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ABSTRACT: A site-specific probabilistic seismic hazard analysis (PSHA) must consider the
uncertainties in estimating site amplification functions (AFs). For this reason, AFs must be
defined in terms of full probability distribution functions. The distribution of AFs is often
computed using simulations, whereas the uncertainty in input parameters (i.e., input rock
ground motion, shear-wave velocity profile, and parameters that control the nonlinear behav-
ior of soil) is mapped into the uncertainty in the AFs, typically using Monte Carlo simula-
tions. In the Monte Carlo simulations, sets of input parameters that capture the uncertainties
in input variables are first generated. Then, site response analyses are conducted for each set
of input parameters and the mean and standard deviation of the computed AFs are as
assumed to represent the distribution of the AFs. Typically, these AFs are assumed to be log-
normally distributed. In this paper, we show that this assumption is not necessarily correct
and the AFs distribution in log domain can be skewed. Moreover, we develop an approach to
consider this skewness and show the effects of relaxing the assumption of symmetric AFs on
the results of PSHA.

1 INTRODUCTION

Bazzurro and Cornell (2004) demonstrated that the effect of local soil deposits on the seismic
hazard at the surface can be considered rigorously using site amplification functions (AFs)
and their distribution. Following this work, many researchers have studied the distribution of
AFs (Rathje et al. 2010, Li and Assimaki 2010, Bahrampouri et al. 2018). However, all the
studies to date have focused on the mean and standard deviation of AFs, assuming AFs are
log-normally distributed. In this paper, we use equivalent linear site response analyses to show
that the assumption of log normality is not necessarily correct, especially for high intensity
motions. To relax this assumption, we use the skew-normal distribution (Azzalini and Valle
1996) for the logarithm of AFs. The skew-normal distribution is a generalized form of the
normal distribution with an extra parameter that captures skewness. Moreover, we show that
releasing this assumption can affect the resulting hazard curve.
The probability density function for the skew-normal distribution is:

F) =2 6(* ) o(a*2 ) 0
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where ¢ and K are the probability density and cumulative density functions of the normal dis-
tribution, x is the location factor, o is the scale factor, and « is the shape factor. Note that the
parameter o in the skew-normal formulation in the skew normal formulation is also a measure
of spread, as the standard deviation in the normal distribution, but the two are not exactly
equal. Moreover, if a is positive the distribution is skewed to the left and if o is negative the
distribution is skewed to the right. If a is equal to zero, the distribution is symmetric and iden-
tical to the normal distribution. Therefore, the normal distribution is just a specific case of the
skew-normal distribution. In Figure 1, three skew normal distributions are presented.
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Figure 1. probability density function of skew normal distribution for u =0 and ¢ =1

In the reminder of the paper, we study the distribution of AFs through an example of site
response analyses. First, we introduce the shear-wave (Vs) profile and input ground motions
used in this example. Then we study the resulting amplification function and the probability
distribution function of the computed AFs. We also consider possible causes for the observed
skewness. Finally, we demonstrate the effects of the shape of the AFs’ distribution on the
hazard curve on the surface of the hypothetical site.

2 SITE RESPONSE ANALYSES

In order to illustrate how the AFs can deviate from a normal distribution, we present a site
response analysis for a hypothetical site. The Vg profile is obtained from a measured site, as
described in Section 2.1. Site response analyses are computed using the Equivalent Linear
method. The input motions are selected by assuming that this hypothetical site is located in
Seattle. The results of the site response analyses are used to compute the hazard at the surface
of the hypothetical site using the bedrock hazard curves for Seattle.

2.1 Inputs

In this study, we use a site characterized by Cox and Teague (2017) using MASW tests at
Burnside Park, New Zealand. The 50 best-fit Vg profiles computed by Cox and Teague (2017)
are presented in Figure 2. The profiles were selected based on how well they fit the empirical
dispersion curve measured at the site (Cox and Teaue 2017). All of the 50 profiles have soft
layers near the surface and have average Vg over the upper 30 meters, Vg39, smaller than 250
m/s. We assume all layers are sand and use the Darendeli (2001) model to estimate the modu-
lus reduction and damping curves. Note that while the choice of modulus reduction and
damping curves is important when conducting site response analyses, the choice of model
does not affect the conclusions presented in this paper.

