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ABSTRACT: The finite element method suffers from mesh dependency and numerical errors during modelling
of strain localisation. Standard constitutive models assume that the mechanical behaviour at a point is dependent
on the current deformation at that individual point only. In the event of a shear localisation, an individual material
point can experience a larger strain than the neighbourhood resulting in a higher strain gradient. In the strain
softening materials, this leads to a greater reduction in strength in an individual point. Hence the governing partial
differential equations loose ellipticity. Among the various types of regularisation used to circumvent this
drawback, the nonlocal method is popular due to its simplicity and versatility.

The focus of this study is to apply the nonlocal regularisation technique to simulate the shear localisation
observed in biaxial compression tests of dilative dense sand, under drained boundary conditions. A linear
softening Drucker-Prager (DP) model is enriched with the nonlocal theory and its capability to evade the mesh
sensitivity observed. Finally, the softening scaling is introduced to scale the load displacement response. The
ultimate aim is to obtain a realistic force displacement response during the shear localisation of dense sand
without extreme mesh refinement.

It is observed that the load displacement relationships are independent of the mesh size after the nonlocal
regularisation. The numerical shear band thickness is insensitive to the mesh size and instead proportional to the
adopted characteristic length. This results in reducing the softening rate thus minimizing numerical convergence
issues. However, the physical thickness of the shear band in sand is equivalent to several particle diameters.
Hence, the softening scaling is used to rectify the regularised force displacement curves to match with the realistic
softening rate of sand.

Keywords: shear localisation; mesh dependence; nonlocal regularisation; drained sand

RESUME: La méthode des éléments finis souffre de la dépendance au maillage et d’erreurs numériques lors de
la modélisation de la localisation des contraintes. Les modeéles constitutifs standard supposent que le
comportement mécanique en un point dépend de la déformation actuelle a ce point seulement. Dans le cas d'une
localisation de cisaillement, un point matériel individuel peut subir une contrainte plus importante que le
voisinage, ce qui entraine un gradient de contrainte plus élevé. Dans les matériaux d'assouplissement des
contraintes, cela conduit a une réduction plus importante de la résistance d'un point individuel. Par conséquent,
les équations aux dérivées partielles qui gerent l'ellipticité sont laches. Parmi les divers types de régularisation
utilisés pour contourner cet inconvénient, la méthode non locale est populaire en raison de sa simplicité et de sa
polyvalence.
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A.4 - Theoritical modelling

L'objectif de cette étude est d'appliquer la technique de régularisation non locale pour simuler la localisation de
cisaillement observée lors d'essais de compression biaxiale de sable dense et dilaté dans des conditions limites
drainées. Un modele de Drucker-Prager (DP) a adoucissement linéaire s’enrichit de la théorie non locale et de sa
capacité a échapper a la sensibilit¢ du maillage observée. Enfin, la graduation de ramollissement est introduite
pour redimensionner la réponse au déplacement de charge. Le but ultime est d’obtenir une réponse de
déplacement de force réaliste lors de la localisation par cisaillement de sable dense sans raffinement extréme des
mailles.

On observe que les relations de déplacement de charge sont indépendantes de la taille du maillage apres
régularisation non locale. L'épaisseur numérique de la bande de cisaillement est insensible a la taille du maillage
et proportionnelle a la longueur caractéristique adoptée. Cela permet de réduire le taux de ramollissement,
minimisant ainsi les problémes de convergence numérique. Cependant, 1'épaisseur physique de la bande de
cisaillement dans le sable est équivalente a plusieurs diamétres de particules. Par conséquent, 1'échelle de
ramollissement est utilisée pour rectifier les courbes de déplacement de force régularisées afin de correspondre
au taux de ramollissement réaliste du sable.

1 INTRODUCTION Hence, the characteristic wavelength of the field
(shear band thickness) is always below the
resolution level of the model (element size).
Therefore, the post-bifurcation response of a
finite element continuum is inherently mesh

Finite element modelling of strain localisation
frequently suffers from pathological mesh
dependence and numerical errors from lack of

convergence. Solutions are sensitive to the spatial
discretisation such as alignment and size of mesh.
In typical finite element analysis, displacements
are calculated at nodes, thus their relative
locations govern the shear band thickness and its
direction.

