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ABSTRACT: Dan et al. (2011) proposed a procedure for evaluating parameters of long
strikeslip faults for strong motion prediction. Recently, Dan et al. (2019) validated this
procedure by reproducing the strong ground motions observed during the 1999 Kocaeli,
Turkey, earthquake. However, the procedure does not take the shallow part of the fault
above the seismogenic layer into account, and therefore it can not reproduce permanent
displacements along the fault traces. On the other hand, Ikutama et al. (2018) proposed a
procedure for modeling the shallow part of the fault, and reproduced the strong ground
motions, including the permanent displacements, observed during the 2016 Kumamoto,
Japan, earthquake. In this paper, we extended the procedure of Dan et al. (2011) to the
shallow part of the fault by adding the procedure of Ikutama et al. (2018), and repro-
duced the strong ground motions and the permanent displacements of the Kumamoto
earthquake.

1 INTRODUCTION

The Headquarters for Earthquake Research Promotion (2005) compiled a procedure, called
Recipe, for evaluating fault parameters for strong motion prediction, and it has been adopted
as a guideline in Japan. This Recipe works well for moderate-sized earthquakes. However, it
estimates unrealistic fault parameters for long faults, and suggests a tentative procedure for
these cases. Hence, Dan et al. (2011) proposed a procedure, as an alternative guideline, for
evaluating fault parameters of asperity models for predicting strong ground motions from
crustal earthquakes caused by long strike-slip faults.

In order to validate this procedure, Dan et al. (2019) made an asperity model for a
strike-slip fault 141 km long in accordance with this procedure, predicted ground motions
by the stochastic Green’s function method, and showed that the PGA’s, PGV’s, predicted
velocity motions, and pseudo velocity response spectra, agreed well with the observed
ones in the 1999 Kocaeli, Turkey, earthquake (M 7.6). In their calculation, the shallow
part of the fault in the surface layers was not modeled, although clear fault traces were
observed in the Kocaeli earthquake. This is because the Headquarters for Earthquake
Research Promotion (2005) assumes that the shallow part of the fault in the surface
layers is broken by the movement of the deep part of the fault in the seismogenic layer
and that modeling of the deep part is sufficient for predicting strong ground motions.
Recently, Ikutama er al. (2018) modeled both the deep part and the shallow part of the
fault to reproduce permanent displacements at the sites very close to the fault trace of the
2016 Kumamoto, Japan, earthquake.

Accordingly, we extended the procedure of Dan et al. (2011) to include the shallow part of
the fault to predict permanent displacements near the fault traces.
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2 MODELING OF FAULTS OF CRUSTAL EARTHQUAKES WITH SURFACE
BREAKINGS

We modeled the entire ruptured fault from the ground surface to the bottom of the seismo-
genic layer. Hereafter, the fault area between the top and the bottom of the seismogenic layer
designates the deep part of the fault (seismic fault), and the fault area from the ground surface
to the top of the seismogenic layer designates the shallow part of the fault.

2.1 Modeling of the deep part of the fault in the seismogenic layer

Dan et al. (2011) proposed a procedure for evaluating the fault parameters of deep parts (seis-
mic faults) of long vertical strike-slip faults.

In their procedure, the length of the active fault L., the dip J, and the upper depth dep; and
lower depth dep, of the seismogenic layer are assumed a priori based on the information obtained
by geological survey and seismological investigation. Then, the length of the surface fault L, is
set to be Ly, =L,., and the length of the seismic fault L is also set to be L;=L,.. The entire
fault width W is W=dep,/sind, and the seismic fault width W, is Wi.;;=(dep,-dep,)/sind.

The reasonings and more detailed explanation is given in Dan et al. (2019).

2.1.1 Slip velocity time function on the deep part of the fault

We adopted the approximate function by Nakamura & Miyatake (2000) as the slip velocity
time function on the deep part of the fault according to the Headquarters for Earthquake
Research Promotion (2005). This function is expressed by equation (23) in IAEA (2015).

2.1.2 Slip on the deep part of the fault
There are three kinds of slips on the deep part of the fault: the averaged slip all over the deep
part of the fault Dy, the averaged slip on the asperities D,,,, and the slip on the background
Dpaer. We explain below how the procedure evaluates these three kinds of slips.

a) averaged slip all over the deep part of the fault

The averaged slip all over the deep part of the fault D,,;; can be calculated by

Dyeis = Mo/ Syeis- (1)
Here, M, is the seismic moment, evaluated by
Moy = (Ac™ Sseis Wieis) /(0.5 + 2 exp[— Lyeis) Wieis)), (2)
Where u is the rigidity at the source, and S, is the seismic fault area, given by
Sseis = Leis Wieis- 3)

b) averaged slip on the asperities

From Somerville et al. (1999), the averaged slip on the asperities D, is calculated by
Dasp - 2Dseis- (4)
¢) slip on the background
The slip on the background D, is calculated by
Dhack = (Sseisteis - SuspDasp)/Sback~ (5)
Here, S,,, is the asperity area, given by
Sasp = (AU#/AUﬁp)Sseiﬁ (6)
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and Sy 1s the background area, given by

Sbaek = Sgeis — Sa.\‘p- (7)

2.1.3 Maximum slip velocity on the deep part of the fault
The maximum slip velocity V,,,. of the approximate function by Nakamura & Miyatake
(2000) is given by

Vmax = AG(Zﬁ WVY)I/Z//L (8)

Here, 40 is the stress drop, f, is the cut-off frequency, W is the width of the asperity or back-
ground, and V, is the rupture propagation velocity.

