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ABSTRACT: An original exact analytical closed-form solution for the seismic response of n-
layers soil is exposed in this paper. Fundamental frequency of n-layers soil is obtained as a solu-
tion of a closed-form equation, having a condensed expression, explicit in terms of the soil proper-
ties, established for the multilayer soil. The displacement at any point of the soil is obtained by
explicit formulas depending on the soil dynamic and geometrical properties, and fundamental
mode frequency. Numerical applications for 2, 3, 4 and 26-layers soil profiles show comparative
results with presently used approximate methods of Modules average, Dobry-Madera and Simpli-
fied Rayleigh Procedure. In fact, the presented method constitutes a general solution for n-layers
soil seismic response and allows to compute frequency and modal shape for all eigenmodes.
Results are shown for modes 1, 2 and 3 for the previously mentioned soil profiles.

1 BASIC EQUATIONS

The soil is considered as an elastic inhomogeneous medium of axes x, y, z (z vertical axis dir-
ected downwards). The problem is reduced to a problem of plane strain in the plane (x, z),
and the displacement u is only horizontal. It is also considered that the displacement u, does
not depend on x. Hence, u,(x,y,2,1) = uy(z,1).

We consider a soil formed of n deformable horizontal layers (n 2 2), resting on a rigid bed-
rock (layered soil). Each layer i is homogeneous and isotropic, with a constant density p,. The
thickness of the layer i is denoted H;. The total thickness of layers 1 to n is denoted H.

Each soil layer being homogeneous and isotropic, one can synthetically write a linear elastic
constitutive law for the layered medium, with piecewise constant elastic coefficients E(z) and v
(z). As a result, the velocity of elastic shear waves V is constant in each layer i.

Introducing the shear modulus: G = ﬁ, the equation of motion is then written:

Ou, 0 [ ouy
—=—|G— 1
Pon "z < oz m
The discontinuity equations at each interface between two layers result in the following
interface conditions (the symbols + and — refer to both sides of the interface):

— Continuity of the stress vector at the interface, which leads to:

au\* Ouy\
G'—=) = ¢ (= 2
( oz ) < oz @
Note that this equation implies the existence of a slope discontinuity of u,(z, ) at each inter-

face between layers, in the ratio of the shear moduli G~ /G™.
— continuity of the displacement at the interface:

wy(z,0) = u,(z,1) 3)
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The following boundary conditions result from the above interface conditions:

» Free surface condition at z = 0:
ol

oz

0,0)=0 )

* Rigid bedrock condition at z = H:
u(H, 1) = 0. ()

2 EQUATIONS FOR EIGENMODES

Consider a function with separate variables, which satisfies the equation of motion. This func-
tion is of the form: ®(z,7) = U,(z). g(¢). Mathematical developments, which we cannot detail
here by lack of space, lead to the following results:

1. There is a number of discrete positive real values w;: 0<w; < wy) < w3 < ... <w; < ..
To each value w; correspond 2 functions U/(z) and gj(s), such as the function
W (z,t) = UL(z). g;(¢) satisfies the equation of motion. The functions U (z) are the eigenmodes
and the values 4; = —w% are the eigenvalues. The functions g;(¢) are the periodical response
functions applying to the eigenmodes. Their expression is: g;(f) = Cy;sin(w;t) + Cyjcos(w;t).
C); and Cy; are constants and ; is the angular frequency of the eigenmode .

2. For our problem, there is a countably infinite set of values w;; hence j € N*. This result will
be established further in the text. The expression of the solution in displacement for our
problem is:

ue(z,0) = Y Ul(z).g() (6)

Jj=1

3. The eigenmodes satisfy the following differential equation, resulting from the PDE motion
equation:
d*U.  1dGdU. pco]2 )

i Pl i
dz2  Gdz dz + G U =0 ()

4. The eigenmodes U/ (z) satisfy boundary conditions and interface conditions resulting from
the corresponding conditions satisfied by the displacement u,(z, f).

5. The eigenmodes U/ (z) are defined only to a multiplicative constant. We decide to norm the
eigenmodes with respect to their surface value: so, we put: U/ (0) = 1Vj € N*.

6. Soil deformation for eigenmode j: We suppose the ground vibrating in mode j alone.
Let &/, the maximum displacement at the ground surface for this case. Let dyqy the
Peak Ground Acceleration (PGA) — the maximum acceleration at the ground surface.
As a consequence of the motion equation, we have: duu = w/2 d{;wx. Then:

@ e = max| 0] = Gy T} /472, T; being the period of eigenmode j. The soil deform-

ation for mode j is by definition: U4(z) =d/, . Ui(z). This definition considers that

Ul(z) is normed by putting UZ(0) = 1.