The reason underlies the hypothesis of treating
the material as a continuum of arbitrary small
scale made out of a set of infinitesimal material
volumes, of which constitutive behaviour is
independent. However, in an ideal material such
as soil, the microstructure varies over different
orders of magnitude. In granular material, the
thickness of intense shearing is experimentally
proved to be the size of several particle diameters.
It serves as a measure of the physical thickness or
the resolution of the soil.

The conventional continuum approach is
adequate if the characteristic wavelength of the
deformation field remains above the resolution
level of the material (Bazant & Jirasek, 2002).
However, available limited computational
resources forbid to refine the mesh to match the
physical characteristic length of the shear band.
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dependent.

Standard constitutive models assume that the
mechanical behaviour at a point is dependent on
the current values and the previous history of
deformation at that individual point only. In the
event of a shear localisation, an individual
material point can experience a larger strain than
the neighbourhood resulting in a higher strain
gradient. In strain softening materials this leads
to a greater reduction in strength in that point
only. Hence, governing partial differential
equations change from elliptic to hyperbolic (for
static problems) resulting mathematically in ill-
posed boundary value problems.

Enrichment techniques are used to regularise
the mesh dependence of the finite element
method by introducing a characteristic length
which is related to the physical shear band
thickness. The objectivity is achieved by bridging
the gap between soil microstructure and the
continuum. Techniques used for the post-
bifurcation analysis in past few decades fall into
several categories. Depending on the method, the
internal length scale is embedded either in the
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constitutive model itself (nonlocal, viscous
plasticity) or equilibrium equations (Cosserat
theories, gradient theories, micro-polar theories)
(Bazant & Jirasek, 2002).

2 NONLOCAL THEORY

From potential regularisation techniques used for
the post-bifurcation analysis, nonlocal methods
are numerically efficient and easy to implement.
This is because they can be applied to the
constitutive level without altering equilibrium
equations.

The nonlocal approach assumes that micro
kinematics of a singular point influence
surrounding points as well. The concept of the
nonlocal continuum was proposed for elasticity
by Eringen (1966), Eringen and Edelen (1972).
The original philosophy was introducing the
nonlocal character to many fields such as stress,
mass, body forces and energy which was later
termed as the fully nonlocal theory. However,
they were too complicated to be implemented in
finite element formulations. Later Eringen and
Kim (1974) simplified the theory considering
only the constitutive relationship as nonlocal
while equilibrium and kinematic equations
remain unaltered. The stress at a point (@), is
considered as a function of mean strain (€)
averaging over a representative volume centred at
that point (V).

The most recent adoption to the nonlocal
softening plasticity is to treat only the scalar
softening variable (k) as nonlocal. This method
exhibits to be computationally efficient and
reduces the mesh locking as well (Bazant &
Jirasek, 2002). This kind of approach is termed as
the partially nonlocal theory. This was later
adopted for soil plasticity to simulate the shear
localisation. The softening parameter which
drives the yield stress degradation was treated
nonlocal as explined by Equations 1 and 2
(Brinkgreve, 1994),(Summersgill, Kontoe, &
Potts, 2014) ,(Summersgill, Kontoe, & Potts,
2017) ,(Vermeer & Marcher, 2000).
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o= 0gy+h(x) (1)
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x and & are global and local coordinates
respectively and are shown in Figure 1. w is the
weight function which depends on the
characteristic length (1)

I
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P

Figure 1. Representative volume used for nonlocal
strain averaging

The most commonly used weight function in
the nonlocal theory is the Gaussian distribution
(Equation 3) which has a maximum at the centre.
It gives the greatest contribution of the averaging
variable at the centre. This will ultimately lead to
a central concentration of the softening variable
resulting in a drastic loss in material strength at a
solitary point. Several attempts have been made
to address this issue by altering the weight
function or the averaging procedure itself.

