
INTERNATIONAL SOCIETY FOR 

SOIL MECHANICS AND 

GEOTECHNICAL ENGINEERING 

This paper was downloaded from the Online Library of 
the International Society for Soil Mechanics and 
Geotechnical Engineering (ISSMGE). The library is 
available here: 

https://www.issmge.org/publications/online-library 

This is an open-access database that archives thousands 
of papers published under the Auspices of the ISSMGE and 
maintained by the Innovation and Development 
Committee of ISSMGE.   

https://www.issmge.org/publications/online-library


Proceedings of the XVII ECSMGE-2019  
Geotechnical Engineering foundation of the future  

ISBN 978-9935-9436-1-3 

© The authors and IGS: All rights reserved, 2019  

     doi: 10.32075/17ECSMGE-2019-0961 
 

 

IGS 1 ECSMGE-2019 - Proceedings 

Shear Localisation Analysis of Drained Sand with 

Nonlocal Regularisation Method 

Analyse de localisation par cisaillement de sable drainé avec une 

méthode de régularisation non locale 

H.E. Mallikarachchi,  

University of Cambridge,Cambridge,United Kingdom 

K. Soga  

University of California, Berkeley, United States 

 
ABSTRACT:  The finite element method suffers from mesh dependency and numerical errors during modelling 

of strain localisation. Standard constitutive models assume that the mechanical behaviour at a point is dependent 

on the current deformation at that individual point only. In the event of a shear localisation, an individual material 

point can experience a larger strain than the neighbourhood resulting in a higher strain gradient. In the strain 

softening materials, this leads to a greater reduction in strength in an individual point. Hence the governing partial 

differential equations loose ellipticity. Among the various types of regularisation used to circumvent this 

drawback, the nonlocal method is popular due to its simplicity and versatility. 

The focus of this study is to apply the nonlocal regularisation technique to simulate the shear localisation 

observed in biaxial compression tests of dilative dense sand, under drained boundary conditions. A linear 

softening Drucker-Prager (DP) model is enriched with the nonlocal theory and its capability to evade the mesh 

sensitivity observed. Finally, the softening scaling is introduced to scale the load displacement response. The 

ultimate aim is to obtain a realistic force displacement response during the shear localisation of dense sand 

without extreme mesh refinement. 

It is observed that the load displacement relationships are independent of the mesh size after the nonlocal 

regularisation. The numerical shear band thickness is insensitive to the mesh size and instead proportional to the 

adopted characteristic length. This results in reducing the softening rate thus minimizing numerical convergence 

issues. However, the physical thickness of the shear band in sand is equivalent to several particle diameters. 

Hence, the softening scaling is used to rectify the regularised force displacement curves to match with the realistic 

softening rate of sand. 
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RÉSUMÉ:  La méthode des éléments finis souffre de la dépendance au maillage et d’erreurs numériques lors de 
la modélisation de la localisation des contraintes. Les modèles constitutifs standard supposent que le 

comportement mécanique en un point dépend de la déformation actuelle à ce point seulement. Dans le cas d'une 

localisation de cisaillement, un point matériel individuel peut subir une contrainte plus importante que le 

voisinage, ce qui entraîne un gradient de contrainte plus élevé. Dans les matériaux d'assouplissement des 

contraintes, cela conduit à une réduction plus importante de la résistance d'un point individuel. Par conséquent, 

les équations aux dérivées partielles qui gèrent l'ellipticité sont lâches. Parmi les divers types de régularisation 

utilisés pour contourner cet inconvénient, la méthode non locale est populaire en raison de sa simplicité et de sa 

polyvalence. 
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L'objectif de cette étude est d'appliquer la technique de régularisation non locale pour simuler la localisation de 

cisaillement observée lors d'essais de compression biaxiale de sable dense et dilaté dans des conditions limites 

drainées. Un modèle de Drucker-Prager (DP) à adoucissement linéaire s’enrichit de la théorie non locale et de sa 
capacité à échapper à la sensibilité du maillage observée. Enfin, la graduation de ramollissement est introduite 

pour redimensionner la réponse au déplacement de charge. Le but ultime est d’obtenir une réponse de 
déplacement de force réaliste lors de la localisation par cisaillement de sable dense sans raffinement extrême des 

mailles. 

