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ABSTRACT: An original exact analytical closed-form solution for the seismic response of n-
layers soil is exposed in this paper. Fundamental frequency of n-layers soil is obtained as a solu-
tion of a closed-form equation, having a condensed expression, explicit in terms of the soil proper-
ties, established for the multilayer soil. The displacement at any point of the soil is obtained by
explicit formulas depending on the soil dynamic and geometrical properties, and fundamental
mode frequency. Numerical applications for 2, 3, 4 and 26-layers soil profiles show comparative
results with presently used approximate methods of Modules average, Dobry-Madera and Simpli-
fied Rayleigh Procedure. In fact, the presented method constitutes a general solution for n-layers
soil seismic response and allows to compute frequency and modal shape for all eigenmodes.
Results are shown for modes 1, 2 and 3 for the previously mentioned soil profiles.

1 BASIC EQUATIONS

The soil is considered as an elastic inhomogeneous medium of axes x, y, z (z vertical axis dir-
ected downwards). The problem is reduced to a problem of plane strain in the plane (x, z),
and the displacement u is only horizontal. It is also considered that the displacement ux does
not depend on x. Hence, ux x; y; z; tð Þ ¼ ux z; tð Þ.
We consider a soil formed of n deformable horizontal layers (n ≥ 2), resting on a rigid bed-

rock (layered soil). Each layer i is homogeneous and isotropic, with a constant density ρi. The
thickness of the layer i is denoted Hi. The total thickness of layers 1 to n is denoted H.
Each soil layer being homogeneous and isotropic, one can synthetically write a linear elastic

constitutive law for the layered medium, with piecewise constant elastic coefficients E(z) and υ

(z). As a result, the velocity of elastic shear waves V is constant in each layer i.
Introducing the shear modulus: G ¼ E

2 1þ�ð Þ, the equation of motion is then written:

ρ
∂
2ux

∂t2
¼

∂

∂z
G
∂ux

∂z

� �

ð1Þ

The discontinuity equations at each interface between two layers result in the following
interface conditions (the symbols + and – refer to both sides of the interface):

– Continuity of the stress vector at the interface, which leads to:

Gþ ∂ux

∂z

� �þ

¼ G� ∂ux

∂z

� ��

ð2Þ

Note that this equation implies the existence of a slope discontinuity of ux z; tð Þ at each inter-
face between layers, in the ratio of the shear moduli G�=Gþ.
– continuity of the displacement at the interface:

uþx z; tð Þ ¼ u�x z; tð Þ ð3Þ
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The following boundary conditions result from the above interface conditions:

• Free surface condition at z = 0:
∂ux

∂z
0; tð Þ ¼ 0 ð4Þ

• Rigid bedrock condition at z = H:

ux H; tð Þ ¼ 0: ð5Þ

2 EQUATIONS FOR EIGENMODES

Consider a function with separate variables, which satisfies the equation of motion. This func-
tion is of the form: � z; tð Þ ¼ Ux zð Þ: g tð Þ. Mathematical developments, which we cannot detail
here by lack of space, lead to the following results:

1. There is a number of discrete positive real values ωj: 05ω1 � ω2 � ω3 � . . . � ωj � . . .

To each value ωj correspond 2 functions U j
x zð Þ and gj tð Þ, such as the function

ujx z; tð Þ ¼ U j
x zð Þ: gj tð Þ satisfies the equation of motion. The functionsU j

x zð Þ are the eigenmodes
and the values λj ¼ �ω2

j are the eigenvalues. The functions gj tð Þ are the periodical response
functions applying to the eigenmodes. Their expression is: gj tð Þ ¼ C1j sin ωjt

� �

þ C2j cos ωjt
� �

.
C1j and C2j are constants and ωj is the angular frequency of the eigenmode j.