3 SOLUTION FOR THE FUNDAMENTAL MODE

The approach is identical for all the eigenmodes, but in order to fix the ideas, we will make the
calculation for the fundamental mode (mode 1). In the following paragraph, we will omit the
index j of the eigenmode to facilitate the notations. The index i will refer to the soil layer.

U,(z) is the shape of the fundamental mode; w is the angular frequency of the fundamental
mode; the period of the fundamental mode is 7 = 27/w.

1699



3.1 General expression of the solution in displacement for n-layers soil

p, V and G are constant in each soil layer i, with their values p;, Vi, G;. Knowing that:
G; = p,;V? the equation (7) is reduced in each layer i, to:
dzlzlix CUZ
a2 oyt T 0 ®)
1

where u;,(z) is the expression of displacement in the soil layer i.
The solution of this equation is of the form:

ui(z) = Ajicos (22 + 901') )
Vi
A;, ¢; being constants depending on the soil layer.

3.2 Resolution of equations for the n-layers soil

1) The free surface condition is written for displacement in layer 1: ddi (0) = 0. This leads to
(lﬂ S [The solution with ¢; =zmod2z is identical to

u;x(0) = A) and uj(z) = A cos 7z
this one].
2) The conditions are written at the interface of layers 1 and 2, where z = H;:
ui(Hy) = up(Hy) (10)
dulx . duzx
G~ (Hh) = G~ () (11)

Deriving u;,(z) with respect to z, then making the ratio of (11) to (10), we obtain an equa-
tion at interface 1- 2, which leads to the expression of ;. Substituting this expression in (10),
we can deduce the expression of 4,. We then deduce the expression of uy,(z):

usy(z) = Ajcos (% (z — Hy) + arctan [Z;—Qtan (%Hlﬂ )

Note: As for @1, ¢, is defined mod z and hence A, can take 2 opposite values. But ¢, is
found in the expression of uy,(z) and the two cases lead to a unique expression of uy,(z),
which is thus defined uniquely. This authorizes us for further calculations to retain a value of
arctan| ] between —Z and +Z without affecting the generality of the results.

i)eFormulation of displacement for a layer i:

0]

VHiJrﬁi_lfori 1 (12)

a; =

pB; = arctan(r;. tana;) for1 <i<n-—landp, =0; g, € ] —g;g[ (13)

With: r; = 20

a; and B; are 'ﬁlnglles and are expressed in radian. We have shown in § 3.2.2 that the hypoth-
esis f; € ] -5 %[ did not interfere with the generality of the solution.

Then the formulas for calculating the displacement in the soil layer i (with i > 2) are:

cos ;1

A= A 14
' cosB., (14
o= Py~ 3 (15)
i-1
With z; = H; (depth of the upper limit of layer 1)

And: J=1
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Uy = Amos(ﬂ [z —z] +ﬂi,1) (16)
Vi

We demonstrate these formulas by recurrence: verifying that they apply for i=2, then showing
that if they are valid for (i), this implies that they are then valid for (i + 1), which would prove that
they are valid V i integer € [2; n]. Demonstration: a) the verification for i=2 is immediate, knowing
the expressions of ¢, and A4,; b) in layer (i), we have Eq. (16) assumed to be valid. In layer (i + 1),
we have the general expression of Eq. (9) with (i+1). We seek to determine A4;; and ;. We
write the conditions at the interface of layers (i) and (i+1), where z = z;,;. Following a similar
approach to the calculation in paragraph 3.2.2, we obtain the expressions of ;| and A;,. Substi-
tuting by the expressions of a;, r; and f;, these expressions become: ;1 = f; — T Zikls and

A = A; zg:; and consequently: u(;; 1)y = Ait1 cos( [z — zip1] +ﬁ> QED. We note that

the solution thus established, which gives the shape of the fundamental mode, is defined only to a
multiplicative constant (4, = u;,(0)).
4) Equation (E) for modal angular frequency w: In layer n, by application of the preceding

formulas, the displacement is written: u,(z) = A, cos (% [z — zy) +ﬁn,1). The condition at

the interface with the rigid bedrock is written: u,,(H)= 0. Hence, knowing that
H—z,=H;:p, = 5—&H,+kn, kc Z. Since f, | = arctan(r,_1.tana,_1), we can then
deduce the equation (E) for determining the modal angular frequency w:

Fp1.tana,_j(w) = cot(#,w) (17)
Where t, = H,/V, and r,_; are constants, and a,_1 () is the function of w defined above in

Eqgs. (12) & (13).
Developed explicit formulation of Equation (E) for n = 2, 3, 4: Equation (E) is written:

+ forn= 2;";‘ tan I;w?—coth = 1/tan 750
As can be seen from following §5, this formulation (providing that w#kzV,/H,, k € Z) is

equivalent to Madera’s equation for a soil with 2 deformable layers above a rigid bedrock.

