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ABSTRACT: This paper presents deep learning-based site amplification models developed
from large-scale simulated site amplification in Central and Eastern North America
(CENA). The error evaluation of conventional simulation-based linear and nonlinear
response spectrum (RS) and smoothed Fourier amplitude spectrum (FAS) amplification
models highlights that fitting whole dataset to predetermined functional forms cannot cap-
ture the complex behavior inherent in the simulated amplification in CENA. Deep learning
through Artificial Neural Network (ANN) is adopted for a new set of RS and FAS amplifi-
cation models without the limitations of conventional regression models. This study shows
significant improvements over conventional functions by use of ANN-based models: (i) the
error in estimation is reduced up to 30% relative to conventional linear and total RS models,
(ii) the simulated shallow site response is captured more accurately, and (iii) a continuous
model for linear FAS amplification, previously provided as tabulated functions of VS30 and
soil depth, is produced.

1 INTRODUCTION

Site amplification functions adjustground motions from a reference site condition (usually
bedrock) to the ground surface on the basis of site geologic features and reference rock. In the
current state of the practice, site amplification is evaluated either empirically where data is
available or using supplementary simulations in the case that the data is not sufficient such as
CENA, known as a tectonically stable region (Mueller et al. 2015), to develop site amplifica-
tion terms in ground motion models (GMM’s, commonly referred to as amplification func-
tions or attenuation relationships). The site amplification terms in GMM’s are predetermined
functional forms using site and reference rock parameters for the estimation of ground
response in a region of interest and are fit toan empirical ground response dataset by conven-
tional nonlinear or mixed-effects regression techniques. The main objective of this study is to
reduce the error of site amplification estimation and to better estimate the simulation-based
site amplification behavior at CENA using deep learning techniques such as ANN along with
more accurately capturing shallow site amplification.
A parametric study of one-dimensional (1D) site response simulations in Harmon et al.

(2019a) was designed to capture uncertainty and variability of site amplification in CENA
region mainly attributed to input ground motion, nonlinear dynamic soil properties, and shear
wave velocity (VS). The study uses 1.8 million 1D site response analyses relative to a reference
rock condition (VS = 3000 m/s) of CENA (Hashash et al., 2014). The site amplification database
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is used to develop modular linear and nonlinear RS and FAS site amplification functions for
CENA (Harmon et al., 2019b).
This study presents ANN-based linear and total RS and FAS site amplification models using

a subset (90%) of the simulation database of Harmon et al. (2019a) for training these models
with application to shallow site RS amplification features of CENA attributed high shallow
impedance contrasts. Remaining part (10%) of simulation database is adopted for testing the
predictive capability of proposed ANN models. The error evaluation of ANN models is per-
formed by comparison to amplification functions in Harmon et al. (2019b) with lowest error of
site amplification estimation amongst all models developed by Harmon et al. (2019b).

2 SIMULATION-BASED SITE AMPLIFICATION AND MODELS FOR CENA

2.1 Parametric study design for simulation-based site amplification

The parametric study design for CENA simulations (Harmon et al., 2019a) is composed of (i)
thirteen representative profiles from the combination of 10 VS profiles and 9 geology-dependent
soil index and strength properties, (ii) thirty realizations of each of the representative profiles, (iii)
three pseudo-random realizations of nonlinear dynamic curves from Darendeli (2001) for a mean
and systematically higher and lower G/Gmax curves at all considered shear strains, (iv) eleven dis-
crete soil horizon depths from 0.0 m (surface rock condition) to 1000.0 m, and (v) six weathered
rock zone models for material between the soil and reference rock condition. In total, 70,650 site
profiles are developed. The input rock outcrop motions consist of 186 synthetic and recorded
rock motions for CENA from NUREG-6729 (McGuire et al., 2001), and 61 motions generated
stochastically for CENA reference conditions. The 247 ground motions are uniformly distributed
through the 30 VS realizations of each site profile with three analysis methodologies resulting
in1,745,055 site response analyses: 581,685 of each linear, nonlinear, and equivalent linear simula-
tions. Only the linear and nonlinear simulations from that study are used herein.

