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ABSTRACT: A number of published solutions have been dedicated to problems of dynamic
soil-structure interaction (SSI) for geotechnical infrastructure over the past 50 years. Some
have been formulated using idealized models with a number of severe assumptions based on
physical intuition. Others have been developed by fitting large-scale experimental results or
back-calculated from field measurements. Their simplified formulation and wide use notwith-
standing, reliable predictions of such models are guaranteed so long as the geometry, material
properties and loading conditions of the problems at hand match the reference configurations.
Over the past decade, we have worked on developing SSI reduced order models (ROMs)
based on rigorous mechanics, intended to expand the range of their applicability to conditions
outside the range of numerical and physical experiments used to formulate them. In this
paper, we present three examples: a framework based on small parameters, energy and
momentum balance to resolve soil-structure on rigid retaining walls; a two-dimensional linear
ROM for transient analysis of (nonlinear) buildings on mat foundations in a homogeneous
half-space; and a two-dimensional nonlinear ROM for the transient analysis of pipeline sys-
tems subjected to transient ground deformation. We will specifically highlight the physics of
each problem as revealed by formalized mechanics solutions and high-fidelity simulations;
present reduced order models that capture salient aspects of the physics; and show compari-
sons of our model predictions to state-of-the art methodologies.

1 INTRODUCTION

In complex urban environments, earthquake resilient design of transportation infrastructure,
pipeline networks and building structures is not an isolated target; rather, it involves minimiz-
ing damage, loss, and recovery time of the system themselves, but also limiting the number of
cascading disasters that can stem from or affect the said systems. Thus, design procedures that
evaluate the risk associated with a range of hazard scenarios call for a large number of simula-
tions, considering –among other complex phenomena– soil-structure interaction (SSI) effects.
Today, one can perform high-fidelity simulations for analysis of complex SSI problems (e.g.,
Vazouras et al., 2010) and can use data from small to large scale experiments and infrastruc-
ture instrumentation to achieve a better understanding of the system behavior, intended to
inform high-fidelity numerical models (e.g., Lanzano et al., 2012). Nonetheless, the computa-
tional cost of high fidelity SSI simulations continues to loom large, particularly for nonlinear
fully coupled models, an obstacle which, combined with the large number of analyses needed
to make fully probabilistic risk predictions, can render the problem intractable. Lower (or
equivalent) fidelity predictive models, namely models that can capture the main features of
high-fidelity simulations at reduced computational cost, are therefore essential, especially in
probabilistic engineering and resilient design of interconnected civil infrastructure systems.
Developing lower fidelity predictive models for SSI problems usually relies on replacing the

surrounding soil by reduced order models (ROMs) while keeping the structure intact. The soil
ROM is a nonlinear spatio-temporal map that translates the transient ground deformations
(TGD) to the traction resultants along the soil-structure interface. Although a large number
of ROMs have been previously proposed to quantify SSI effects, most have been formulated
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in the frequency-domain, and are restricted either by oversimplifying assumptions (e.g., Velet-
sos and Meek, 1974; Jacobo, 1975) or by relying on superposition (e.g., Stewart et al., 1999,
2012; Givens et al., 2016) to a limited class of linear elastic problems.
Over the past decade, we have worked on developing ROMs based on rigorous mechanics,

intended to expand the range of their applicability. In this paper, we provide a taste of the
methodologies we use to develop ROMs for different SSI problems, i.e., for retaining walls,
building structures and pipelines. For each case, we present the physics of the problem, the
existing drawbacks of the state-of-research, and the methodology we use for reduced order
modeling. We also briefly discuss the performance of the derived models in reproducing the
quantities of interest in high fidelity models.