2. For our problem, there is a countably infinite set of values ωj; hence j 2 N�. This result will
be established further in the text. The expression of the solution in displacement for our
problem is:

ux z; tð Þ ¼
X

∞

j¼1

U j
x zð Þ:gj tð Þ ð6Þ

3. The eigenmodes satisfy the following differential equation, resulting from the PDE motion
equation:

d2U j
x

dz2
þ

1

G

dG

dz

dU j
x

dz
þ

ρω2
j

G
U j

x ¼ 0 ð7Þ

4. The eigenmodes U j
x zð Þ satisfy boundary conditions and interface conditions resulting from

the corresponding conditions satisfied by the displacement ux z; tð Þ.
5. The eigenmodes U j

x zð Þ are defined only to a multiplicative constant. We decide to norm the
eigenmodes with respect to their surface value: so, we put: U j

x 0ð Þ ¼ 18j 2 N�.
6. Soil deformation for eigenmode j: We suppose the ground vibrating in mode j alone.

Let d jmax the maximum displacement at the ground surface for this case. Let amax the
Peak Ground Acceleration (PGA) – the maximum acceleration at the ground surface.
As a consequence of the motion equation, we have: amax ¼ ω2

j d jmax. Then:
djmax ¼ amax=ω

2
j ¼ amax:T

2
j =4π

2, Tj being the period of eigenmode j. The soil deform-

ation for mode j is by definition: U
j
x zð Þ ¼ djmax: U

j
x zð Þ. This definition considers that

U j
x zð Þ is normed by putting U j

x 0ð Þ ¼ 1.

3 SOLUTION FOR THE FUNDAMENTAL MODE

The approach is identical for all the eigenmodes, but in order to fix the ideas, we will make the
calculation for the fundamental mode (mode 1). In the following paragraph, we will omit the
index j of the eigenmode to facilitate the notations. The index i will refer to the soil layer.
Ux zð Þ is the shape of the fundamental mode; ω is the angular frequency of the fundamental

mode; the period of the fundamental mode is T ¼ 2π=ω.
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3.1 General expression of the solution in displacement for n-layers soil

ρ, V and G are constant in each soil layer i, with their values ρi, Vi, Gi. Knowing that:
Gi ¼ ρiV

2
i the equation (7) is reduced in each layer i, to:

d2uix

dz2
þ

ω2

V2
i

uix ¼ 0 ð8Þ

where uix zð Þ is the expression of displacement in the soil layer i.
The solution of this equation is of the form:

uix zð Þ ¼ Ai cos
ω

Vi

zþ ’i

� �

ð9Þ

Ai; ’i being constants depending on the soil layer.

3.2 Resolution of equations for the n-layers soil

1) The free surface condition is written for displacement in layer 1: du1x
dz

0ð Þ ¼ 0. This leads to
u1x 0ð Þ ¼ A1 and u1x zð Þ ¼ A1 cos

ω
V1
z

� �

[The solution with ’1 ¼ πmod 2π is identical to
this one].
2) The conditions are written at the interface of layers 1 and 2, where z = H1:

u1x H1ð Þ ¼ u2x H1ð Þ ð10Þ

G1

du1x

dz
H1ð Þ ¼ G2

du2x

dz
H1ð Þ ð11Þ

Deriving uix zð Þ with respect to z, then making the ratio of (11) to (10), we obtain an equa-
tion at interface 1- 2, which leads to the expression of ’2. Substituting this expression in (10),
we can deduce the expression of A2. We then deduce the expression of u2x zð Þ:

u2x zð Þ ¼ A2cos
ω

V2

z�H1ð Þ þ arctan
ρ1V1

ρ2V2

tan
ω

V1

H1

� �� 	� �

:

Note: As for ’1, ’2 is defined mod π and hence A2 can take 2 opposite values. But ’2 is
found in the expression of u2x zð Þ and the two cases lead to a unique expression of u2x zð Þ,
which is thus defined uniquely. This authorizes us for further calculations to retain a value of
arctan½ � between � π

2
and þ π

2
without affecting the generality of the results.