Galavi and Schweiger (2010) introduced a
weight function in Equation (4) which is termed
as GandS method. In this, the contribution of the
softening variable at the considered point is zero.
This function has two peaks such that the greatest
contribution is from either sides of the central
point. Over nonlocal method introduced by
Brinkgreve (1994) altered the nonlocal averaging
formulation itself to circumvent the concentrated
peak at the centre (Equation 5). This smears the
averaging variable in the neighbourhood without
changing the weight function, but it introduces
the over nonlocal parameter (m) additionally.
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wix,§) = L exp[F5] 3)

wix,§) = S exp [(E5E] 4

R = A-m)x+m [, wx§)r@) d (5

3 IMPLEMENTATION OF NONLOCAL
DRUCKER-PRAGER MODEL

Formulations for simple extension of friction
softening to traditional Drucker-Prager (DP)
model is described herein. DP yield surface is
defined as,
F=q—-ap (6)
Where p and g are mean pressure and deviatoric
stress respectively. Since the DP model creates a
circular yield surface in the deviatoric plane,
friction angle is independent of the lode angle.
Thus, the numerical implementation is carried
out as a two invariant model. A linear softening
rule is defined such that friction coefficient (a)
is reduced with the deviatoric plastic strain (y?).
a=a— h,dy? > ag (7)
Where h, is the softening modulus and a is
critical friction coefficient. A non-associative
plastic flow rule is introduced as,

a6
de? = dA 2 (8)
G=q-Pp ©)
Where the plastic potential (G) is related to
dilation coefficient (f).

A partial nonlocal theory is adopted in this
study, which makes only the softening parameter
nonlocal. The local plastic deviatoric strain
increment in Equation 7 is replaced with the
weighted average of plastic deviatoric strain
increment (dy(f,,g ).
a=a— h, dyzfvg (10)

The spatial average is calculated from the
discretised form of the integral in Equation 2.
ayP = D=1 Yk Wk d}'i (11)
avg Zz:l Vg Wk
Where n is the number of integration points, vj
and wj, are representative volume and weight
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function of the integration point k. The
aforementioned weighted average is only taken
within the radius of 31 from the integration point.
This is because the magnitude of weight function
(wy) becomes insignificant beyond this distance.

4 MESH COMPARISON ANALYSIS

Numerical biaxial compression simulations with
four mesh sizes are conducted to assess the
validity of the nonlocal regularisation. The
modified constitutive model is implemented in
ABAQUS user-defined material model. The
information of the gauss points in the
neighbourhood is accessed through the common
block option.

The biaxial specimen used in this study is
25cm wide and 50cm high. The plane strain
condition assumed throughout. The bottom
boundary conditions are such that the leftmost
node is pinned and other nodes are roller
supported. Top or side boundaries are not
restrained. Weak material points are included at
the bottom right corner. This facilitates a
formation of single shear band diagonally across
the specimen.

During the first step, the specimen is
consolidated homogeneously with a confining
pressure of 100 kPa. During the second step, a
vertical displacement is applied to the top nodes
to allow an axial compression.

The analysis comprises a comparison of four
meshes with different element sizes. They are
named as large (100 elements), medium (800
elements), small (1250 elements) and extra small
(3200 elements) for mesh sizes 0.025m,
0.0125m, 0.01 m, 0.00625 m respectively. In all
cases, plane strain quadratic isoparametric
elements with reduced integrations (8 nodes and
4 integration points - CPE8R) are used. The
characteristic length for the nonlocal models is
selected equal to the largest mesh size (0.025m ).
The over nonlocal parameter is selected as 2.

Dense sand with an initial void ratio of 0.55 is
used for all the analysis. The elastic stiffness, E
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is assumed to be varying with the mean pressure
accroding to the relationship E = Ap"™, where
A and n are specified as 800 and 0.5 respectively.
The poisson ratio is 0.3. Peak and critical friction
coefficients are 1.2 and 0.8 respectively. The
dilation coefficient is assumed to be a constant
0.47. The softening modulus is 0.7.