2 RETAINING WALLS

The interest in understanding how soils exert pressure on retaining walls dates back more than
two-hundred years. Coulomb developed his static method, based on what is called today the
Limit-State Theory, back in the 18th century. A natural extension of his approach intended to
be used in the setting of dynamic loading induced by seismic events was presented in the 1920s
by Mononobe and Okabe (popularly referred as ``M-O method"). This method remains popu-
lar nowadays in spite of presenting a number of drawbacks: (1) being a quasi-static equivalent
method, with all the caveats that neglecting dynamics that it carries along; (2) an issue
inherited from Limit-State theory, namely that the method presupposes a certain level of dis-
placement of the wall necessary to induce plastic behavior in the backfill; (3) as it is a method
based on free-body equilibrium instead that on deformation considerations, it can estimate
total thrust acting on the wall yet not the pressure distribution along the wall. Due to these,
neither frequency-dependent behavior (resonance) can be captured in the model nor pressure
distribution on not-sliding walls is suitable to be characterized.
To make up for these shortcomings, throughout the years, many relevant contributions

have been presented. Scott (1973) proposed the concept of soil springs between far-field and
the wall as a way of relating soil behavior in the far-field, e.g. very far from the wall (as far as
to not to be influence by the presence of wall) to the soil behavior on the wall. He recognized
that soil movement, or lack thereof, entails the onset of stresses in the soil, which in turn trans-
lates into distribution of pressures acting on the wall in contact to the soil. Through this
simple idea, the effect of the intermediate soil region is idealized as a series of springs whose
relative stretching between the wall and the far-field induces the stress state at the wall. This
idea of spring-like behavior of the intermediate soil mass was picked up by the next generation
of researchers, who quickly extended it to the dynamic setting turning it into an impedance
(dynamic stiffness), that accounts for frequency-sensitivity and for soil damping (e.g., Veletsos
and Younan, 1994; Kloukinas et al., 2012; Brandenberg et al., 2015).
However, all the aforementioned contributions rely on over-simplifying assumptions on

stresses and boundary conditions to derive a final result. In order to improve the state-of-
research for computing the impedance functions for retaining walls, we worked on relaxing
the strong assumptions that are commonly used, and resorted to non-conventional analytic
tools–i.e., dimensional analysis, energy balance by means of the J-integral, and asymptotic
analysis in presence of small parameters. These analytic tools are customary to other fields of
Continuum Mechanics but have not previously been utilized in the study of this problem.
Figure 1 shows the schematic of the problem under consideration. Under the optics of

Dimensional Analysis, we can show that, in the quasi-static/long-wavelength excitation
regime, there are only two length scales involved in the problem: the height of the wall H and
‘s ¼ μ=ργ ¼ V2

s =γ where H55‘s, Vs is the soil shear wave velocity, ρ is the soil mass density,
and γ is the amplitude of the earthquake excitation. Whatever the solution is, it must depend
on this two parameters. It is also acknowledged that H=‘s551, for natural values of the
parameters. considerations in terms of Energy Balance are pursued. These were absent from
previous research efforts, as it was unclear that possible approaches could deliver any useful
result that could inform ways of simplifying the problem. Moreover, inspired by Fracture
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Mechanics (Rice, 1968), we exploit the divergence-free nature of the Eshelby energy-momen-
tum tensor �Eij;j (properly adapted to account for the presence of a body force in the problem)
to define a null contour-independent integral over the domain. That is,

�Eij ¼ ðW þ ukbkÞδij � uk;iσkj ! �Eij;j ¼ 0 ! Ji ¼

Z

D

�Eij;jdS ¼

Z

�

ð�Eixdy� �EiydxÞ ¼ 0 ð1Þ

where bk represents the entries of the vector of body forces (bx ¼ ργ and by ¼ 0 but also
bk;j ¼ 0 8k), W represents the strain energy density and � is any closed contour defined
over the soil domain D (the equivalence between the surface integral and the contour inte-
gral is just a consequence of Green‘s theorem). The divergence-free nature of �Eij is a con-
sequence of the quasi-static equilibrium equations rice1968path. These identities set a
relation between the components of the displacement field (and its gradients) in each part
of the contour (base of the stratum, far-field, layer surface and wall). Our physical inter-
pretation of this integral is: as the earthquake is introducing a certain amount of energy
in the system (portrayed in this model as the work of the fictitious body force), such
energy must translate into a stress/strain state, but it does it differently in different regions
of the model as the boundary conditions are different as well. Regardless of how different
the conversion is in each region, they must be related so that the final sum is balanced.
The most interesting observation about these identities is that they precede any simplifica-
tion assumed over the system, therefore, a good way of testing the fitness of any reduced
model is checking if it abides by the identities in spite of simplifications. If that was not
the case, it seems appropriate to believe that the simplified models do not capture the fun-
damental physics of the problem. Finally, we use asymptotic analysis to guide us simplify-
ing the equations of motion in different regions of the problem. The equations of motion
are (harmonic loading is assumed)