3) Formulation of displacement for a layer i:
Let:

αi ¼
ω

Vi

Hi þ βi�1 for i 1 ð12Þ

βi ¼ arctan ri: tan αið Þ for 1 � i � n�1 and β0 ¼ 0; βi 2 �
π

2
;
π

2

i h

ð13Þ

With: ri ¼
ρiVi

ρiþ1Viþ1

αi and βi are angles and are expressed in radian. We have shown in § 3.2.2 that the hypoth-
esis βi 2 � π

2
; π
2


 �

did not interfere with the generality of the solution.
Then the formulas for calculating the displacement in the soil layer i (with i ≥ 2) are:

Ai ¼ Ai�1

cos αi�1

cos βi�1

ð14Þ

’i ¼ βi�1 �
ω

Vi

zi ð15Þ

With zi ¼
P

i�1

j¼1

Hj (depth of the upper limit of layer i)
And:
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uix ¼ Ai cos
ω

Vi

z� zi½ � þ βi�1

� �

ð16Þ

We demonstrate these formulas by recurrence: verifying that they apply for i=2, then showing
that if they are valid for (i), this implies that they are then valid for (i + 1), which would prove that
they are valid ∀ i integer ∈ [2; n]. Demonstration: a) the verification for i=2 is immediate, knowing
the expressions of ’2 and A2; b) in layer (i), we have Eq. (16) assumed to be valid. In layer (i + 1),
we have the general expression of Eq. (9) with (i+1). We seek to determine Aiþ1 and ’iþ1. We
write the conditions at the interface of layers (i) and (i+1), where z ¼ ziþ1. Following a similar
approach to the calculation in paragraph 3.2.2, we obtain the expressions of ’iþ1 and Aiþ1. Substi-
tuting by the expressions of αi, ri and βi, these expressions become: ’iþ1 ¼ βi �

ω
Viþ1

ziþ1, and

Aiþ1 ¼ Ai
cos αi
cos βi

and consequently: u iþ1ð Þx ¼ Aiþ1 cos
ω

Viþ1
z� ziþ1½ � þ βi

� �

. QED. We note that

the solution thus established, which gives the shape of the fundamental mode, is defined only to a
multiplicative constant (A1 ¼ u1x 0ð Þ).

4) Equation (E) for modal angular frequency ω: In layer n, by application of the preceding

formulas, the displacement is written: unx zð Þ ¼ An cos
ω
Vn

z� zn½ � þ βn�1

� �

. The condition at

the interface with the rigid bedrock is written: unx Hð Þ ¼ 0. Hence, knowing that
H � zn ¼ Hn: βn�1 ¼

π
2
� ω

Vn
Hn þ kπ; k 2 Z. Since βn�1 ¼ arctan rn�1: tan αn�1ð Þ, we can then

deduce the equation (E) for determining the modal angular frequency ω:

rn�1: tan αn�1 ωð Þ ¼ cot tnωð Þ ð17Þ

Where tn ¼ Hn=Vn and rn�1 are constants, and αn�1 ωð Þ is the function of ω defined above in
Eqs. (12) & (13).
Developed explicit formulation of Equation (E) for n = 2, 3, 4: Equation (E) is written:

• for n = 2:
ρ1V1

ρ2V2
: tan H1

V1
ω

� �

¼ cot H2

V2
ω

� �

¼ 1= tan H2

V2
ω

� �

As can be seen from following §5, this formulation (providing that ω≠kπV2=H2; k 2 Z) is
equivalent to Madera’s equation for a soil with 2 deformable layers above a rigid bedrock.

• for n = 3:
ρ2V2

ρ3V3
: tan H2

V2
ωþ arctan

ρ1V1

ρ2V2
: tan H1

V1
ω

n oh in o

¼ cot H3

V3
ω

� �

• for n = 4:

ρ3V3

ρ4V4

: tan
H3

V3

ωþ arctan
ρ2V2

ρ3V3

:tan
H2

V2

ωþ arctan
ρ1V1

ρ2V2

:tan
H1

V1

ω

� 
� 	� 
� 	� 


¼ cot
H4

V4

ω

� �

6) Number of roots of Equation (E): Putting Eq. (E) in the form: ’ ωð Þ ¼ 0, we observe that
’ ωð Þ consists of the sum of 2 functions. The function � cot tnωð Þ is periodic, of period
T n ¼ π=tn, admitting a countably infinite number of branches separated by singular values,
and varying monotonously in each branch from �∞ to þ∞: The 2nd function
rn�1 tan αn�1 ωð Þ is pseudo-periodic, with a similar behavior, although it is more complex to
determine the distribution of its singular values or its pseudo-periodicity. Consequently, for
each branch of each of these two functions, there is at least one root of Eq. (E). Hence, Eq.
(E) has a countably infinite number of discrete roots. As ω intervenes only by its square ω2 in
the equation of motion, we consider only the positive roots of Eq. (E), ordered in ascending
order: 05ω1 � . . .ωj � . . .

7) Solving Equation (E): Equation (E) is an implicit equation for ω, which can be solved by
a numerical method with any precision defined in advance. By definition, ω is the smallest
positive root of Equation (E). We note that 0 is not a solution of Eq. (E).
8) Condensed explicit formulation of Equation (E): considering the expressions of αi and βi,

we can write a condensed explicit expression of Eq. (E) for modal angular frequency, as follows.
Let the sequence of functions ξω;i

� �

i2 1;n�1½ �
:

ξω;i : x7!ξω;i xð Þ ¼ ri tan tiωþ arctan xð Þf g for 1 � i � n� 1, with ti ¼ Hi=Vi;
ri ¼ ρiVið Þ= ρiþ1Viþ1

� �

; arctan xð Þ 2 � π
2
; π
2


 �

. Then the function rj tan αj ωð Þ can be expressed as:
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rj tan αj ωð Þ ¼ ξω;j � ξω;j�1 � . . . � ξω;1
� �

0ð Þ ¼ j

k¼1C ξω;k

� �

0ð Þ with � being the operator of com-
position of functions and

j

k¼1C ξω;k a condensed notation for multiple composition of func-
tions. Eq. (E) for modal angular frequency can then be written in a condensed form:

n�1
k¼1C ξω;k
� �

0ð Þ ¼ cot tnωð Þ ð18Þ

3.3 Fundamental mode shape. Soil deformation

Value of A1: The solution established in §3.2 is defined only to a multiplicative constant (A1).
Following §2, we put: Ux 0ð Þ ¼ 1. This defines the constant A1: A1 ¼ 1.
Fundamental mode shape: To calculate the displacement Ux zð Þ, which gives the fundamen-

tal mode shape, one proceeds as follows: the determination of the modal angular frequency ω

by the resolution of Eq. (E) and the hypothesis A1 ¼ 1 make it possible to calculate explicitly
the parameters Ai and ’i defined in Eqs. (14) & (15) for each layer i (i ≥ 2), starting from the
surface. For layer 1, the formula giving the displacement, established in §3.2.1, becomes with

A1 ¼ 1: u1x zð Þ ¼ cos ω
V1
z

� �

. Hence it is possible to calculate the displacement uix zð Þ in each

soil layer, and at each layer interface. We can check that: unx Hð Þ ¼ 0. As appears from the
expressions of Ai and ’i, the displacement in a layer i depends only on the mechanical proper-
ties of layers 1 to i, and the thicknesses of layers 1 to (i - 1), as well as the angular frequency ω.

Soil deformation for the fundamental mode: We suppose the soil vibrating in mode 1 alone.
Following §2, the maximum surface displacement for mode 1 is: dmax ¼ amax:T

2=4π2. Soil
deformation for mode 1 is by definition: Ux zð Þ ¼ dmax:Ux zð Þ. Thus, Ux zð Þ can be calculated
explicitly at each point in the n-layers soil, starting from the surface.

4 SOLUTION FOR HIGHER MODES

As a result of §2, and as indicated in §3, the approach for the solution is identical for all eigen-
modes. Hence, the expression of the displacement for any mode j is similar to that for the fun-

damental mode, in Eq. (9). Thus, in each layer of soil i: u
j
ix zð Þ ¼ A

j
i cos

ωj

Vi
zþ ’j

i

� �

A
j
i; ’j

i being constants depending on soil layer, and calculated for mode j, and ωj being the
angular frequency for mode j. We can then conclude that Equation (E) is valid for any mode
j. The successive positive roots of Equation (E) define the values of the angular frequencies ωj,
which can be ordered by increasing values starting from ω, the angular frequency of mode 1.