» forn=23: ”’Z’ ‘[an{H2 w + arctan [’”V‘ tan{ H } = cot(iw)
P3 41 V3
 forn=4:

7 un{ o+ arcan 2 2 anf 2o +artan 2 and o | | | = ot (0
222 tan{ — w + arctan |——= .tan{ — w + arctan |~— .tan =cot| —w
P4V { V3 3 V3 £} oV 4 Va

6) Number of roots of Equation (E): Putting Eq. (E) in the form: ¢(w) = 0, we observe that
go(co) consists of the sum of 2 functions. The function —cot(z,w) is periodic, of period
T, = n/t,, admitting a countably infinite number of branches separated by s1ngular values,
and varying monotonously in each branch from —oo to +o. The 2™ function
rp—1tana, (@) is pseudo-periodic, with a similar behavior, although it is more complex to
determine the distribution of its singular values or its pseudo-periodicity. Consequently, for
each branch of each of these two functions, there is at least one root of Eq. (E). Hence, Eq.
(E) has a countably infinite number of discrete roots. As  intervenes only by its square ©? in
the equation of motion, we consider only the positive roots of Eq. (E), ordered in ascending
order: 0<w; < ...w; <.

7) Solving Equatlon (E) Equation (E) is an implicit equation for w, which can be solved by
a numerical method with any precision defined in advance. By definition, w is the smallest
positive root of Equation (E). We note that 0 is not a solution of Eq. (E).

8) Condensed explicit formulation of Equation (E): considering the expressions of a; and 3,
we can write a condensed explicit expression of Eq. (E) for modal angular frequency, as follows.

Let the sequence of functions (&), e

gtw, x—¢&, i(x) = r; tan{tjo + drctan(x)

(pl )/(pl+1 Vl+1) arCtan( }_%’%[

1’
} for 1<i<n-1, with t,=H;/V;
Then the function r; tan o;(w) can be expressed as:
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ritanoj(w) = (&, 0 Epj10...08,1)(0) = (’,;:16’ 5&,/62 (0) with o being the operator of com-
position of functions and ’,_,C &, a condensed notation for multiple composition of func-
tions. Eq. (E) for modal angular frequency can then be written in a condensed form:

(A21C S0 k) (0) = cot(ty) (18)

3.3 Fundamental mode shape. Soil deformation

Value of A;: The solution established in §3.2 is defined only to a multiplicative constant (A;).
Following §2, we put: U,(0) = 1. This defines the constant 4,: 4; = 1.

Fundamental mode shape: To calculate the displacement U, (z), which gives the fundamen-
tal mode shape, one proceeds as follows: the determination of the modal angular frequency w
by the resolution of Eq. (E) and the hypothesis 4; = 1 make it possible to calculate explicitly
the parameters A4; and ¢; defined in Eqgs. (14) & (15) for each layer i (i > 2), starting from the
surface. For layer 1, the formula giving the displacement, established in §3.2.1, becomes with

Ay =1: ujx(z) = cos (%]z) Hence it is possible to calculate the displacement u;,(z) in each

soil layer, and at each layer interface. We can check that: u,,(H) = 0. As appears from the
expressions of A4; and ¢;, the displacement in a layer i depends only on the mechanical proper-
ties of layers 1 to i, and the thicknesses of layers 1 to (i - 1), as well as the angular frequency .

Soil deformation for the fundamental mode: We suppose the soil vibrating in mode 1 alone.
Following §2, the maximum surface displacement for mode 1 is: dyu = Gpmax- T2 /47>, Soil
deformation for mode 1 is by definition: Uy(z) = dyux-Ux(2). Thus, Uy(z) can be calculated
explicitly at each point in the n-layers soil, starting from the surface.

4 SOLUTION FOR HIGHER MODES

As a result of §2, and as indicated in §3, the approach for the solution is identical for all eigen-
modes. Hence, the expression of the displacement for any mode j is similar to that for the fun-

damental mode, in Eq. (9). Thus, in each layer of soil i u] (z) = 4}cos (%z + (p’,)
A{:, <pf being constants depending on soil layer, and calculated for mode j, and w; being the
angular frequency for mode j. We can then conclude that Equation (E) is valid for any mode
J. The successive positive roots of Equation (E) define the values of the angular frequencies w;,
which can be ordered by increasing values starting from w, the angular frequency of mode 1.