ðλþ 2μÞ
∂
2u
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∂
2v
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þ μ

∂
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∂y2
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∂
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For this problem setting, the introduced dimensionless parameters are

η ¼
y

H
~x ¼

x

‘s
ξ ¼

x

H
~u ¼

u

H H
‘s

~v ¼
v

H H
‘s

c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi

λþ 2μ

μ

s

r ¼
$

cs=H
ð3Þ

where μ and λ are Lame‘s constants. We begin by recognizing that there is no clear length
scale when it comes to consider the horizontal direction, unlike in the vertical direction, where

Figure 1. (a) scheme of the 2D plane-strain retaining wall problem under consideration. (b) modeliza-

tion of the reduced order model.
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changes happen clearly along spans Δy � H. Thus, we may argue that, at least in the region
that is not directly affected by the wall, no meaningful changes are appreciated as relatively
short spans are traversed in horizontal direction. A way of translating this fact to mathemat-
ical terms is assuming that Δx � ‘s, as ‘s is the largest length-scale present in the problem.
Rewriting the equations in non-dimensional form, the small parameter ε ¼ H=‘s springs out
in front of terms involving derivatives with respect to x, which indicates that the solution of
the problem is equal to the solution at the far-field up to terms Oð2Þ.

c2ε2
∂
2~u

∂~x2
þ ðc2 � 1Þε

∂
2~v

∂~x∂η
þ
∂
2~u

∂η2
¼ r2

∂
2~u

∂τ2
þ eiτ ð4aÞ

c2
∂
2~v
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2~u
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∂
2~v
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¼ r2

∂
2~v

∂τ2
ð4bÞ

Next, it is acknowledged that the mathematical structure of the equation is that of a Bound-
ary Layer connected to the wall. By stretching the x-coordinate, H is found to be the layer
width. This fact indicates that the influence of the wall on the solution must be limited to a
distance � H from the wall, while the rest of the domain effectively behaves as the far-field.
The equilibrium equations in this region are

c2
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Last equations indicate that all the entries of the stress tensor in this region are, a priori, of
the same order of magnitude, which precludes simplifications based on ignoring some stress
components.
At the interface between the wall and the soil, the solution is directly controlled by the

boundary conditions on the wall. Using the above mentioned tools, we found that for the spe-
cific case of a smooth and rigid wall, the first-order equilibrium in horizontal direction and the
equilibrium in vertical direction on the wall, in the quasi-static/long-wavelength setting, is

c2
∂
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∂
2~u

∂τ2
þ eiτ ð6aÞ

c2
∂
2~v

∂η2
þ ðc2 � 1Þ

∂
2~u

∂ξ∂η
þ

∂
2~v

∂ξ2
¼ r2

∂
2~v

∂τ2
ð6bÞ

As a conclusion, when x=H ! 0, the equilibrium in x-direction depends only on changes in
the horizontal displacement, and the same thing happens when x=H ! ∞, although is not the
case when x=H � 1. This leads to a simplification of the horizontal equilibrium equation at
the soil-wall interface, that passes to depend only on horizontal displacement. However, if the
equation is not tuned, the model would not abide by the restrictions imposed by the J-integral.
To do that, we introduce a compressibility factor κ, which will be in charge of guaranteeing
that the identity J1 ¼ 0 is verified. The new equations and the anticipated expression for κ, for
the quasi-static/long-wavelength setting, are found to be

1

κ2
∂
2~u

∂ξ2
þ
∂
2~u

∂η2
¼ 1 ð7aÞ
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where we introduce a compressibility factor κ, which is in charge of guaranteeing
that the identity Jx ¼ 0 is verified (in other words, it is guaranteed that this simplified
model will abide by the restrictions imposed by energy balance); G represents the Cata-
lan‘s constant catalan, A the Apery‘s constant (Weisstein, a), and � the Poisson‘s ratio.
This equation can be solved resorting to the vibration shapes at the far-field and once
the horizontal displacement is known, the vertical displacement at the wall (soil sliding
over the wall) can be found. Once the displacement field at the wall has been charac-
terized, computing strains, stresses and thrust is straightforward. Although not shown
for brevity, the static solution of Equation (7) agrees to the traditional exact solution
derived by Wood (1973) for an equivalent problem (substantially more involved), and
the dynamic solution reveals that the thrust is sensitive to a set of natural frequencies
other than the natural frequencies of the infinite stratum. These new findings revealed
by the new solution are confirmed by numerical simulations. We can use this new solu-
tion to compute the soil impedance functions along the height of the retaining wall. To
do so, we observe that