2.2 Modular RS and FAS linear and nonlinear site amplification models

The large-scale simulated site amplification data is used to develop 17 RS site amplification
functions, 5 linear and 12 nonlinear (Harmon et al., 2019b). The natural logarithm of totalsite
amplification, FS, is defined as sum of linear and nonlinear components as

FS ¼ ln ampð Þ ¼ Flin þ Fnl ð1Þ

where Flin is the intensity-independent linear amplification and Fnl is the nonlinear site amplifi-
cation component. In Harmon et al. (2019b) Flin is developed from linear simulations as a
function of three parameters:VS30 (time-averaged VS in the top 30 m of a site), and ZSoil(depth
to weathered rock) or Tnat (site natural period). Fnl is modeled using a modified functional
form proposed by Chiou and Youngs (2008) and Seyhan and Stewart (2014), which includes
VS30 and PGA at reference rock and is regressed on the difference between nonlinear and
linear simulations. The resulting functional form of eq. (1) can be rewritten as:

FS ¼ Flin þ Fnl ¼ f VS30ð Þ þ f ZSoilð Þjf Tnatð Þ þ f ðNLÞ ð2Þ

In this study, the only linear Harmon et al. (2019b) model considered is the L5 model which
uses simultaneous VS30 and Tnat effects and produces the lowest error of site amplification esti-
mation amongst all linear models in Harmon et al. (2019b). In the L5 form, theVS30 and T-

nateffects are, respectively, defined by VS30-scaling (L1) model and f(Tnat) functional form
including (i) c5R term, where R is the Ricker wavelet term to capture the fundamental mode site
resonance and (ii) c6Tnat component to represent the soil damping effects for deep sites. The
total amplification model considered in this study are the L5+N2 model, which regresses the
linear and nonlinear components separately. N2 model represents the f(NL) term in eq. (2) and
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adopts VS30 and PGA at rock (PGAr) parameter as driver of nonlinearity. Figure 1 shows the
linear L5 and total L5+N2 model estimations of site response for periods of 0.1s along with
their residuals defined as natural logarithm of ratio of simulations and model estimations:
The smoothed linear FAS amplification in Harmon et al. (2019b) is provided as tabulated

functions of VS30 and ZSoil, and the smoothed nonlinear FAS model is analogous to the RS
model using the difference between linear and nonlinear analyses due to similar shapes of the
nonlinear amplification. Both the linear and nonlinear models for FAS from Harmon et al.
(2019b) are adopted in this study.

2.3 Shallow site amplification at CENA

The response of shallow sites in CENA, defined as sites with ZSoil less than 30.0 m (Nikolau
et al., 2001, Harmon, 2017), have significant amplification due to sharp impedance contrasts
between the hard reference rock condition and overlying soil sediment and is mainly controlled
by short period portion of site response (Nikolaou et al., 2014). Seismic guidelines such as
NEHRP (2015) represent the site factors for short-period range by Fa coefficient, but these fac-
tors were developed using strong motion data from sites in Western US (WUS), where sharp
stiffness contrast between soil sediment and underlying reference condition is not observed. This
may result in underestimation of shallow site response, and lead to unconservative designs.
Figure 2 shows the L5 model estimations of linear site amplification at shallow sites for depths

of 5.0 and 30.0 m for periods of 0.1s. L5 model estimations inadequately represent the shallow
amplification two ways: (i) the height of first-order peak amplification is underestimated even
with the use of c5R term in L5 form, and (ii) the model cannot capture higher-order peaks for

Figure 1. All profile L5 and ANN estimations (a) of linear amplification (testing subset) and corres-

ponding residuals (c), and L5+N2 and ANN estimations (b) of total amplification and corresponding

model residuals (d) for 0.1 s (using testing subset, 10% of all simulation data).
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short periods (0.1 s). L5+N2 model produces similar estimations for total amplification at shallow
sites, but they still cannot capture the full range of the simulation data.