5 RESULTS AND DISCUSSION

5.1 Force displacement curves
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Figure 2. Force displacement relationships for (a) lo-
cal DP model and nonlocal DP models with (b)
Gaussian weight function (c) GandS weight function,
(d) over nonlocal model with parameter 2
According to Figure 2(a), the force displacement
responses of local DP model is mesh insensitive
up to the peak and become mesh dependent
afterwards. Both peak and residual strengths are
mesh independent, but the softening rate
becomes greater when the mesh size is reduced.
The extra fine mesh fails to converge during the
softening due to the sudden strength reduction of
individual material points. This is ascribed to the
loss of positive definiteness of the global
stiffness, which is shown by almost vertical or
snapback behaviour of the load curve.
Force-displacement responses of nonlocal DP
models from three methods in Figure 2 (b), (c)
and (d) show a considerable mesh independence

IGS

compared to those of the local DP model. The
peak and the residual are unchanged whereas
softening rates (stiffness) are reduced. As the
drastic reduction of strength at an individual
material point is diminished, numerical
convergence difficulties are minimized. This aids
even the extra fine mesh to be fully converged.

When comparing three methods, the original
nonlocal method with Gaussian distribution
appears to be less productive in regularising the
localised shear strain as shown in Figure 2(b).
This is because the standard Gauss distribution
allocates the highest weight in the centre allowing
the strain concentration within the localised area
to be still higher. This is circumvented by both
GandS and over nonlocal methods. It is also
noted that the softening stiffness varies with the
method regardless of the same characteristic
length. The softening rate is affiliated with the
width of the shear band which is numerically
related to the characteristic length, the weight
function and the over nonlocal parameter. Both
GandS and over nonlocal methods bestow larger
shear band thickness and hence lower softening
rates than the original nonlocal method with the
Gaussian weight function.

The pitfall of the over nonlocal method is that
the over nonlocal parameter has to be selected
from trial and error based on the characteristic
length and mesh size such that an acceptable
shear band thickness results. Therefore, for
further comparison of local vs nonlocal DP
models, GandS method is selected since it simply
changes the weight function facilitating a
smoother distribution of strain without an
additional parameter.
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Figure 3. Contours of accumulated deviatoric plastic
strain_from local DP model for (a) large, (b) medium,
(c) small and (d) extra small meshes

5.2 Shear band thickness

Contours of accumulated deviatoric plastic strain
(during post-peak softening) of both local and
nonlocal analysis are displayed in Figures 3 and
4 respectively. In the local analysis, both
thickness and magnitude of shear strain
concentration are sensitive to the mesh size.
Although extra fine mesh does not converge
beyond 0.015m, a considerable shear
deformation has taken place by that time. On the
contrary, the width of shear band thickness has
become almost mesh independent after nonlocal
regularisation with GandS weight function.
However, the magnitude of maximum shear
strain inside the shear zone still appears to be
mesh dependent.

Regarding the orientation of the shear band, it
is apparent that finer the mesh, higher the shear
band angle for local analysis. After the
regularisation, the shear band angle appears to be
closely mesh independent except for the large
mesh.

The thickness of the shear band can be
evaluated based on either change in displacement
gradient or strain fields. As an example, the
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cross-sectional profiles of displacement and
strain in the large mesh are shown in Figures 5
and 6 respectively. The choosen cross-section is
perpendicular to the shear band starting from
coordinates (0,0.15). Three stages of deformation
are included to get an insight into the evolution of
the shear band. A clear distinction can be seen
between pre-peak homogeneous deformation vs
post-localised deformation.

Apparently, the shear zone enlarges with the
deformation until it stabilises at the residual state.
This is attributed to the expansion of dilating
shear band material. The position and orientation
of the shear band also vary slightly with the
deformation.