uff ðηÞ

H H
‘s
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X∞
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2

k3n
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where kn ¼ ð2n� 1Þπ=2 for n ¼ 1; 2; 3; . . .; The displacement in the far-field comes
expressed in terms of the vibration shapes sinðknηÞ, yet the stress distribution on the wall
does not. This precludes the existence of a material constant, independent of depth, relat-
ing the two of them. This fact seems to rule out the possibility of a definition of imped-
ance, in the traditional sense, based on our solution. using the relation between series
P

∞

n¼1
2
k2n
ð�1Þnþ1 ¼ 8G

π2
� 8G

π2

P
∞

n¼1
2
kn
sinðknηÞ allows us to define the modal impedance func-

tion Kn relating each mode of free-field displacement uff to the earth pressure on the
retaining wall.
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This expression for the impedance would yield an exact thrust in spite of not yielding the
stress distribution everywhere. Figure 2 compares these new modal impedance functions
against those previously proposed by Scott (1973); Veletsos and Younan (1994); Kloukinas
et al. (2012). Note that Kn does depend on κ and this parameter depends on the boundary
conditions on the wall.
Note that Kn does depend on κ and this parameter depends on the boundary conditions on

the wall.
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3 BUILDING STRUCTURES

ROMs for quantifying SSI effects in building structures are usually developed based on (semi-
)analytical impedance functions (or dynamic springs) available for rigid foundations with sim-
plified configurations (e.g., Pais and Kausel, 1988; Gazetas., 1991). Among other drawbacks
associated with the existing models, their distribution along the building foundation is cum-
bersome, and by extension, so is their use for buildings with large, complex footprints that do
not conform to the original simplified configurations. Moreover, integrating the impedance
values in time-domain analyses of soil-foundation-structure interaction by selecting a repre-
sentative, frequency-independent value, is not clear.
In this approach, we do not wish to challenge how impedance functions and their distribu-

tion along the foundation are employed to model dynamic SSI. Rather, our intention is to
provide a numerical framework that enables users to compute the expression of impedances
that account for the building, the foundation, and the surrounding soil simultaneously, and
can be extended to the nonlinear regime and time-domain structural analysis solutions. We
account for all the above phenomena using a series of uniformly distributed springs and dash-
pots, which reflect the aggregate stiffness and energy dissipation characteristics of the soil
system as seen from the building foundation; and we learn the model coefficients of the springs
and dashpots using data (real or synthetic) that incorporate all above mechanisms of inter-
action. In this particular application of the framework, we use high-fidelity models to learn
the coefficients of the these elements. For high fidelity simulations (cf. Figure 3a), we consider
a building structure with first modal height of h and fundamental period of T in the fixed-base
condition which is supported by a foundation system of half-width B, and depth D, resting on
a soil characterized by its shear-wave velocity Vs. We do not consider any viscous damping in
the building nor the soil so that the energy loss as seen by the building is solely because of
radiation damping.
To optimize the number of high-fidelity models to capture the physics of the problem, we

employ Dimensional Analysis using the Buckingham �-theorem (Buckingham, 1914).
Accordingly, we obtain ten dimensionless parameters from which we consider only three to
span dimensional parameter space. These three parameters are structure-to-soil stiffness ratio:
�1 ¼ h=VsT , building-aspect ratio: �2 ¼ h=B and foundation-aspect ratio: �3 ¼ D=B. In this
regard, we use such parameters to define three different buildings with fixed base fundamental
period T � 0:5; 1:0; 1:5ð Þ s, fixed first modal height h � 15:0; 30:0; 40:0ð Þ m, foundation depth
D ¼ 1:0; 2:5; 5:0ð Þ m, and supported on eleven soil profiles with shear wave velocities
Vs ¼ 80; 100; 125; 150; 175; 200; 225; 250; 300; 400; 500ð Þ m/s to capture several different