2.2 Model of the deep part of the fault of the 2016 Kumamoto earthquake

The Headquarters for Earthquake Research Promotion (2013) proposed the bottom of the seis-
mogenic layer is 17 km deep in the area of the Kumamoto earthquake, and National Institute of
Advanced Industrial Science and Technology (2016) observed the surface fault of 34 km in the
2016 Kumamoto earthquake, consisting of 28-km long Futagawa segment and 6-km long Hinagu
segment. Accordingly, we assumed both the surface fault length L, and the seismic fault length
Ly, to be 34 km, and the fault width 1 to be 18.8 km for Futagawa segment dipping 65 degrees
and to be 17.9 km for Hinagu segment dipping 72 degrees. We assumed the upper depth of the
seismogenic layer to be 3 km (Headquarters for Earthquake Research Promotion, 2014).

All the parameters of the deep part of the fault were evaluated by the existing procedure of
Dan et al. (2011). We adopted the strikes, the dips, and the rakes of the segments in Oana
et al. (2017), and we also decided the locations of the asperities based on Oana et al. (2017).

Table 1 lists the model parameters of the deep part of the fault of the 2016 Kumamoto
earthquake. Figure 1 compares the existing SMGA (strong motion generation area) model for
the 2016 Kumamoto earthquake by Oana et al. (2017) shown by the black line with the deep
part of the fault model proposed in this study shown by the blue line.

Figure 2 shows the model of the deep part of the fault (seismic fault in the seismogenic
layer) for the 2016 Kumamoto earthquake by the existing procedure of Dan et al. (2011), and
Figure 3 shows the slip velocity time functions on the deep part of the fault.

2.3 Modeling of the shallow part of the fault in the surface layers

Similarly to Ikutama et al. (2018), we set two kinds of areas in the shallow part of the fault: a
large-slip area and a small-slip area. A large-slip area is located just above the asperity in the
deep part of the fault, and a small-slip area is located above the background in the deep part.

Table 1. Model parameters of the deep part of the fault of the 2016 Kumamoto earthquake evaluated
by the existing procedure of Dan et al. (2011).

this study 2016 Kumamoto earthquake
surface fault length L km 34 34
fault width W km 18.8,17.9 18
seismic moment Mo Nm 3.78E+19 4.40F+19""
averaged dynamic stress drop Ao MPa 34 -
short-period level 4 Nm/'s> 1.20E+19 121E+197
asperity area ratio y 0.28 -
asperity area S 4, kit 145 =
averaged slip on the asperities D 4, m 4.7 ol
asperity stress drop Acusp MPa 12.2 115"

*1) F-net. *2) Average of the short-period levels by Satoh (2017), Irikura et al.(2017), Nakano and
Kawase (2016), and Oana et al. (2017). *3) Oana et al. (2017). *4) Average of the stress drops on
SMGA's in the Futagawa segment by Satoh (2017), Irikura et a/. (2017), and Oana et al. (2017).
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Figure 1. Comparison of the existing SMGA model for the 2016 Kumamoto earthquake of Oana et al.
(2017) shown by the black line with the deep part of the fault model proposed in this study shown by the
blue line.
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Figure 2. Model of the deep part of the fault (seismic fault in the seismogenic layer) for the 2016 Kuma-
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moto earthquake by the existing procedure of Dan et al. (2011).
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Slip velocity time functions on the deep part of the fault.

2.3.1 Slip velocity time function on the shallow part of the fault

We used a triangular shape as the slip velocity time function on the shallow part of the fault,
instead of the approximate function by Nakamura & Miyatake (2000), similarly to Ikutama et al.

(2018).
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2.3.2 Slip on the shallow part of the fault
a) Slip on the large-slip area

There are three alternatives to evaluate the slip on the large-slip area.

The first option is to use displacement obtained from geological surveys, which is unique
for each individual earthquake.

The second option is to adopt empirical relationships between the maximum slip on the
fault trace and the fault length (e.g. Matsuda, 1975; Wells & Coppersmith, 1994). In this
paper, we adopted the empirical relationship given by Matsuda (1975). Here, the magnitude
M is set by equation (9) from the length Ly, of the fault, and then the slip Dy, is obtained
by equation (10) from the magnitude M.

log Ly, = 0.6M —2.9 9)
log Djgrge = 0.6M — 4.0 (10)

The third option is to use the empirical relationship based on the findings of Matsushima
et al. (2010), which describes a relationship of the maximum slip on the fault trace and the
averaged slip on the seismic fault. Matsushima ez al. (2010) indicated that the empirical rela-
tionship between the maximum displacement observed on the fault trace and the average slip
over the fault plane is a factor of 2-3 for a long fault. We can use this empirical relationship to
determine the slip for the large-slip area as 1-1.5 times the slip on the asperity, because the slip
on the asperity is twice the averaged slip on the fault according to Somerville et al. (1999).