3 DEEP LEARNING-BASED SITE AMPLIFICATION FUNCTIONS FOR CENA

The current state of the practice for the development of attenuation relationsuses mathemat-
ical models which relate independent and dependent variables of the ground motion through
regression analysis, but various studies show that better estimation of ground motion param-
eters can be produced by ANN-based site amplification functional forms as compared to clas-
sical attenuation relations. Derras et al. (2014) uses asubset of a reference database for seismic
ground motion prediction in Europe (RESORCE) and adopts feed-forward type ANN with
five input parameters, the moment magnitude (Mw), the Joyner-Boore distance (RJB), the
focal mechanism, the hypo central depth and VS30, and one hidden layer of 5 neurons. This
model outputs PGA, PGV and 5% damped spectral accelerations (SA) at 62 periods from 0.01
s to 4.0 s. Khosravikia et al. (2018) outlines a framework for ANN-based GMM’s using 4,529
ground motion recordings with epicenters in Texas, Oklahoma and Kansas and shows the
improvement in model fits by ANN relative to conventional GMM modeling by Hassani and
Atkinson (2015). There are other studies (Gullu and Ercelebi, 2007, Alavi and Gandomi,
2011) using ANN to produce GMM’s for other regions, and all these models indicate that
ANN observably decreases the error of amplification estimation relative to predetermined
functions. This work aims to capture the site amplification more precisely as similar to afore-
mentioned studies above but uses much larger site amplification database along with more
optimized and novel platform for training ANN models.

Figure 2. Shallow sites with ZSoil of 5.0 and 30.0 m, L5 and ANN model estimations (a, b) of linear

amplification, and L5+N2 and ANN model estimations (c, d) of total amplifications for 0.1s (using test-

ing subset, 10% of all simulation data).
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An ANN consists of a collection of inter-connected nodes (or artificial neurons) inspired by
the biological neural networks constituting the human brains (McCulloch and Pitts, 1943),
and each neuron consists of two parts: the net function and the activation function (Hwang
and Hu, 2001). The net function defines the method for the combination of the network
inputs inside each neuron as,

Yj ¼
XN

j¼1
wji � Xi þ bj ð3Þ

where wji represents the weight connecting ith input to the jth hidden unit, Xi are network
inputs, bj is the bias of the j

th unit, and Yj is the output of the net function. The activation func-
tion is used to associate the output of the net function (Y) with the output of the neuron as a=f
(Y). Some of the most commonly used activation functions are tangent hyperbolic, linear, and
Rectified Linear Unit (ReLU). The net and activation functions are executed in a directed
graph structure (or ANN with neurons and external inputs) to perform distributed computing.
The adopted ANN structure of this study (Figure 3a) includes 2 hidden layers, each with

200 nodes and an output layer producing site amplification for selected oscillator periods (
22 periods from 0.001 s to 10.0 s for RS and 19frequencies from 0.1 Hz to 33.3 Hz for FAS).
The same ANN structure is used for independent modelling of RS and FAS amplification.
The activation function is selected as ReLU for hidden layers, which is illustrated in Figure 3b
and returns 0 if the input value is negative but gives the value itself if it is positive, and linear
for an output layer. The training sample is composed of 90% of all simulation data (492,869
each of linear and nonlinear simulations), and this data is separated into 1232different
random batches of 400 simulations to train the samples through 15,000 epochs. The learning
rate is selected as 0.00005, and ANN training is performed via Tensor Flow (Abadi et al.,
2016). Remaining 10% of simulation data (54,764 each of linear and nonlinear simulations) is
used to test the predictive capability of ANN-based models.
Figure 1 shows the ANN estimations for linear and total RS amplification along with the

related conventional L5 withVS30 and Tnat and L5+N2 with VS30, Tnat and PGAr models. The
ANN-based models use identical input parameters to corresponding amplification functions. For
linear amplification (Figure 1a and c), ANN produces greater height and more accurate location
of first-order peak amplification along with the introduction of higher-order peaks at 0.1 s. The
ANN estimations of site amplification are more representative of the scatter in the data which can
be seen from the reduction of the scatter in the residuals. Similar improvement is obtained in
ANN-based modeling of total amplification(Figure 1b and d). Another advantage of using ANN
is evidenced by the ability to better model shallow linear and total site amplification (Figure 2).
Improvements from the ANN modeling of shallow sites include better capturing of the distinct
peak in amplification at VS30? 900 m/s (Figure 2a), the inclusion of higher-order peaks and troughs
(Figure 2b) for linear amplification, and variability of total amplification (Figure 2c and d).
Figure 4 shows the performance of two different ANN models for linear and total FAS amp-

lification. The inputs to the linear FAS amplification models are VS30 & ZSoil and VS30 & Tnat,