Figure 2. Comparison of newly derived impedance to prior results.
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responses on the building due to different soil-foundation-building configurations. In this
reduced parameter space, �1 2 0:05� 0:4½ �, �2 2 1:5� 4:0½ � and �3 2 0:0� 0:5½ �, which
covers the range of applicability in civil engineering.
For each configuration, we obtain the response of the high-fidelity model under vertically

incident SV waves as shown in Figure 3a using the methodology suggested by Lysmer and
Asimaki. Then, we use the resulting displacement and acceleration time-series at each floor
along with a sequential optimization method based on extended Kalman filtering (Simon,
2006; Law et al., 2016) to update the coefficients of the springs and dashpots (cf. Figure 3b)
such that the response error between the high-fidelity and reduced order models is
minimized.
The responses of the building in the high-fidelity simulations guarantee that information of

higher modes as well as SSI effects (for instance, period elongation and radiation damping)
are present in the so-generated data; therefore, this approach ensures that such information is
explicitly considered in the estimation of the coefficients of the uniformly distributed springs
and dashpots. While the soil spring and dashpot coefficients identified in this manner are fre-
quency independent, we consider this constraint acceptable since the earthquake time-series
carry most of the energy in the range 0.2 10 [Hz], where the impedances of a half-space can be
considered constant. On the other hand, this approach allows us to obtain the frequency at
which the soil springs and dashpots in the ROM best describe the frequency of vibration of
the high-fidelity model.
After estimation of the coefficients for each case in the dimensional parameter space, i.e., 99

cases, we employed a non-linear optimization on the ensemble of identified parameters to find
a relation between the dimensionless parameters of the problem and the coefficients of the
ROM. The non-linear function that interpolates the parameters of the distributed dynamic
springs is given as:

Siðπ̂; α̂; β̂Þ ¼ λiGðβ̂;BÞFiðπ̂; α̂Þ ; ð12Þ

where the function Siðπ̂; α̂; β̂Þ on the left-hand side represents the i-th coefficient to be esti-
mated; the non-linear function Fiðπ̂; α̂Þ represents the i-th SSI effect for a given configuration;
the function Gðβ̂;BÞ represents the foundation influence coefficient. π̂ is the vector of

Figure 3. System-identification framework applied to SSI problem (a) Direct method from which the

true responses are computed, and (b) Substructure method from which the spring and dashpot coeffi-

cients are estimated.
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dimensional parameters; α̂ is the vector of non-linear coefficients to be determined from the 99
system identification analyses; and λi is the i-th normalizing factor. In particular, non-linear
functions Fiðπ̂; α̂Þ provided in Equation (12) are displayed in Figure 4. In this figure the solid
red dots represent the data generated using the sequential optimization method and the sur-
faces the corresponding performed nonlinear interpolation. A reasonable match is displayed
for the four normalized quantities, and the global behavior of the so-generated data is well-
represented.
Our validation studies show that the proposed ROM performs very well for transient

analyses using real earthquake signals. For instance, Figure 5- 7 show examples of using
the derived ROM to compute the building response with a topology shown in the same
figure under the Northridge, ChinoHills and Berkeley earthquakes respectively. The first
row of Figure 5-7 show the time history of responses in horizontal and vertical direc-
tions at the first-modal height, and in horizontal direction at the roof and ground levels.
The second row, on the other hand, shows the frequency contents of each signal. As
shown, a good-agreement is reached at different building levels. In general, the small dis-
crepancies between the high-fidelity and reduced order models are mostly attributed to

Figure 4. Non-linear curve fitting for the soil-structure-interaction function to the generated data pro-

vided with the identified parameters of the 99 analyses.
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the fact that the extrapolation of the soil impedance functions using Equation (12) is
first not exact, and second, the number of building frames considered in this analysis to
span the whole dimensional parameter space may not be enough; therefore, one can per-
form a more refined sampling of �2 and �3 to improve the predictive capability of
the ROM.

Figure 5. Frame A: Subjected to NorthRidge earthquake. The parameters considered in the analysis are

for the building a fixed-fundamental period T ¼ 0:507 ½s�, and a fixed-first modal height h ¼ 14:91 ½m�.
The foundation dimensions are a half-width B ¼ 10 ½m�, and a foundation depth D ¼ 1:0 ½m�. The soil

shear velocity is Vs ¼ 200 ½m=s�.