5 APPROXIMATE METHODS FOR N-LAYERED SOIL

We mention the following methods:

• Weighted average of modules and densities: the fundamental period of layered soil is given
by: T ¼ 4H=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P

GiHi=
P

ρiHi

p

; this method cited in Dobry et al. (1976) uses a thickness-
weighted average of soil layers properties to relate to the homogeneous soil case.

• Dobry-Madera Method (1970/1976): An exact analytical closed-form solution for the fun-
damental period of two-layers soil was exposed by Madera (1970). This period is given by

an implicit equation: tan π
2
TA

T

� �

: tan π
2
TB

T

� �

¼ ρBHB

ρAHA

TA

TB
. T ¼ 2π=ω is the fundamental period of

2-layers soil; with A upper layer, B lower layer laying on a rigid bedrock; TA ¼ 4HA=VA;
TB ¼ 4HB=VB. A graphical solution chart was given in Dobry et al. (1976). For n-layers
soil, an iterative method, proposed by Dobry and Madera, consists in the successive appli-
cation of this solution to soil layers. The successive modification of the boundary condi-
tions (position of the rigid bedrock) makes it possible to obtain only an approximate value
of the soil fundamental period. This method was validated by comparative studies in
Madera (1970) and in Dobry et al. (1976).
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• Simplified Rayleigh Procedure (1976): This procedure was proposed by Dobry et al. (1976).
It allows, in addition to the fundamental period, to calculate approximate values of soil dis-
placement at each interface between two soil layers. It is assumed that soil layers have a con-
stant density ρ, and that the first mode can be expressed as: Xiþ1 ¼ Xi þ

H�zmi

V2
i

Hi; with
Xi; Xiþ1 values of first mode shape at lower and upper limits of layer i, zmi midpoint of layer
i. X(z) can be estimated at layers interfaces by applying this formula starting from bedrock
(X = 0). Other approximations allow to calculate the angular frequency of the fundamental

mode for the multilayered soil using the formula: ω2 ¼ 4
P

n

1

H�zmi

Vi

� �2

Hi=
P

n

1

Xi þ Xiþ1ð Þ2Hi.

This method was validated by a comparative study in Dobry et al. (1976).

6 NUMERICAL APPLICATIONS

6.1 Comparative application of the methods for computing period and soil deformation for the
fundamental mode

In the following, we present the application of the previous approximate methods and the
exact analytical solution developed above, to 4 cases of soil profiles, with 2, 3, 4 and 26 layers
of deformable soils. The applied methods are: Modules average Method; Simplified Rayleigh
Procedure; Dobry-Madera Method; Exact Analytical Method. The studied soil profiles are:
Profile 1: 2 layers (Clay 1: 24 m - Sand 1: 8 m); Profile 2: 3 layers (Clay 1: 12 m - Clay 2: 12 m
– Sand 1: 8 m); Profile 3: 4 layers (Clay 1: 12 m - Sand 1: 4 m - Clay 2: 12 m - Sand 2: 4 m);
Profile 4: 26 layers (alternation of sands and clays on a layer of marl). For profiles 1, 2, 3, H =
32 m. For profile 4: H = 68 m and the marl layer is 22 m thick. The Gmax shear modules are
(in MPa): Clay 1: 40; Clay 2: 80; Sand 1 = Sand 2: 180; Marl: 190 to 670. The Gi modules
were taken as 0:5 Gmax. The density values ρi are (in tons/m3): Clay 1 = Clay 2: 1.8; Sand 1 =
Sand 2: 2; Marl: 2.15. Maximum acceleration at ground surface (PGA): amax = 2.1 m/s2.
Numerical applications show that the Exact Analytical Method gives results for period and

displacement in the range of the above-cited 3 methods, however with more accuracy.
Table 1 shows the results for the period T and maximum surface displacement dmax. Figures 1

and 2 show computed soil deformations for the fundamental mode, for 3 of the studied profiles.

