the 

efficacy of different geophysical amplitude 

thresholds for predicting the presence of hard 

ground and to determine the optimum amplitude 

threshold. The competing diagnostic tests were 

the different amplitude thresholds and the index 

test results were the qc values exceeding 5 MPa 

in the top 2 m below seafloor. Accordingly, true 

and false positives were scenarios where hard 

ground is predicted by geophysical amplitude, 

but were and were not observed from qc response, 

respectively. 

 At each CPT location, geophysical amplitude 

was taken from the amplitude data gridded at 1m 

horizontal resolution. This gridding process 

reflects the resolution of the geophysical data, 

which returns an aggregated response from a 

small elliptical footprint (rather than a single 

point). The gridding process also helps to account 

for potential positioning errors or local 

anomalies. This amplitude data was subsequently 

tabulated alongside the CPT test data with a 

binary classification indicating whether or not 

hard ground was considered present based on the 

definition mentioned above. 

 An ROC analysis was performed using this 

dataset by first specifying threshold geophysical 

amplitudes at intervals of 50. If hard ground was 

interpreted to be present based on CPT results 

and the amplitude was greater than the threshold 

value, values of 1 were assigned; where these 

criteria were not met, values of 0 were assigned. 

Values of TN, FN, TP and FP were subsequently 

calculated and operating characteristics were 

calculated using Equations (1) to (4). The rate of 

misprediction (FPR + FNR) was also calculated. 

The TPR and FPR were subsequently plotted 

together to produce an ROC curve. The OOP was 

the geophysical amplitude with the lowest rate of 

misprediction.  

3.3 Results 

Figure 7 presents the ROC analysis results. The 

OOP for this dataset was an amplitude of 850. At 

this OOP, the TPR was 84% and the FPR was 

15%. The rate of misprediction was thus 31%. 

 
Figure 7: Results from ROC analysis 

 

To understand how the selection of different 

amplitude thresholds (i.e. different TPR and 

FPR) influences the spatial extent of the problem, 

several contours indicating different amplitudes 

were plotted. Figure 8 presents a map with 

contours for the OOP and amplitudes of 300 and 

1350, which have misprediction rates of 75%. 

 

 
Figure 8: Spatial context for ROC analysis results 
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3.4 Discussion 

The results convey how the selection of a 

different amplitude threshold affects the balance 

of risk and direct cost. Moreover, increasing the 

amplitude threshold would reduce direct costs as 

the spatial extent of the hazardous zone reduces, 

thereby decreasing the area requiring remedial 

work. However, this would result in increased 

risk of encountering hard ground unexpectedly. 

Conversely, decreasing the amplitude threshold 

would increase the direct cost (increased 

hazardous area) but reduce risk. Communicating 

this in a spatial context facilitates understanding 

of the spatial variation of risk. 

As shown in Figure 8, the analysis results can 

be used to define zones with a common risk 

associated with them. Depending on preferences 

for direct cost or risk, the zone can be extended 

or reduced and the residual risk quantified. 

 The results also allow a prediction of hard 

ground to be made in areas of the site where 

discrete CPT traces were not performed. This 

helps to reduce direct costs since fewer CPT 

traces are required. However, as for the selection 

of an appropriate amplitude threshold, direct 

costs are often balanced against risks; in this case, 

that the model would be more reliable if more 

CPT data were acquired. 

To confirm whether sufficient CPT traces were 

obtained to develop a reliable model, the ROC 

analyses were performed with a varying number 

of CPT results considered. CPT traces for these 

smaller ROC analyses were randomly selected 

and the analyses repeated numerous times 

(N = 10, 100 and 1000) to obtain an average 

result for a given number of CPT traces. This 

repetition was necessary due to the randomised 

selection of CPT/amplitude pairs and to assess 

whether results were converging. 

Figure 9 presents the predicted OOP with 

number of CPT traces considered. Figure 10 

presents the normalised rate of misprediction (the 

rate of misprediction in percent divided by the 

number of tests) with the number of CPT traces 

considered. 

 
Figure 9: OOP prediction with number of CPT results 

 

 
Figure 10: Normalised rate of misprediction with 

number of CPT results 

 

As shown in Figure 9, the OOP results 

converge to a value close to 850 after around 80 

CPTs are considered in the ROC analysis. Given 

that the ROC analyses considered amplitude 

thresholds at intervals of 50, this suggests that a 

sufficient number of CPTs were performed 

because the results had essentially converged. 

Figure 10 shows that the normalised rate of 

misprediction decreases with an increase in the 

number of CPTs considered and is represented 

well using a power law function. This indicates 
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diminishing returns with inclusion of new CPTs 

in the model. As the normalised rate of 

misprediction for the full ROC analysis (i.e. the 

analysis including all CPTs) is on a relatively flat 

part of this curve, this also suggests that a 

sufficient number of CPTs were performed. 

 While the case study presented here 

demonstrates one application of the ROC 

method, it appears a suitable approach for a 

variety of geoscience applications. The ROC 

method is particularly suitable for site-specific 

calibrations of correlations and predictive models 

which use threshold values to predict an outcome. 

The ROC method can also be extended to 

multiple classification problems, such as 

correlating another parameter (e.g. thickness of 

hard ground). Such examples would aim to 

optimise the volume under the surface (VUS) 

instead of AUC as there are multiple correlations. 

4 CONCLUSIONS 

ROC analyses can be performed to optimise the 

predictive performance of geotechnical 

correlations. Results from ROC analyses enable 

the model performance to be quantified by 

calculating the true positive and false positive 

probabilities and the rate of misprediction.  

Results from ROC analyses can also be used 

for probabilistic hazard zoning and assessing the 

spatial variation of risk. This allows the spatial 

extent of direct cost and risk to be quantified. 

 A method for assessing whether sufficient data 

has been obtained for the predictive model is also 

presented. The normalised rate of misprediction 

is found to be represented well by a power law. 

 The ROC method is an efficient approach 

which has potential for further uses in a 

geotechnical context. It is also a suitable method 

for multiple classification problems. 
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