In selecting the input ground motions and estimating the hazard curve at the surface, we
assume the profile is located in Seattle, Washington State. We select 300 ground motions that
are compatible with contributing scenarios from the deaggregation map of Seattle (Frankel
et al. 2000). The 300 ground motions are obtained from the Kiban Kyoshin network (KiK-
net). We then use the 300 ground motions and the sigma spectra software (Kottke and Rathje
2008) to get 100 ground motions that are compatible with the uniform hazard spectra at 10%,
5%, and 2% probabilities of exceedance.
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Figure 2. Vg profiles used in this study

2.2 Results

The AFs at the period (T) of 0.2 s are shown in Figure 3 as a function of the spectral acceler-
ation of the input motion (S, rocx) at the same oscillator period (Stewart et al. 2014). The AFs
are linear up to a threshold of S, gocx around 0.2 g and then start decreasing with an increase
in the intensity of the input motions. It is common to fit a functional form to the AFs (Stewart
et al. 2014); however, since we are interested in studying the shape of the residual distribu-
tions, we used a non-parametric regression. Using a nonparametric regression makes sure that
the shape of distribution is not due to the selected functional form. In Figure 3, the results of
the nonparametric regression is presented as a blue line.

The vertical red line in Figure 3 is visually picked as the point of initiation of nonlinear
behavior of the AFs. The distribution of residuals of the AFs for intensities higher than those
indicated by the red line are plotted in Figure 4a. This plot shows that the AFs at large inten-
sities is skewed and the normal distribution does not capture well the behavior of the resid-
uals. We then fitted a skew-normal distribution to the data with maximizing likelihood. The
value of the skewness parameters o is zero at small intensities and gradually increases to a
value of ay at larger intensities. The value of ay is shown in Figure 4b. This plot shows that
the AFs are right-skewed (i.e., negative o) at high intensities for the set of input motions and
Vs in the example.
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Figure 3.  AFs for 100 ground motions and 50 soil profiles at 0.2 s period. The blue line represents the
prediction of nonparametric regression and the red line shows the point nonlinear behavior starts
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Figure 4. a) The distribution of residuals of AFs (in log domain) at high intensities and comparison of
normal and skew normal fit for them. b) The plot « at high intensities vs period

3 DISCUSSION

The authors did not anticipate the skewness of AFs distribution before observing it. There-
fore, the real underlying reasons for this behavior are unknown to us. However, we could
think of one mechanism that can make the distribution of AFs skewed at large strains. Each
Vs profile in the Monte Carlo simulations has a different threshold where nonlinearity initi-
ates. We can see that behavior schematically in Figure 5, where each gray line is the AF nor-
malized by its linear value. As it is obvious in Figure 5, this source of uncertainty makes the
distribution of AFs skewed to the right.

We used rock hazard curves for Seattle to visualize the effects of considering skewness in
AFs on the hazard curve at the surface. The hazard at the surface is computed using the con-
volution approach (Bazzurro and Cornell 2004). Figure 6 shows the results of the convolution
when we consider the skewness in the AFs distribution and when we assume symmetry. The
difference between these two approaches is considerable. At moderate intensities the assump-
tion of having skewed distribution gives higher exceedance rate because we are considering the
fact the mode is larger than the mean. At high intensities the assumption of skewed distribu-
tion gives lower exceedance rate because the tail of skew normal with negative a is lighter on
the positive side.
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Figure 5. Schematic plot of normalized AFs. The plot is presented to show the mechanisms for skewed
AFs distribution at large intensities
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Figure 6. The effect of skewness of AFs’ distribution at large intensities on surface hazard curve

4 CONCLUSION

In this paper we postulated that the distribution of AFs at high intensities is not necessarily
symmetric in the log domain. Moreover, we present a method for accounting for this skew-
ness. It is important to note that with this limited analysis we neither can nor want to imply
that the distribution of AFs are not symmetric all the time. Instead, we want to emphasize
that there is the possibility of having non log-normal AFs distributions and relaxing the
assumption of symmetry can improve the estimates of hazard curves at surface.
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