On observe que les relations de déplacement de charge sont indépendantes de la taille du maillage après 

régularisation non locale. L'épaisseur numérique de la bande de cisaillement est insensible à la taille du maillage 

et proportionnelle à la longueur caractéristique adoptée. Cela permet de réduire le taux de ramollissement, 

minimisant ainsi les problèmes de convergence numérique. Cependant, l'épaisseur physique de la bande de 

cisaillement dans le sable est équivalente à plusieurs diamètres de particules. Par conséquent, l'échelle de 

ramollissement est utilisée pour rectifier les courbes de déplacement de force régularisées afin de correspondre 

au taux de ramollissement réaliste du sable. 

 

1 INTRODUCTION 

Finite element modelling of strain localisation 

frequently suffers from pathological mesh 

dependence and numerical errors from lack of 

convergence. Solutions are sensitive to the spatial 

discretisation such as alignment and size of mesh. 

In typical finite element analysis, displacements 

are calculated at nodes, thus their relative 

locations govern the shear band thickness and its 

direction. 

The reason underlies the hypothesis of treating 

the material as a continuum of arbitrary small 

scale made out of a set of infinitesimal material 

volumes, of which constitutive behaviour is 

independent. However, in an ideal material such 

as soil, the microstructure varies over different 

orders of magnitude. In granular material, the 

thickness of intense shearing is experimentally 

proved to be the size of several particle diameters. 

It serves as a measure of the physical thickness or 

the resolution of the soil. 

The conventional continuum approach is 

adequate if the characteristic wavelength of the 

deformation field remains above the resolution 

level of the material (Bažant & Jirásek, 2002). 
However, available limited computational 

resources forbid to refine the mesh to match the 

physical characteristic length of the shear band. 

Hence, the characteristic wavelength of the field 

(shear band thickness) is always below the 

resolution level of the model (element size). 

Therefore, the post-bifurcation response of a 

finite element continuum is inherently mesh 

dependent. 

Standard constitutive models assume that the 

mechanical behaviour at a point is dependent on 

the current values and the previous history of 

deformation at that individual point only. In the 

event of a shear localisation, an individual 

material point can experience a larger strain than 

the neighbourhood resulting in a higher strain 

gradient. In strain softening materials this leads 

to a greater reduction in strength in that point 

only. Hence, governing partial differential 

equations change from elliptic to hyperbolic (for 

static problems) resulting mathematically in ill-

posed boundary value problems. 

Enrichment techniques are used to regularise 

the mesh dependence of the finite element 

method by introducing a characteristic length 

which is related to the physical shear band 

thickness. The objectivity is achieved by bridging 

the gap between soil microstructure and the 

continuum. Techniques used for the post-

bifurcation analysis in past few decades fall into 

several categories. Depending on the method, the 

internal length scale is embedded either in the 
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constitutive model itself (nonlocal, viscous 

plasticity) or equilibrium equations (Cosserat 

theories, gradient theories, micro-polar theories)  

(Bažant & Jirásek, 2002). 

2 NONLOCAL THEORY 

From potential regularisation techniques used for 

the post-bifurcation analysis, nonlocal methods 

are numerically efficient and easy to implement. 

This is because they can be applied to the 

constitutive level without altering equilibrium 

equations. 

The nonlocal approach assumes that micro 

kinematics of a singular point influence 
surrounding points as well.  The concept of the 

nonlocal continuum was proposed for elasticity 

by Eringen (1966), Eringen and Edelen (1972). 

The original philosophy was introducing the 

nonlocal character to many fields such as stress, 

mass, body forces and energy which was later 

termed as the fully nonlocal theory. However, 

they were too complicated to be implemented in 

finite element formulations. Later Eringen and 

Kim (1974) simplified the theory considering 

only the constitutive relationship as nonlocal 

while equilibrium and kinematic equations 

remain unaltered. The stress at a point (𝝈), is 

considered as a function of mean strain (𝜺̅) 

averaging over a representative volume centred at 

that point (𝑉). 