Figure 6. Frame B: Subjected to ChinoHills earthquake. The parameters considered in the analysis are

for the building a fixed-fundamental period T ¼ 1:025 ½s�, and a fixed-first modal height h ¼ 28:71 ½m�.
The foundation dimensions are a half-length B ¼ 10 ½m�, and a foundation depth D ¼ 2:5 ½m�. The soil

shear velocity is Vs ¼ 200 ½m=s�.
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4 PIPELINES

The physical problem of soil-pipe interaction (SPI) is sophisticated and uncertain, e.g.,
nonlinear behavior of soil, heterogeneous soil strata, pipe defects, and intrinsically random
soil excitation. These complexities and uncertainties rationalize the simplified assumptions.
For pipeline analysis, conventionally, beam on nonlinear Winkler foundation (BNWF)
models are used, in which pipe and soil are represented by beam and bi-linear spring
elements, respectively. The constitutive law for soil springs, known as force-displacement
curve (FDC), is well-documented by many researchers and structural design codes, such as
API (2002); ALA (2005); PRCI (2009). However, most of the previous work has been
using linear or elastic-perfectly plastic idealization of the true nonlinear FDC. On the
other hand, the existing FDC is only applicable to monotonic loading, and it fails to cap-
ture the hysteresis characteristic of soil in case of cyclic loading, which frequently exists in
seismic hazards. Furthermore, their soil springs behave independently with each other in
different directions, which does not reflect the coupling nature of soil in response to
oblique pipe movement. In this study, we present a two-dimensional (2D) coupled ROM
(cf. Figure 8b) to predict the soil-pipe interaction in sand under cyclic and transient load-
ings (cf. Figure 8). The novelties of this new model are its capability to represent: (1) the
true smooth nonlinear FDC, (2) hysteresis loop of soil response in case of cyclic loading
considering the pinching effect due to the gap between soil and pipe, and (3) the coupling
between lateral and vertical soil springs.
To develop the model in a one-dimensional setting, we follow a similar approach as in

Varun and Assimaki (2012) and Nguyen and Asimaki (2018) to use a smooth nonlinear FDC
to estimate soil reaction force per unit length as follows:

F ¼ αKuþ ð1� αÞFuζ ð13aÞ

_ζ ¼
1

u0
ð1�

tanhðκjζ jÞ

tanh κ
ðβsignð _uζ Þ þ γÞÞ _u ¼

1

u0
kii _u ð13bÞ

Figure 7. Frame C: Subjected to Berkeley earthquake. The parameters considered in the analysis are for

the building a fixed-fundamental period T ¼ 1:531 ½s�, and a fixed-first modal height h ¼ 40:36 ½m�. The
foundation dimensions are a half-width B ¼ 10 ½m�, and a foundation depth D ¼ 5:0 ½m�. The soil shear

velocity is Vs ¼ 200 ½m=s�.
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where α is the ratio between post-yield stiffness and initial stiffness of the soil, K is the soil
initial stiffness, u is the relative soil-pipe displacement, Fu is the ultimate soil reaction force
(yield strength), ζ is the dimensionless hysteresis parameter, u0 ¼ Fu=K, β and γ control the
general shape of hysteresis loop (βþ γ ¼ 1), and κ controls the smoothness of transition zone
of the FDC. We use a sequential optimization method based on unscented Kalman fitering
Simon to estimate κ from the FDC of a series of physical experiments available in the litera-
ture. We derive κ for lateral and uplift pipe movements in loose, medium, and dense sands,
with the embedment ratio in the range H=D ¼ 1:0� 12:5. The results are shown in Figure 9,
indicating that κ is larger for softer soil. From physical point of view, softer soil requires
larger u to reach Fu. The transition zone is therefore longer and smoother. Furthermore, the
similarities in trend and values of κ for lateral and uplift cases suggest that one value of κ is
sufficiently accurate to simulate the biaxial SPI problems.
We extend the model from 1D to 2D by incorporating the coupling and pinching effects. The

2D differential equations for hysteresis parameters are:

_ζx ¼
1

u0xð1þ kiipζ Þ
ðkii _ux � kij

u0x

u0y
_uyÞ ð14aÞ

Figure 8. Schematic illustration of the (a) 2D continuum soil-pipe interaction and (b) the proposed

reduced order model.