Figure 3. (a) ANN structure for modelling of linear and nonlinear RS and FAS site amplification. (b)

Rectified Linear Unit (ReLU) used as activation function for hidden layers.
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respectively. The same structure of ANN used for the RS amplification with inclusion of PGAr

is used for nonlinear FAS amplification. ANN models with Tnat produce better estimation of
site amplification relative to that using ZSoil as observed in the reduction of error in the model
residuals (Figure 4c and d)
Error evaluation of ANN-based models along with conventional models is performed by

comparison of root-mean-square (RMS) error of L5, L5+N2 and corresponding ANN estima-
tions in Figure 5. The use of ANN’s reduces the RMS-error up to approximately 30% both
for linear (Figure 5a) and total (Figure 5c) RS amplification estimations relative to conven-
tional models, respectively. For FAS amplification (Figure 5b and d), the effect of using Tnat

over Zsoil as an input to the ANN on reduction in error of estimation is more significant for
linear amplification than total amplification.

4 CONCLUSION

Predetermined functional forms using conventional regression techniques can capture simula-
tion-based linear and total site amplification, but lead to significant error of site amplification
estimation. This study utilizes ANN method to develop amplification models with consider-
ably less error with application to shallow site amplification at CENA. These models adopt
identical input parameters of corresponding simulation-based site amplification models (VS30,
Tnat and PGAr) regressed through conventional techniques, and the same structure of ANN is
used for modeling of RS and FAS site amplification. The results demonstrate that ANN
models can capture the amplitude and location of distinct amplification peaks due to site nat-
ural period effects more accurately, introduce higher order amplification peaks, and more

Figure 4. ANN estimations of linear (a) and total (b) FAS site amplification and corresponding linear

(c) and total (d) model residuals for 10.0 Hz (using testing subset, 10% of all simulation data).
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properly represent the spread of site amplification data compared to conventional amplifica-
tion models, which would require additional model terms or more complicated functional
forms to estimate these features. In addition, the ANN modeling results in approximately 30%
reduction in the standard error estimation of linear and total site amplification, respectively.
Similar ANN-based amplification models were developed for the smoothed FAS. The

linear FAS amplification model, previously approximated as a tabulated function of VS30 and
ZSoil, uses VS30 and either of Tnat or ZSoil as inputs, and the total FAS amplification is mod-
eled using the same parameters and including PGAr as driver of nonlinearity. The use of T-

natwith VS30asANN inputs produces lower error of estimation for linear amplification than
with ZSoil and VS30, and the effect of Tnat in the ANN FAS total amplification model does not
show significant reduction in error estimation of linear amplification as it was in RS total
amplification.

REFERENCES

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G.,

Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray, D. G., Steiner, B., Tucker, P.,

Vasudevan, V., Warden, P., Wicke, M., Yu, Y., Zheng, X, & Kudlur, M. 2016, Tensorflow: a system

for large-scale machine learning. In OSDI (Vol.16, pp. 265-283).

Alavi, A. H. & Gandomi, A. H. 2011. Prediction of principal ground-motion parameters using a hybrid

method coupling artificial neural networks and simulated annealing. Computers & Structures, 89(23-

24), 2176-2194.

Boore, D. M. 2005. SMSIM Fortran programs for simulating ground motions from earthquakes, version

2.3. A revision of U.S.Geol.Surv. Open-File Rept. 96-80-A.

Chiou, B. S. J. & Youngs, R. R. 2008. NGA model for average horizontal component of peak ground

motion and response spectra, Pacific Engineering Research Center.