The most recent adoption to the nonlocal 

softening plasticity is to treat only the scalar 

softening variable (𝜅) as nonlocal. This method 

exhibits to be computationally efficient and 

reduces the mesh locking as well (Bažant & 
Jirásek, 2002). This kind of approach is termed as 

the partially nonlocal theory. This was later 

adopted for soil plasticity to simulate the shear 

localisation. The softening parameter which 

drives the yield stress degradation was treated 

nonlocal as explined by Equations 1 and 2 

(Brinkgreve, 1994),(Summersgill, Kontoe, & 

Potts, 2014) ,(Summersgill, Kontoe, & Potts, 

2017) ,(Vermeer & Marcher, 2000). 

 𝜎 =  𝜎0 + ℎ (𝜅̅ )                                               (1) 

 𝜅̅(𝑥) =  1𝑉 ∫ 𝑤(𝑥, 𝜉) 𝜅(𝜉)  𝑑𝜉𝑉                         (2)                   

 𝑥 and 𝜉 are global and local coordinates 

respectively and are shown in Figure 1. 𝑤 is the 

weight function which depends on the 

characteristic length (l) 

 
Figure 1. Representative volume used for nonlocal 

strain averaging  

 

The most commonly used weight function in 

the nonlocal theory is the Gaussian distribution 

(Equation 3) which has a maximum at the centre. 

It gives the greatest contribution of the averaging 

variable at the centre. This will ultimately lead to 

a central concentration of the softening variable 

resulting in a drastic loss in material strength at a 

solitary point. Several attempts have been made 

to address this issue by altering the weight 

function or the averaging procedure itself.  

 Galavi and Schweiger (2010) introduced a 

weight function in Equation (4) which is termed 

as GandS method. In this, the contribution of the 

softening variable at the considered point is zero. 

This function has two peaks such that the greatest 

contribution is from either sides of the central 

point. Over nonlocal method introduced by 

Brinkgreve (1994) altered the nonlocal averaging 

formulation itself to circumvent the concentrated 

peak at the centre (Equation 5). This smears the 

averaging variable in the neighbourhood without 

changing the weight function, but it introduces 

the over nonlocal parameter (m) additionally. 
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𝑤(𝑥, 𝜉) =  1√𝜋 𝑙 𝑒𝑥𝑝 ⌈−(𝑥−𝜉)2𝑙2 ⌉                                (3) 

 𝑤(𝑥, 𝜉) =  (𝑥−𝜉) 𝑙 𝑒𝑥𝑝 ⌈−(𝑥−𝜉)2𝑙2 ⌉                              (4) 

 𝜅̅(𝑥) = (1 − 𝑚) 𝜅 + 𝑚 1𝑉 ∫ 𝑤(𝑥, 𝜉) 𝜅(𝜉)  𝑑𝜉𝑉   (5) 

3 IMPLEMENTATION OF NONLOCAL 

DRUCKER-PRAGER MODEL 

Formulations for simple extension of friction 

softening to traditional Drucker-Prager (DP) 

model is described herein. DP yield surface is 

defined as, 𝐹 = 𝑞 −  𝛼 𝑝                                                       (6) 

Where 𝑝 and 𝑞 are mean pressure and deviatoric 

stress respectively. Since the DP model creates a 

circular yield surface in the deviatoric plane, 

friction angle is independent of the lode angle. 

Thus, the numerical implementation is carried 

out as a two invariant model. A linear softening 

rule is defined such that friction coefficient  (𝛼)  
is reduced with the deviatoric plastic strain (𝛾𝑝). 𝛼 =  𝛼 −  ℎ𝛼 𝑑𝛾𝑝 >     𝛼𝑐𝑠                                  (7) 

Where  ℎ𝛼 is the softening modulus and 𝛼𝑐𝑠 is 

critical friction coefficient. A non-associative 

plastic flow rule is introduced as, 𝑑𝜀𝑝 = 𝑑𝜆 𝜕𝐺𝜕𝜎                                                        (8) 𝐺 = 𝑞 − 𝛽 𝑝                                                        (9) 

Where the plastic potential (𝐺) is related to 

dilation coefficient  (𝛽). 

