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1 INTRODUCTION 
 
For the analysis and design of laterally loaded pile 
foundations, the two commonly used methods are (i) 
nonlinear Winkler spring-based p-y method (Reese et 
al. 1975, O’Neill et al. 1990) and (ii) three dimen-
sional (3-D) continuum-based method with finite ele-
ment (FE) solutions (Trochanis et al. 1991, Achmus 
et al. 2009) obtained using commercially available 
software packages. The p-y method is popular be-
cause it is mathematically simple and computation-
ally inexpensive. However, the p-y curves consider 
only the compressive resistance of soil and neglects 
the soil shear resistance, thus oversimplifying the 
continuum nature of the pile-soil interaction problem. 
Besides, the p-y curves are site-specific and 
dependant on empirical constants that are arbitrarily 
determined by users based on experience. The contin-
uum-based methods, on the other hand, are appealing 
to researchers because these methods can handle 
various geometries, boundary conditions, and can 
incorporate sophisticated elasto-plastic soil 
constitutive models. However, the continuum-based 
3-D FE analysis are often computationally expensive 
and require specific skills to run the software 
packages.  

For laterally loaded monopiles and piles, 3-D 
elasto-plastic analysis may not be necessary because 
the primary design interest for most laterally loaded 
pile problems is the estimation of head displacement 
and/or rotation under working load conditions (e.g., 
maximum tolerable head displacement of 25 mm for 
slender piles or maximum head rotation of 0.25° for 

large-diameter monopiles is often the design 
criterion). In order to capture the pile behaviour based 
on these design criteria, nonlinear elastic analysis 
instead of elasto-plastic analysis is sufficient.  

The objective of this paper is to present the formu-
lation of an alternate continuum-based method for the 
analysis of laterally loaded monopile foundations. In 
the analysis, the monopile is assumed to behave as an 
elastic Euler-Bernoulli beam and the soil is character-
ized by a nonlinear elastic constitutive relationship. 
The displacement within the soil mass is considered 
to be a product of separable functions and the princi-
ple of virtual work is applied to obtain the governing 
differential equations describing the monopile and 
soil displacements, which are solved using a one-di-
mensional (1-D) finite difference (FD) method fol-
lowing an iterative scheme. The accuracy of this for-
mulation is ensured by comparing the pile responses 
obtained from the present analysis with those from 
field pile-load tests and from p-y analysis. 

 
 

2 CONSTITUTIVE MODEL FOR CLAY AND 
SAND 

 
Vardanega and Bolton (2013) proposed a nonlinear 
elastic modulus reduction relationship for clayey soils 
for use in the foundation engineering practice, which 
is given by 
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where Gs is the secant shear modulus at any strain, Gs0 

is the initial (small-strain or elastic) shear modulus, a 
(= 0.736) is the curvature parameter describing the 
nonlinear variation of shear modulus with soil strain, 
gref (= J ́  PI/1000; in which J = 2.2 and PI = plasticity 
index of clay expressed as a fraction) is the octahedral 
reference shear strain of soil at which the Gs0 is halved 
and goct is the octahedral engineering shear strain in 
soil at a point where Gs is determined, and is given by 

 (2) 

in which err, eqq, ezz, erq, eqz, and ezr are the 
components of 3-D strain state in soil described with 
respect to a cylindrical r-q-z coordinate system. 
Considering a total stress approach for undrained 
clay, Gs0 is obtained in this paper from the undrained 
shear strength of clay su following a correlation that 
Duncan and Buchignani (1976) proposed (also in-
cluded in USACE 1990): 

 (3) 

where su is the undrained shear strength, and the 
dimensionless coefficient Kc depends on PI 
(expressed as percent) and overconsolidation ratio 
OCR, and can be obtained from Figure 1. It is 
assumed that clay Poisson’s ratio ns » 0.5, 
representing zero volume change under undrained 
condition, while relating Gs0 to su in Equation 3. 
  

 
Figure 1. Relationship between Kc, PI, and OCR for undrained 
clays (Regenerated from USACE (1990)) 

 
Oztoprak and Bolton (2013) formulated a similar 
nonlinear elastic modulus reduction equation from 
the shear stress-strain data of sandy soils, which is 
given by  

 (4) 

where ge is the elastic threshold strain beyond which 
the shear modulus falls below its maximum, gref is the 
characteristic reference strain at which the initial 
shear modulus is halved, and for goct < ge, Gs/Gs0 = 1. 
The numerical values of ge, gref, and a are reported in 
Table 1.  