Further, it is evident that the nonlocal
regularisation = smears the shear strain
concentration over larger thickness reducing the
peak. This is responsible for the lowering of
softening stiffness.
(a) ®

Figure 4. Contours of accumulated deviatoric plastic
strain from nonlocal (GandS) DP model for (a) large,
(b) medium, (c) small and (d) extra small meshes

The mechanism behind the nonlocal DP model
is the regularisation of the friction coefficient,
which acts as the softening parameter in the DP
model.
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Figure 5. Cross-sectional profiles of displacement of
large mesh: (a) local and (b) nonlocal method
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Cross-sectional plots of the friction coefficient
in Figure 7 (right) depict that after the nonlocal
regularisation, both magnitude and the width of
the friction coefficient are mesh independent. It
is important to note that in the local analysis,
material points inside the shear band have already
reached the residual state when the vertical
displacement is 0.03m. On the contrary, in the
nonlocal analysis, material points are still
softening by the displacement of 0.03m. This
portrays how the drastic reduction of strength is
minimized by the nonlocal regularisation.
Further, fluctuations of the friction coefficients in
the border of the shear bands in Figure 7 (left) are
diminished after regularisation.
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Figure 7. Cross-sectional profiles of friction coeffi-
cient of large mesh: (a) local and (b) nonlocal method

The correlation between the shear band
thickness and the mesh size is plotted in Figure
8(a) for local analysis. It is oberved that the
numerical shear band is almost twice the meh
size. Figure 8(b) encapsulates results of several
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nonlocal analysis with different characteristic
lengths. Apparently, the numerical shear band
thickness obtained from the nonlocal analysis is
also closely twice the characteristic length.
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Figure 8. Correlation between shear band thickness
and (a) mesh size in local analysis and (b) character-
istic length in nonlocal analysis
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5.3 Softening scaling

The nonlocal method grants the user the power of
selecting the softening stiffness with an
appropriate characteristic length such that the
well-posedness of the boundary value problem is
preserved. However, Figure 3 suggests that the
the nonlocal method produces unrealistically
large numerical shear band thickness (t,m)
reducing the softening rate. Therefore, the
resulting load-displacement curves do not
represent the realistic soil behaviour. This is
because the used characteristic length is much
larger than the physical length of sand. If the
actual length scale of sand is used here, the mesh
size has to be lower than that for the nonlocal
method to be effective. Nonetheless, it is
practically impossible to refine the mesh to
comply with the real shear band thickness.

To overcome this drawback, Brinkgreve
(1994) proposed to scale the physical softening
stiffness (hggng ) such that the resulting
mechanical response complies with the real soil
(Equation 12). Experimental studies suggest that
the physical shear band thickness of sand (t545,4)
is 10 — 20 Dgq. Assuming that Dgg is 1 mm, the
physical shear band thickness is 10 mm. Thus the
scaling factor of softening stiffness is calculated
to be 5 for the characteristic length of 0.025m.
Thus, the modified softening stiffness is 4000.

tnum
h = hsand (1 2)

tsand

num
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The nonlocal DP model after scaling is shown
in Figure 9. It is evident that the scaling
introduces a drastic softening rate such that the
peak strength reduces to the residual almost
instantly. There is no change in either peak or
residual strengths. The finer the particle size
(smaller actual shear band thickness), the steeper
softening stiffness becomes. Hence, this method
is only applicable only to soil with finite shear
band thickness.
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Figure 9. Force displacement relationship of nonlocal
analysis after softening scaling

6 CONCLUSION

Nonlocal regularisation sufficiently alleviates the
mesh obejctivity of post-localised deformation of
drained dense sand. GandS and over nonlocal
methods provide more reliable regularisation
than the original Gaussian weight function. The
nonlocal averaging smears the shear strain
concentration widening the shear zone. The
numerical shear band thickness is a function of
characteristic length after the regularisation. The
softening scaling can be utilised to scale the
physical softening stiffness such that the
regularised mechanical response matches with
the real soil behaviour. Hence the characteristic
length of the nonlocal method can be chosen
arbitarily larger than the physical shear band
thickness. Therefore, the post localised
deformation can be captured with sufficient
accuracy without extreme mesh refinement.
However, this method is successful only for soils
with a finite shear band thickness, under the
assumption of weak discontinuity.
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