A partial nonlocal theory is adopted in this 

study, which makes only the softening parameter 

nonlocal. The local plastic deviatoric strain 

increment in Equation 7 is replaced with the 

weighted average of plastic deviatoric strain 

increment  (𝑑𝛾𝑎𝑣𝑔𝑝
 ). 𝛼 =  𝛼 −  ℎ𝛼 𝑑𝛾𝑎𝑣𝑔𝑝
                                                (10) 

The spatial average is calculated from the 

discretised form of the integral in Equation 2. 𝑑𝛾𝑎𝑣𝑔𝑝 =  ∑ 𝑣𝑘 𝑤𝑘 𝑑𝛾𝑘𝑝𝑛𝑘=1∑ 𝑣𝑘 𝑤𝑘 𝑛𝑘=1                                             (11) 

Where 𝑛 is the number of integration points, 𝑣𝑘   
and 𝑤𝑘 are representative volume and weight 

function of the integration point 𝑘.  The 

aforementioned weighted average is only taken 

within the radius of 3l from the integration point. 

This is because the magnitude of weight function (𝑤𝑘) becomes insignificant beyond this distance. 

4 MESH COMPARISON ANALYSIS 

Numerical biaxial compression simulations with 

four mesh sizes are conducted to assess the 

validity of the nonlocal regularisation. The 

modified constitutive model is implemented in 

ABAQUS user-defined material model. The 

information of the gauss points in the 

neighbourhood is accessed through the common 

block option. 

The biaxial specimen used in this study is 

25cm wide and 50cm high. The plane strain 

condition assumed throughout. The bottom 

boundary conditions are such that the leftmost 

node is pinned and other nodes are roller 

supported. Top or side boundaries are not 

restrained. Weak material points are included at 

the bottom right corner. This facilitates a 

formation of single shear band diagonally across 

the specimen. 

During the first step, the specimen is 

consolidated homogeneously with a confining 

pressure of 100 kPa. During the second step, a 

vertical displacement is applied to the top nodes 

to allow an axial compression. 

     The analysis comprises a comparison of four 

meshes with different element sizes. They are 

named as large (100 elements), medium (800 

elements), small (1250 elements) and extra small 

(3200 elements) for mesh sizes 0.025m, 

0.0125m, 0.01 m, 0.00625 m respectively. In all 

cases, plane strain quadratic isoparametric 

elements with reduced integrations (8 nodes and 

4 integration points - CPE8R) are used. The 

characteristic length for the nonlocal models is 

selected equal to the largest mesh size (0.025m ). 
The over nonlocal parameter is selected as 2. 

Dense sand with an initial void ratio of 0.55 is 

used for all the analysis. The elastic stiffness, 𝐸 
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is assumed to be varying with the mean pressure 

accroding to the relationship 𝐸 = 𝐴𝑝𝑛, where 𝐴 and 𝑛 are specified as 800 and 0.5 respectively. 

The poisson ratio is 0.3. Peak and critical friction 

coefficients are 1.2 and 0.8 respectively. The 

dilation coefficient is assumed to be a constant 

0.47. The softening modulus is 0.7. 

5 RESULTS AND DISCUSSION 

5.1 Force displacement curves 

 
Figure 2. Force displacement relationships for (a) lo-

cal DP model and nonlocal DP models with (b) 

Gaussian weight function (c) GandS weight function, 

(d) over nonlocal model with parameter 2 

According to Figure 2(a), the force displacement 

responses of local DP model is mesh insensitive 

up to the peak and become mesh dependent 

afterwards. Both peak and residual strengths are 

mesh independent, but the softening rate 

becomes greater when the mesh size is reduced. 

The extra fine mesh fails to converge during the 

softening due to the sudden strength reduction of 

individual material points. This is ascribed to the 

loss of positive definiteness of the global 

stiffness, which is shown by almost vertical or 

snapback behaviour of  the load curve.  