In this paper, Gs0 for a sandy soil deposit is 
evaluated from the following equation given by 
Hardin and Black (1966)  

 (5) 

where Cg, eg, and ng are intrinsic soil properties (Cg = 
612.0, eg = 2.17, and ng = 0.44 corresponding to 
Ottawa sand); s¢m0 is the initial mean effective stress, 
pa is the reference stress (= 100 kPa), and e0 is the 
initial void ratio. 
 
Table 1. Fitted parameters for lower bound, mean, and upper 
bound curves corresponding to Equation (4) (see plot in Figure 
2) 

Parameters Lower bound Mean Upper bound 

gref 0.0002 0.00044 0.001 

ge 0 0.000007 0.00003 

 a 0.88 0.88 0.88 

  
  

3 PROBLEM DEFINITION 
 
Figure 1 shows a circular monopile of length Lp, 
radius rp, area of cross-section Ap, second moment of 
inertia Ip, and characterized by Young’s modulus Ep 

embedded in a soil deposit. The monopile is assumed 
to behave as an elastic Euler-Bernoulli beam and the 
soil deposit is isotropic and characterized by the 
nonlinear modulus reduction relationship given by 
Equation 1 or 4. The soil layer extends to an infinite 
distance along the radial and vertical directions. A 
cylindrical r-q-z coordinate system is chosen for the 
purpose of analysis in which the origin of the 
coordinate system lies at the center of the pile head 
and the z-axis points downward and coincide with the 
pile axis. No slippage or separation between the pile 
and the surrounding soil is assumed. The objective of 
the analysis is to predict the nonlinear pile response – 
displacement w and rotation dw/dz under the action of 
static horizontal force Fa and/or moment Ma at the 
pile head. 
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Figure 2. Laterally loaded monopile embedded in a spatially 
varying soil deposit 

 
 

4 MATHEMATICAL FORMULATION 
 
The vertical soil displacement uz is neglected and the 
horizontal soil displacements ur and uq in the radial 
and tangential directions are expressed as products of 
separable functions as (Basu et al. 2009, Gupta 2018) 

  (6) 

  (7) 

where fr and fq are dimensionless functions of the 
radial coordinate that are both assumed to be equal to 
1.0 at r = rp and equal to zero at r = ¥. 

Applying the principle of virtual work to the pile-
soil system, which is subjected to a static force Fa 
and/or moment Ma at the pile head (Fig. 2), the 
following equation is obtained 

 (8) 

where the first, second, and third integrals on the left-
hand side of Equation (8) denote the internal virtual 
works done by the pile, the soil excluding the cylin-
drical soil domain below the pile base, and the cylin-
drical soil of radius rp below the pile base, respec-
tively. The fourth and the fifth terms on the left-hand 
side of Equation 8 denote the external work done by 
the applied force and moment, respectively. 

Further, considering the assumed soil displacement 
field (Eqs 6 and 7) the infinitesimal components of 
the strain tensor epq and stress tensor spq [= lsdpqell + 
2Gsepq (ls and Gs are the Lame’s constants and dpq is 
the Kronecker’s delta)] at any point within the soil 
mass are obtained, which are substituted in Equation 
8 to obtain the following: 

 (9) 

It is assumed in Equation 9 that the soil deposit is het-
erogeneous with spatially varying elastic constants ls 
[= 2Gs(1 - ns)/(1 - 2ns)] and Gs [= Es/{2(1 + ns)}] (Es 
= soil Young’s modulus and ns = soil Poisson’s ratio). 
This implies that these parameters are functions of the 
radial coordinate r and tangential coordinate q (i.e., ls 
= ls(r,q) and Gs = Gs(r,q)) and therefore, included 
within the integrations. The assumption of spatially 
varying ls and Gs is required for the development of 
the nonlinear analysis framework because the reduc-
tion of soil modulus as a function of strain renders the 
soil heterogeneous under applied loading even if the 
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soil deposit is homogeneous in situ. Further, for the 
circular soil domain of radius rp below the pile base, 
the spatial variation of ls and Gs is neglected because 
the soil stiffness is not expected to degrade much 
within this region. 