6.2 Application of the exact analytical method for computing period and soil deformation for
higher modes

For the same soil profiles studied in the previous paragraph, and the same value of PGA, we
present below the results of the computation by the exact analytical method of the periods and
shapes of modes 2 and 3, corresponding to the following roots ω2 and ω3 of Equation (E).

Table 2 shows the results for the period T and maximum surface displacement dmax for
modes 1, 2 and 3. In Figures 3 and 4, soil deformations for modes 1, 2 and 3 are shown on the
same graph, for 3 of the studied soil profiles.

Table 1. Comparative results for fundamental mode computations.

Modules
Average

Simplified Rayleigh
Procedure

Dobry-
Madera

Exact Analytical
Method

Profile 1: T (s) 0.90 0.83 (*) 0.98

2 layers dmax (cm) 4.30 3.62 (*) 5.10

Profile 2: T (s) 0.82 0.75 0.79 0.79

3 layers dmax (cm) 3.58 3.02 3.34 3.30

Profile 3: T (s) 0.82 0.78 0.83 0.82

4 layers dmax (cm) 3.58 3.25 3.70 3.57

Profile 4: T (s) 1.22 1.34 1.36 1.31

26 layers dmax (cm) 7.86 9.49 9.80 9.18

* For 2-layers soil, the Madera Method coincides with the exact analytical solution.
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Figure 1. Comparative graphs for soil deformation - profile 4 (26-layers soil).

Figure 2. Comparative graphs for soil deformation - profiles 1 (2-layers soil) and 3 (4-layers soil).

Table 2. Computation of modes 1, 2 and 3.

Mode 1 Mode 2 Mode 3

Profile 1: T (s) 0.98 0.33 0.20

2 layers dmax (cm) 5.10 0.58 0.22

Profile 2: T (s) 0.79 0.31 0.18

3 layers dmax (cm) 3.30 0.50 0.17

Profile 3: T (s) 0.82 0.32 0.17

4 layers dmax (cm) 3.57 0.55 0.16

Profile 4: T (s) 1.31 0.51 0.35

26 layers dmax (cm) 9.18 1.37 0.64
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7 CONCLUSION

We have thus established an exact analytical closed-form solution allowing to calculate angu-
lar frequencies and mode shapes for all eigenmodes for a multilayer soil, in particular for the
fundamental mode.
The established equation (E) for modal angular frequencies of the n-layers soil has a con-

densed expression, explicit in terms of soil properties.
The displacement is given by explicit formulas for the multilayer soil profile.
As an exact analytical closed-form solution obtained without any simplifying assumption,

this solution does not need to be validated by comparative studies, except for the adequacy of
the basic model of n-layered soil with respect to reality.
The approximate methods used so far to compute the fundamental period for a multilayer

soil integrate simplifying assumptions, in addition to the basic model of the problem, allowing
then to calculate an approximate value of the fundamental mode period, with a priori
unknown precision. For this reason, it was necessary to validate these methods by compara-
tive studies (such as the study of Madera 1970, and that of Dobry et al. 1976). Numerical
applications show that the new method gives results for fundamental period and displacement
in the range of the cited approximate methods, however with more accuracy.
We also note that the established solution allows to calculate the displacement at any point

of the soil, including when the soil layers have a large thickness, without the need for cutting
these layers into thin sub-layers, as for the approximate methods.
The calculation of soil deformation is directly applicable for computing the effects of kine-

matic interaction in the justification of pile foundations in a seismic context.
Being an analytical solution, the new method can be developed in addition to introduce vis-

cous damping. Constituting a general solution for the layered soil seismic response, this method
can furthermore naturally be used to calculate the response of the multilayer soil (including dis-
placement, velocity and acceleration) in complex analyses including time-history analyses.

Figure 4. Modes 1, 2 and 3 for profile 4 (26-layers soil).

Figure 3. Modes 1, 2 and 3 for profiles 1 (2-layers soil) and 3 (4-layers soil).
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