Force-displacement responses of nonlocal DP 

models from three methods in Figure 2 (b), (c) 

and (d) show a considerable mesh independence 

compared to those of the local DP model. The 

peak and the residual are unchanged whereas 

softening rates (stiffness) are reduced. As the 

drastic reduction of strength at an individual 

material point is diminished, numerical 

convergence difficulties are minimized. This aids 

even the extra fine mesh to be fully converged. 

When comparing three methods, the original 

nonlocal method with Gaussian distribution 

appears to be less productive in regularising the 

localised shear strain as shown in Figure 2(b). 

This is because the standard Gauss distribution 

allocates the highest weight in the centre allowing 

the strain concentration within the localised area 

to be still higher. This is circumvented by both 

GandS and over nonlocal methods. It is also 

noted that the softening stiffness varies with the 

method regardless of the same characteristic 

length. The softening rate is affiliated with the 

width of the shear band which is numerically 

related to the characteristic length, the weight 

function and the over nonlocal parameter. Both 

GandS and over nonlocal methods bestow larger 

shear band thickness and hence lower softening 

rates than the original nonlocal method with the 

Gaussian weight function. 

The pitfall of the over nonlocal method is that 

the over nonlocal parameter has to be selected 

from trial and error based on the characteristic 

length and  mesh size such that an acceptable 

shear band thickness results. Therefore, for 

further comparison of local vs nonlocal DP 

models, GandS method is selected since it simply 

changes the weight function facilitating a 

smoother distribution of strain without an 

additional parameter. 
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5.2 Shear band thickness 

Contours of accumulated deviatoric plastic strain 

(during post-peak softening) of both local and 

nonlocal analysis are displayed in Figures 3  and 

4 respectively. In the local analysis,  both 

thickness and magnitude of shear strain 

concentration are sensitive to the mesh size. 

Although extra fine mesh does not converge 

beyond 0.015m, a considerable shear 

deformation has taken place by that time. On the 

contrary, the width of shear band thickness has 

become almost mesh independent after nonlocal 

regularisation with GandS weight function. 

However, the magnitude of maximum shear 

strain inside the shear zone still appears to be 

mesh dependent. 

Regarding the orientation of the shear band, it 

is apparent that finer the mesh, higher the shear 

band angle for local analysis. After the 

regularisation, the shear band angle appears to be 

closely mesh independent except for the large 

mesh. 

The thickness of the shear band can be 

evaluated based on either change in displacement 

gradient or strain fields. As an example, the 

cross-sectional profiles of displacement and 

strain in the large mesh are shown in Figures 5 

and 6 respectively. The choosen cross-section is 

perpendicular to the shear band starting from 

coordinates (0,0.15). Three stages of deformation 

are included to get an insight into the evolution of 

the shear band. A clear distinction can be seen 

between pre-peak homogeneous deformation vs 

post-localised deformation. 

Apparently, the shear zone enlarges with the 

deformation until it stabilises at the residual state. 

This is attributed to the expansion of dilating 

shear band material. The position and orientation 

of the shear band also vary slightly with the 

deformation.  

Further, it is evident that the nonlocal 

regularisation smears the shear strain 

concentration over larger thickness reducing the 

peak. This is responsible for the lowering of 

softening stiffness. 

 

 
 

 

 

 

The mechanism behind the nonlocal DP model 

is the regularisation of the friction coefficient, 

which acts as the softening parameter in the DP 

model. 

Figure 3. Contours of accumulated deviatoric plastic 

strain from local DP model   for (a) large, (b) medium, 

(c) small and (d) extra small meshes 

Figure 4. Contours of accumulated deviatoric plastic 

strain from nonlocal (GandS) DP model   for (a) large, 

(b) medium, (c) small and (d) extra small meshes 
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Figure 5. Cross-sectional profiles of displacement of 

large mesh: (a) local and (b) nonlocal method 

 

 
Figure 6. Cross-sectional profiles of plastic deviatoric 

strain of large mesh:(a) local and (b) nonlocal method 

 

Cross-sectional plots of the friction coefficient 

in Figure 7 (right) depict that after the nonlocal 

regularisation, both magnitude and the width of 

the friction coefficient are mesh independent. It 

is important to note that in the local analysis, 

material points inside the shear band have already 

reached the residual state when the vertical 

displacement is 0.03m. On the contrary, in the 

nonlocal analysis, material points are still 

softening by the displacement of 0.03m. This 

portrays how the drastic reduction of strength is 

minimized by the nonlocal regularisation. 