Considering the variation of w, fr, and fq in 
Equation 9, the following differential equations are 
obtained 

 (10) 

 (11) 

 (12) 

 (13) 

along with the relevant boundary conditions (for 
details see Gupta 2018). Equations 10 and 11 are the 
governing differential equations of the cylindrical soil 
domain of radius rp below the pile base (Lp £ z £ ¥) 
and the pile (0 £ z £ Lp), respectively, while Equations 
12 and 13 are the governing differential equations for 
the soil displacement functions. Further, in Equations 
10-13: 

 (14) 

 (15) 

 (16) 

 (17) 

 (18) 

 (19) 

 (20) 

 (21) 

 (22) 

 (23) 

 (24) 

where ms1, ms2, ms3, ns1, and ns2 in Equations 17-24 
are given by: 

 (25) 

 (26) 

 (27) 

 (28) 

 (29) 

 
 

5 SOLUTION ALGORITHM 
 
The soil parameters k and t, which are functions of fr 
and fq, must be known to obtain w from Equations 
10-11 describing the pile displacement. Moreover, 
the parameters g1-g8 must be known to obtain fr and 
fq, and these parameters depend on w through ms1, 
ms2, ms3, ns1, and ns2. Therefore, the differential 
equations describing the pile displacement w and soil 
displacement functions fr and fq are coupled, and an 
iterative algorithm is required to obtain solution. In 
order to obtain the w, the pile and the soil domain are 
discretized into 1-D FD nodes.  

In the iterative algorithm an initial guess of 1.0 is 
made for g1-g8 at each node along the soil domain and 
the finite difference form of the coupled differential 
equation for fr and fq are written, which are solved 
iteratively. After obtaining fr and fq at each node, the 
strain components are calculated with which the 
secant shear modulus Gs(r,q) are evaluated using 
Equation 1 or 4 at each node in the soil domain along 
r and q and at each node along the pile length. Using 
the calculated values of Gs(r,q), fr and fq, the values 
of k and t are calculated at each node along the pile 
length using the trapezoidal rule of integration where 
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the integration is first performed along the r-direction 
followed by a subsequent integration over q. With the 
calculated values of k and t at each node along the pile 
length, w and dw/dz are evaluated at each node along 
pile length (for details of the FD equation and solution 
procedure, see Gupta 2018). With the calculated 
values of w and dw/dz, the parameters ms1, ms2, ms3, 
ns1, and ns2 are evaluated numerically following the 
trapezoidal rule of integration along the q and z-
directions. First, the integration is performed along q 
at any radial distance; the integrand obtained is 
further integrated along the z-direction. After 
obtaining ms1, ms2, ms3, ns1, and ns2, new values of g1-
g8 are evaluated at each node and compared with the 
corresponding assumed initial values. If the 
differences in the assumed and obtained values of g1-
g8 are more than the prescribed tolerable limit of 
0.001 at each node, the calculations described so far 
are repeated with the calculated values of g1-g8 as the 
new initial guess values. Iterations are continued until 
the values of g1-g8 between successive iterations fall 
below the prescribed limit at each node. 

 
 

6 RESULTS 
 
The reliability and applicability of the present method 
using the nonlinear elastic soil models given by 
Equations 1 and 4 to predict laterally loaded pile 
response is demonstrated by comparing the predicted 
pile-head displacement obtained from the present 
analysis with those from field tests and p-y analysis.  

Figure 3 shows the pile head displacement wh 
obtained from a field test performed at a site in 
Manor, Texas, U.S.A. (Reese et al. 1975) and from 
the present analysis simulating the field test. The field 
test was performed on a small-diameter slender steel 
pipe pile with EpIp = 493.7 MPa, Lp = 15.2 m, rp = 
0.321 m, embedded in a heavily overconsolidated 
stiff undrained clayey soil deposit with su = 153 kPa, 
and PI = 60% (Guo 2013). The lateral load is applied 
at a height e = 0.305 m from the pile head. In order to 
simulate the pile response, an OCR of 6 is assumed 
(following Wu et al. 1998) for the clay deposit with 
Kc = 260 (from Fig. 2). This produces Gs0 = 0.34 ´ Kc 
´ su = 0.33 ´ 260 ´ 153/1000 = 13.3 MPa. Further, 
gs,ref = J ´ (PI/1000) = 2.2 ´ (0.6/1000) = 0.00132 is 
calculated for use in Equation 1. Also plotted in 
Figure 3 is the pile head response obtained from API-
based (2011) p-y analysis (Reese & Impe 2011). From 
the comparison it is evident that the present analysis 
using Equation 1 is capable of predicting the field pile 
response in clayey soils quite well. Better prediction 
would be possible if more detailed site 
characterization is performed so that the parameters 
for the soil constitutive model can be determined with 
more certainty.  
 