5 APPROXIMATE METHODS FOR N-LAYERED SOIL

We mention the following methods:

* Weighted average of modules and densities: the fundamental period of layered soil is given
by: T = 4H/\/>_ G;H;/ > p;H;; this method cited in Dobry et al. (1976) uses a thickness-
weighted average of soil layers properties to relate to the homogeneous soil case.

* Dobry-Madera Method (1970/1976): An exact analytical closed-form solution for the fun-
damental period of two-layers soil was exposed by Madera (1970). This period is given by

an implicit equation: tan(324). tan (322) = ngj 4. T = 2r/w is the fundamental period of
2-layers soil; with A upper layer, B lower layer laying on a rigid bedrock; 74y = 4H,/V;
Tp = 4Hp/Vp. A graphical solution chart was given in Dobry et al. (1976). For n-layers
soil, an iterative method, proposed by Dobry and Madera, consists in the successive appli-
cation of this solution to soil layers. The successive modification of the boundary condi-
tions (position of the rigid bedrock) makes it possible to obtain only an approximate value
of the soil fundamental period. This method was validated by comparative studies in
Madera (1970) and in Dobry et al. (1976).
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» Simplified Rayleigh Procedure (1976): This procedure was proposed by Dobry et al. (1976).
It allows, in addition to the fundamental period, to calculate approximate values of soil dis-
placement at each interface between two soil layers. It is assumed that soil layers have a con-
stant density p, and that the first mode can be expressed as: Xin; = X; + H% H;; with
X;, X1 values of first mode shape at lower and upper limits of layer i, z,,; midpoint of layer
i. X(z) can be estimated at layers interfaces by applying this formula starting from bedrock
(X = 0). Other approximations allow to calculate the angular frequency of the fundamental

n 2 n
mode for the multilayered soil using the formula: w? = 4 > (H%) H;/Y (X + Xi+1)2H,~.
1 ' 1

This method was validated by a comparative study in Dobry et al. (1976).

6 NUMERICAL APPLICATIONS

6.1 Comparative application of the methods for computing period and soil deformation for the
Sfundamental mode

In the following, we present the application of the previous approximate methods and the
exact analytical solution developed above, to 4 cases of soil profiles, with 2, 3, 4 and 26 layers
of deformable soils. The applied methods are: Modules average Method; Simplified Rayleigh
Procedure; Dobry-Madera Method; Exact Analytical Method. The studied soil profiles are:
Profile 1: 2 layers (Clay 1: 24 m - Sand 1: 8 m); Profile 2: 3 layers (Clay 1: 12 m - Clay 2: 12 m
— Sand 1: 8 m); Profile 3: 4 layers (Clay 1: 12 m - Sand 1: 4 m - Clay 2: 12 m - Sand 2: 4 m);
Profile 4: 26 layers (alternation of sands and clays on a layer of marl). For profiles 1, 2, 3, H =
32 m. For profile 4: H = 68 m and the marl layer is 22 m thick. The G,,,, shear modules are
(in MPa): Clay 1: 40; Clay 2: 80; Sand 1 = Sand 2: 180; Marl: 190 to 670. The G; modules
were taken as 0.5 G,.... The density values p; are (in tons/m?): Clay 1 = Clay 2: 1.8; Sand 1 =
Sand 2: 2; Marl: 2.15. Maximum acceleration at ground surface (PGA): d@yqx = 2.1 m/s>.

Numerical applications show that the Exact Analytical Method gives results for period and
displacement in the range of the above-cited 3 methods, however with more accuracy.

Table 1 shows the results for the period T and maximum surface displacement d,,,,.. Figures 1
and 2 show computed soil deformations for the fundamental mode, for 3 of the studied profiles.

6.2  Application of the exact analytical method for computing period and soil deformation for
higher modes

For the same soil profiles studied in the previous paragraph, and the same value of PGA, we
present below the results of the computation by the exact analytical method of the periods and
shapes of modes 2 and 3, corresponding to the following roots w; and w3 of Equation (E).

Table 2 shows the results for the period T and maximum surface displacement d,,,, for
modes 1, 2 and 3. In Figures 3 and 4, soil deformations for modes 1, 2 and 3 are shown on the
same graph, for 3 of the studied soil profiles.

Table 1. Comparative results for fundamental mode computations.