Further, fluctuations of the friction coefficients in 

the border of the shear bands in Figure 7 (left) are 

diminished after regularisation. 

 

 
Figure 7. Cross-sectional profiles of friction coeffi-

cient of large mesh: (a) local and (b) nonlocal method 

 

The correlation between the shear band 

thickness and the mesh size is plotted in Figure 

8(a) for local analysis. It is oberved that the 

numerical shear band is almost twice the meh 

size. Figure 8(b) encapsulates results of several 

nonlocal analysis with different characteristic 

lengths. Apparently, the numerical shear band 

thickness obtained from the nonlocal analysis is 

also closely twice the characteristic length. 

 

 
Figure 8. Correlation between shear band thickness 

and (a) mesh size in local analysis and (b) character-

istic length in nonlocal analysis 

5.3 Softening scaling 

The nonlocal method grants the user the power of 

selecting the softening stiffness with an 

appropriate characteristic length such that the 

well-posedness of the boundary value problem is 

preserved. However, Figure 3 suggests that the 

the nonlocal method produces unrealistically 

large numerical shear band thickness (𝑡𝑛𝑢𝑚) 

reducing the softening rate. Therefore, the 

resulting load-displacement curves do not 

represent the realistic soil behaviour. This is 

because the used characteristic length is much 

larger than the physical length of sand. If the 

actual length scale of sand is used here, the mesh 

size has to be lower than that for the nonlocal 

method to be effective. Nonetheless, it is 

practically impossible to refine the mesh to 

comply with the real shear band thickness. 

To overcome this drawback, Brinkgreve 

(1994) proposed to scale the physical softening 

stiffness (ℎ𝑠𝑎𝑛𝑑  ) such that the resulting 

mechanical response complies with the real soil 

(Equation 12). Experimental studies suggest that 

the physical shear band thickness of sand (𝑡𝑠𝑎𝑛𝑑) 

is 10 − 20 𝐷50. Assuming that 𝐷50 is 1 mm, the 

physical shear band thickness is 10 mm. Thus the 

scaling factor of softening stiffness is calculated 

to be 5 for the characteristic length of 0.025m. 

Thus, the modified softening stiffness is 4000. ℎ𝑛𝑢𝑚 =  ℎ𝑠𝑎𝑛𝑑  𝑡𝑛𝑢𝑚𝑡𝑠𝑎𝑛𝑑                                               (12) 



A.4 - Theoritical modelling 

 

ECSMGE-2019 – Proceedings 8 IGS 

The nonlocal DP model after scaling is shown 

in Figure 9. It is evident that the scaling 

introduces a drastic softening rate such that the 

peak strength reduces to the residual almost 

instantly. There is no change in either peak or 

residual strengths. The finer the particle size 

(smaller actual shear band thickness), the steeper 

softening stiffness becomes. Hence, this method 

is only applicable only to soil with finite shear 

band thickness. 

           
Figure 9. Force displacement relationship of nonlocal 

analysis after softening scaling 

6 CONCLUSION 

Nonlocal regularisation sufficiently alleviates the 

mesh obejctivity of post-localised deformation of 

drained dense sand. GandS and over nonlocal 

methods provide more reliable regularisation 

than the original Gaussian weight function. The 

nonlocal averaging smears the shear strain 

concentration widening the shear zone. The 

numerical shear band thickness is a function of 

characteristic length after the regularisation. The 

softening scaling can be utilised to scale the 

physical softening stiffness such that the 

regularised mechanical response matches with 

the real soil behaviour. Hence the characteristic 

length of the nonlocal method can be chosen 

arbitarily larger than the physical shear band 

thickness. Therefore, the post localised 

deformation can be captured with sufficient 

accuracy without extreme mesh refinement. 

However, this method is successful only for soils 

with a finite shear band thickness, under the 

assumption of weak discontinuity. 
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