Figure 9. κ for loose sand ID ¼ 0� 35%, medium sand ID ¼ 35%� 65%, dense sand ID ¼ 65%� 100%

for lateral and uplift pipe movement
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_ζy ¼
1

u0xð1þ kiipζ Þ
ðkij _ux þ kii

u0x

u0y
_uyÞ ð14bÞ

where ux; uy are the relative displacement in x, y axis, u0x ¼ Fux=Kx; u0y ¼ Fuy=Ky, in which
Fux; Fuy; Kx; Ky are the yield strength and initial stiffness along x and y axis, respectively. The
coupling effect is quantified by the cross-stiffness term kij, while the pinching phenomenon is
controlled by the quantity pζ .
The proposed 2D model, hereafter referred to as BMBW model, is verified with the results

from finite element method (FEM) and smoothed particle hydrodynamics (SPH) simulations, of
which the fidelity is validated by available experimental data. The geometry mesh and bound-
ary conditions of FEM and SPH model are shown in Figure 10.
The analyses are conducted under different pipe loading patterns: cyclic uniaxial, 0-shape,

8-shape, and Kobe earthquake signal, with small and large displacement amplitude. The bilin-
ear model as in the guidelines of ASCE (1984) is also calculated for the comparison. Due to
space limitations, we only present the results of cyclic uniaxial and Kobe earthquake loadings
here. The pipe with D ¼ 100 ½mm� is embedded at H=D ¼ 5:5 in dry loose Cornell filter sand,
having density γs ¼ 14:8 ½kN=m3�, and plane strain friction angle �0

crit¼ 38:6�. For comparison
purpose, the input parameters Fux; Fuy; Kx; Ky of BMBW are directly calibrated from the
FEM simulations. As shown in Figure 11, the BMBW is capable of representing the hysteresis
loop and pinching effect in case of cyclic loading. For Kobe earthquake signal, the lateral dis-
placement is dominant, and therefore has significant impact on the soil-pipe interaction along

Figure 10. Geometry of the FEM model (left) and SPH model (right) (not to scale)

Figure 11. Cyclic uniaxial loading
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vertical axis. Figure 12 shows that the Fy � t curve from the uncoupled ASCE bilinear
approach is shifted compared to that of SPH analysis, while BMBW captures well that coup-
ling effect. As regards the Fx � ux, Fy � uy curves, as in Figure 13, the shape of FDC from
BMBW matches well to that from SPH, with round corners expressing the coupling between
lateral and vertical directions.

5 CONCLUSIONS

We have presented three examples of reduced order models (ROMs that we have developed to
estimate soil-structure interaction effects. For the case of retaining walls, we adopted dimen-
sional analysis and energy balance, and estimated not only the wall thrust, but more import-
antly, we revealed that the soil vibrations in the vicinity of the wall comprise a shear and a
compressional mode, which emerges due to the presence of the rigid-wall boundary
conditions.
To derive the ROM for building foundations, we combined dimensional analysis with

EKF, a sequential optimization algorithm through which we identified the functions that best
represent the frequency of vibration of the combined soil-foundation-building system. Com-
bining high-fidelity computational models with dimensional analyses, we estimated the coeffi-
cients of the uniformly distributed springs and dashpots along the perimeter of the mat
foundation that implicitly compensate for kinematic interaction effects due to foundation
embedment, if any, and eliminates the need to adopt simplified SSI models and distribute
them across the base and sides of the embedded foundation of complex structures. This

Figure 12. Fx � t and Fy � t under Kobe earthquake loading

Figure 13. Fx � ux and Fy � uy under Kobe earthquake loading
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particular framework also allows to consider more complicated soil features such as non-
linear material behavior of the soil or loose contact between soil and foundation.
Lastly, we presented a simplified model to predict pipeline response to biaxial loading on a

2D vertical plane. This novel model is able to take into consideration the true smooth nonli-
nearity, the hysteresis loop, the pinching phenomenon, and the coupling between lateral and
vertical displacement. Results of the proposed model show great agreement with numerical
simulations FEM and SPH, while reducing considerably the computational effort.
Combining computational models with rigorous methodologies adopted from continuum

mechanics, applied mathematics and optimization theory, we have developed physics-based
reduced order computational models that achieve efficiency without sacrificing physical intu-
ition and fundamental mechanics.
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