Darendeli, M. B. 2001. Development of a new family of normalized modulus reduction and material

damping curves,Ph. D. Thesis, University of Texas at Austin.

Derras, B., Bard, P. Y., & Cotton, F. 2014. Towards fully data driven ground-motion prediction models

for Europe., Bulletin of Earthquake Engineering, 12(1),495-516.

Güllü, H., & Erçelebi, E. 2007. A neural network approach for attenuation relationships: An application

using strong ground motion data from Turkey. Engineering Geology, 93(3-4), 65-81.

Figure 5. RMS-Error of L5, L5+N2 models and corresponding ANN model estimations of RS (a, c)

and FAS (b, d) linear and total site amplification(using training subset, 90% of all simulation data). Same

results are obtained for test subset.

2986



Hashash, Y. M. A., Kottke, A. R., Stewart, J. P., Campbell, K. W., Kim, B., Moss, C., Nikolaou, S.,

Rathje, E. M., & Silva, W. J. 2014. Reference Rock Site Condition for Central and Eastern North

America. Bulletin of the Seismological Society of America 104(2): 684-701.

Hassani, B. & Atkinson, G. M. 2015. Referenced empirical ground-motion model for eastern North

America. Seismological Research Letters, 86(2A), 477-491.

Harmon, J. A. 2017. Nonlinear site amplification functions for central and eastern North America, Doc-

toral dissertation, University of Illinois at Urbana-Champaign.

Harmon, J., Hashash, Y. M. A., Stewart, J. P., Rathje, E. M., Campbell, K. W., Silva, W. J., Xu, B.,

Musgrove, M., and Ilhan, O. 2019a. Site amplification functions for Central and Eastern North Amer-

ica – Part I: Simulation dataset development, Earthquake Spectra35(2), in press.

Harmon, J., Hashash, Y. M. A., Stewart, J. P., Rathje, E. M., Campbell, K. W., Silva, W. J., and Ilhan,

O. 2019b. Site Amplification Functions for Central and Eastern North America - Part II: Model

Development and Evaluation, Earthquake Spectra 35 (2), in press.

Hwang, J. N., & Hu, Y. H. 2001. Handbook of neural network signal processing. CRC press.

Khosravikia, F., Zeinali, Y., Nagy, Z., Clayton, P., & Rathje, E. M. 2018. Neural Network-Based Equa-

tions for Predicting PGA and PGV in Texas, Oklahoma, and Kansas. arXiv:1806.01052.

McCulloch, W. S., & Pitts, W. 1943. A logical calculus of the ideas immanent in nervous activity. The

bulletin of mathematical biophysics, 5(4),115-133.

McGuire, R. K., Silva, W. J., & Costantino, C. J. 2001. Technical Basis for Revision of Regulatory Guid-

ance on Design Ground Motions: Hazard- and Risk-consistent Ground Motion Spectra Guidelines

(NUREG/CR-6728). R. M. Kenneally.

Mueller, C.S, Boyd, O. S., Petersen, M. D., Moschetti, M. P., Rezaeian, S., & Shumway, A. M. 2015.

Seismic Hazard in the Eastern United States. Earthquake Spectra: December 2015, Vol. 31, No. S1,

pp. S85-S107

Nikolaou, S., Mylonakis, G., & Edinger, P. 2001. Evaluation of site factors for seismic bridge design in

New York City area. Journal of Bridge Engineering, 6(6),564-576.

Nikolaou, S., Pehlivan, M., Richins, J., Lincoln, L., & Deming, P. W. 2014, Seismic Response of Shallow

Sites in Eastern US: Implications to the State of Practice, Tenth U.S. National Conference on Earth-

quake Engineering Frontiers of Earthquake Engineering

Seyhan, E. & Stewart, J. P. 2014. Semi-empirical nonlinear site amplification from NGA-West2 data and

simulations. Earthquake Spectra, 30(3),1241-1256.

2987


	Welcome page
	Table of contents
	Author index
	Search
	Help
	Shortcut keys
	Previous paper
	Next paper
	Zoom In
	Zoom Out
	Print