 

 
Figure 3. Comparison of pile head displacements obtained from 
full-scale field pile-load test at Manor, Texas test site, 
corresponding p-y analysis, and the present analysis simulating 
the test 

 
Figure 4 shows the comparison of pile head 
displacement wh obtained from field pile-load test 
conducted at Arkansas river test site (Alizadeh & 
Davission 1970) on an small-diameter slender open-
ended pipe pile (Pile 16), from the present analysis 
simulating the test, and from the corresponding p-y 
analysis following the API (2011) design code of 
practice (performed using the software package 
LPILE). For the comparison - an effective internal 
friction angle f¢ = 43°, effective unit of soil g¢ = 9.87 
kN/m3 (Guo (2013)), and ns = 0.15 are used as inputs 
for the sandy soil deposit; the pile properties and 
applied loading (reported by Guo 2013) are given in 
the figure itself (Fig. 4). To predict the response from 
the present formulation (i) s¢m0 = (s¢zz + 2 ´ s¢rr)/3 = 
s¢zz ´ (1 + 2 ´ K0)/3 = g¢ ´ z ´ (1 + 2 ´ K0)/3 (where 
s¢zz = g¢ ́  z and s¢rr = K0 ́  s¢zz are the effective vertical 
and horizontal stresses, respectively, at any depth z 
with K0 (= 1 - sinf¢) = 0.32 is the coefficient of earth 
pressure at rest for a normally consolidated soil) is 
evaluated at each node along the pile length and (ii) 
Gs0 is evaluated following Equation 3 for e0 = {(gs/gw 
- 1) ´ gw}/g¢ – 1 = {(2.65 – 1) ´ 9.81}/9.87 – 1 = 0.64 
(gw = 9.81 kN/m3 is the unit weight of water and gs = 
2.65 kN/m3 is the unit weight of sand solids), Cg = 
612.0, eg = 2.17, and ng = 0.44 corresponding to 
Ottawa sand, and (iii) Equation 4 with gref, ge, and a 
corresponding to the upper bound curve (see Table 1 
and the plot in Fig. 2) are used as the friction angle of 
the sandy soil deposit corresponds to that of dense 
sand (Budhu 2010) and it is expected that the rate of 
reduction of soil modulus for dense sand would be 
slower than that of medium (mean curve) and loose 
(lower bound curve) sand. The results for the p-y 
analysis is obtained for an initial modulus of subgrade 
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reaction kh = 46.15 MN/m3 corresponding to f¢ = 43° 
and sand below the water table in the LPILE software. 
From the comparison it can be inferred that, using the 
present analysis, the pile response can be predicted 
reasonably well using Equation (4). The minor devi-
ation in pile response obtained using the present anal-
ysis with that of the field response may be a result of 
(i) choice of the hyperbolic relationship (Eq. 4) used, 
which might not be completely applicable to the spe-
cific field tests and/or (ii) the uncertainty associated 
in the estimation of Gs0 (Eq. 5) where the parameters 
(Cg, eg, and ng) corresponding to clean Ottawa sand 
are used; a better prediction may be expected if ap-
propriate numerical values of the parameters Cg, eg, 
and ng for sandy soils with fines are used for 
comparison.  

 

 
Figure 4. Comparison of pile head displacements obtained from 
full-scale field pile-load test at the Arkansas river (Pile 16) test 
site, corresponding p-y analysis (API 2011), and the present 
analysis simulating the field test 

 
 

7 CONCLUSIONS 
 
A new continuum-based formulation for the analysis 
of laterally loaded monopile foundations is devel-
oped. The monopile is assumed to be an elastic Euler-
Bernoulli beam and the soil is modeled using nonlin-
ear elastic constitutive relationships, which describe 
the reduction of secant shear modulus with induced 
shear strain within the soil. The displacements in the 
soil in the radial and tangential direction are ex-
pressed as products of separable functions and the 
principle of virtual work is applied to obtain the gov-
erning differential equations describing the monopile 
and soil displacements. 1-D finite difference solution 
of the differential equations describing the monopile 
and soil displacements are developed in conjunction 

with an iterative solution algorithm to obtain the 
monopile and soil displacements. 

In order to demonstrate the reliability and applica-
bility of the present analysis in predicting pile re-
sponse in practice, the results obtained from the pre-
sent analysis are compared with the results of full-
scale field pile-load tests and corresponding p-y anal-
ysis. It is found that the present analysis can produce 
reasonably accurate results in practice.  
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