Modules Simplified Rayleigh  Dobry- Exact Analytical

Average Procedure Madera Method
Profile 1: T (s) 0.90 0.83 *) 0.98
2 layers dmax (cm) 4.30 3.62 *) 5.10
Profile 2: T (s) 0.82 0.75 0.79 0.79
3 layers dmax (cm) 3.58 3.02 3.34 3.30
Profile 3: T (s) 0.82 0.78 0.83 0.82
4 layers dmax (cm) 3.58 3.25 3.70 3.57
Profile 4: T (s) 1.22 1.34 1.36 1.31
26 layers dmax (cm) 7.86 9.49 9.80 9.18

* For 2-layers soil, the Madera Method coincides with the exact analytical solution.
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PROFILE 4 - SOIL DEFORMATION

DISPLACEMENT (cm)
0 2 4 6 8 10

10 ’/

20 /

w
o
AN

——Modules average

—Simplified Rayleigh
/ s o

Procedure

/ —Dobry-Madera
50 ’

/ —Exact Analytical
Method

DEPTH (m)

N\
N

60 /

70

Figure 1. Comparative graphs for soil deformation - profile 4 (26-layers soil).

PROFILE 1 - SOIL DEFORMATION PROFILE 3 - SOIL DEFORMATION
DISPLACEMENT (cm) DISPLACEMENT (cm)
0 2 4 6 0 1 2 3 4
0 0
5 I ] | [oosiesaversse | 5 /// —Modules average
=10 / / 10 /// —Simplified Rayleigh
3 €
T —simplified Rayleigh| T 15 i/ Procedure
&20 Procedure E20 —Dobry-Madera
8 s 3
25 ) 25
0 / _3‘53 A:a"’"“l 35 7~ —Exact Analytical
= etho r Method
35 35

Figure 2. Comparative graphs for soil deformation - profiles 1 (2-layers soil) and 3 (4-layers soil).

Table 2. Computation of modes 1, 2 and 3.

Mode 1 Mode 2 Mode 3
Profile 1: T (s) 0.98 0.33 0.20
2 layers dmax (cm) 5.10 0.58 0.22
Profile 2: T (s) 0.79 0.31 0.18
3 layers dmax (cm) 3.30 0.50 0.17
Profile 3: T (s) 0.82 0.32 0.17
4 layers dmax (cm) 3.57 0.55 0.16
Profile 4: T (s) 1.31 0.51 0.35
26 layers dmax (cm) 9.18 1.37 0.64
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PROFILE1 PROFILE 3
SOIL DEFORMATION - MODES 1 to 3 SOIL DEFORMATION - MODES 1 to 3

DISPLACEMENT (cm) DISPLACEMENT (cm)
-2 0 2 4 6 =) 0 1 2 3 4

: ] / : / /

5 5

10 ,/ —Mode 1 10 al Mode 1
T, tmode2| . | () / —Mode 2
E ( —Mode3] E - [ 4 —Mode 3
&
I P 8 L\l

- o N

Figure 3. Modes 1, 2 and 3 for profiles 1 (2-layers soil) and 3 (4-layers soil).
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Figure 4. Modes 1, 2 and 3 for profile 4 (26-layers soil).

7 CONCLUSION

We have thus established an exact analytical closed-form solution allowing to calculate angu-
lar frequencies and mode shapes for all eigenmodes for a multilayer soil, in particular for the
fundamental mode.

The established equation (E) for modal angular frequencies of the n-layers soil has a con-
densed expression, explicit in terms of soil properties.

The displacement is given by explicit formulas for the multilayer soil profile.

As an exact analytical closed-form solution obtained without any simplifying assumption,
this solution does not need to be validated by comparative studies, except for the adequacy of
the basic model of n-layered soil with respect to reality.

The approximate methods used so far to compute the fundamental period for a multilayer
soil integrate simplifying assumptions, in addition to the basic model of the problem, allowing
then to calculate an approximate value of the fundamental mode period, with a priori
unknown precision. For this reason, it was necessary to validate these methods by compara-
tive studies (such as the study of Madera 1970, and that of Dobry et al. 1976). Numerical
applications show that the new method gives results for fundamental period and displacement
in the range of the cited approximate methods, however with more accuracy.

We also note that the established solution allows to calculate the displacement at any point
of the soil, including when the soil layers have a large thickness, without the need for cutting
these layers into thin sub-layers, as for the approximate methods.

The calculation of soil deformation is directly applicable for computing the effects of kine-
matic interaction in the justification of pile foundations in a seismic context.

Being an analytical solution, the new method can be developed in addition to introduce vis-
cous damping. Constituting a general solution for the layered soil seismic response, this method
can furthermore naturally be used to calculate the response of the multilayer soil (including dis-
placement, velocity and acceleration) in complex analyses including time-history analyses.
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