b) Slip on the small-slip area

We assumed the slip on the small-slip area Dy, to be evaluated by the proportional rela-
tion among Djgree, Dsmaitr Dasp, and Dy as follows:

Dsmnl/ = Dlarge (Dback/Dasp)« (l 1)

2.3.3 Maximum slip velocity on the shallow part of the fault

As Kagawa et al. (2004) showed that the averaged slip velocity on shallow asperities was
about half the averaged slip velocity on deep asperities, we set the maximum slip velocity on
the large-slip area in the shallow part of the fault to half the maximum slip velocity on the
asperity in the deep part of the fault. Also, the maximum slip velocity on the small-slip area
can be set to half the maximum slip velocity on the background.

2.4  Model of the shallow part of the fault of the 2016 Kumamoto earthquake

We assigned a large-slip area just above the largest asperity and a small-slip area above the
background in the Futagawa segment, and another small-slip area above the background in
the Hinagu segment, as shown in Figure 4.

As for the slip on the large-slip area Dj,q., We chose the third option of using the results by
Matsushima et al. (2010), and set it to be the same value of the slip of 5.1 m on the largest asper-
ity Dyg. Then, the slip on the small-slip area D,y was calculated to be 1.4 m by equation (11).

Figure 4 shows the model of the entire ruptured fault for the 2016 Kumamoto earthquake
by the extended procedure of this study, and Figure 5 shows the slip velocity time functions
for the shallow part of the fault.

Note here that the seismic moment calculated by equation (2) does not include the seismic
moment of the shallow part of the fault, which would be 10 to 15% of it when the rigidity of
the surface layer is half the rigidity of the seismogenic layer.

2.5 Other fault parameters

We adopted a multi-hypocenter model i.e. one hypocenter in each segment, and assumed a
radial rupture propagation in each segment, as Oana et al. (2017) did. The rupture
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Figure 4. Model of the entire ruptured fault for the 2016 Kumamoto earthquake by the extended pro-
cedure of this study.
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Figure 5. Slip velocity time functions for the shallow part of the fault.

propagation velocity was set to 3.0 km/s on the larger asperity in the Futagawa segment and
the asperity in the Hinagu segment and 2.7 km/s on the rest of the fault.

3 METHOD OF CALCULATING GROUND MOTIONS

3.1 Ground motions from the deep part of the fault

We calculated the strong ground motions from the deep part of the fault by the hybrid
method (Kamae ef al., 1998), combining the results in the shorter period range by the stochas-
tic Green’s function method (Boore, 1983) and those in the longer period range by the wave-
number integration method (Hisada & Bielak, 2003).

3.2 Ground motions from the shallow part of the fault

The shallow fault is an area that is not modeled by the Recipe for strong ground
motion prediction because the rupture in this area occurs passively in association with
the deep fault slip, and that there is no autonomous rupture. Consequently, we assumed
the stress drop to be zero on the shallow part and calculated the ground motions by the
wavenumber integration method because the effects of the shallow part appear in the
long period range.

We set the calculated minimum period to be 0.32 s (3.125 Hz), and the number of Gauss
points per fault element for fault surface integration was 6 (6X6=36 points).
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Figure 6. Comparison of the calculated motions with the observed motions at Mashiki station (KMMH16)
2km away from the fault trace (obs: observed, D: deep part only, D+S: deep and shallow parts)

W

3.3 Ground motions from the entire fault

We superimposed the motions from the deep part of the fault and those from the shallow part
of the fault in the time domain.

4 CALCULATED GROUND MOTIONS

We calculated ground motions at two stations: Mashiki station, 2 km away from the fault
trace, and Nishihara station, 700 m away from the fault trace.

4.1 Results at Mashiki station 2 km away from the fault trace

It is found out that the observed accelerations, velocities, and displacements are reproduced
very well with and without the shallow part of the fault.

4.2 Results at Nishihara station 700 m away from the fault trace

We find that the observed accelerations are reproduced very well with and without the shallow
part of the fault. However, the observed velocities and displacements are not reproduced well
without the shallow part of the fault, while they are reproduced well when the shallow part is
included.
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Figure 7. Comparison of the calculated motions with the observed motions at Nishihara station 700 m
away from the fault trace (obs: observed, D: deep part only, D+S: deep and shallow parts)

5 CONCLUSIONS

We extended the procedure for evaluating parameters of long strike-slip faults by Dan ez al. (2011)
to include the shallow part of the fault. The original existing procedure could reproduce the
observed accelerations, velocities, and displacements at Mashiki station, 2 km from the fault trace
and the observed accelerations at Nishihara station, 700 m from the fault. But it underestimated
the observed velocities and displacements at Nishihara stations. Meanwhile, the extended proced-
ure could reproduce the observed velocities and displacements, including the permanent displace-
ments, as well as the observed accelerations, both at Mashiki station and Nishihara station.
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