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ABSTRACT: A simplified analytical solution is derived for the dynamic response of a flexible
retaining wall constrained by a cable anchor installed at an arbitrary elevation along its height.
The wall retains a linear viscoelastic homogeneous backfill of constant properties on a compliant
foundation soil, and is excited by vertically-propagating harmonic S-waves under plane strain con-
ditions. The simplifying assumptions of zero dynamic vertical normal stresses in the backfill and
zero variation of vertical displacements with horizontal distance from the wall, originally adopted
by Matsuo & Ohara 1960 and by Veletsos & Younan 1994, are employed. A closed-form solution
based on a modified Vlasov-Leontiev formulation is derived, and an extensive parametric investi-
gation is performed for exploring the effect of wall-soil interaction on seismic response. Simple
expressions are obtained for wall deflections, soil thrusts, anchor and base shear forces, and base
moments. The ratio of shear modulus between foundation and backfill controls the response of
the system in conjunction with soil-wall relative stiffness. Results elucidate the importance of kine-
matic constraints on wall response. These aspects cannot be captured by conventional design
methods based on limit state analysis which neglect kinematics and soil-structure interaction.

1 INTRODUCTION

Anchored retaining walls are widely used in deep excavations for lowering wall deflections
and increasing the factor of safety against gravity loads. Despite their extensive use in practice,
the effect of anchors on dynamic response remains poorly understood. Neelakantan et al.
(1992) were among the first to assess soil pressures considering anchor forces in the framework
of traditional limit-state methods (Okabe 1924, Mononobe and Matsuo 1929, Seed & Whit-
man 1970, Mylonakis et al 2007).
A number of numerical investigations of anchored retaining walls by means of the Finite-

Element (FE) method were carried out by different investigators (Totsev 2006, Gazetas et al.
2016). Notwithstanding the importance of rigorous numerical solutions in providing insight
into the physics of the problem, these methods are not ideal for routine use by engineers,
given the sensitivity to often poorly defined input parameters and the computational effort
required to explore a wide range of design parameters.
In this paper, a simplified analytical solution is developed, providing a mathematical frame-

work for understanding and characterizing the dynamic response of flexible anchored walls
retaining a homogeneous viscoelastic backfill resting on a compliant foundation soil. This
method combines earlier proposals by Veletsos & Younan (1994), Li (1999), Kloukinas et al.
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(2012) and Koutsantonakis et al. (2018). It is also inherently linked to the methods recently
proposed by Brandenberg et al (2015, 2017a,b) and Durante et al (2019).

2 STATEMENT OF PROBLEM

2.1 Equation of motion for the soil medium

The problem under consideration is shown in Figure 1a, where a Cartesian coordinate system
(x, y) is employed. A viscoelastic flexural wall of height H, thickness tw, bending stiffness EI,
mass density ρw, Poisson’s ratio νw and damping coefficient δw, retains a semi-infinite homoge-
neous soil stratum of constant thickness H, mass density ρ, Poisson’s ratio ν, shear modulus G
and damping coefficient δ. Both backfill and wall rest on a compliant foundation associated
with a linear viscoelastic soil material of constant density ρf, shear modulus Gf and hysteretic
damping coefficient δf. The wall is constrained by an elastic anchor placed at a height Ha from
the base. The anchor is simulated as a linear elastic spring of constant stiffness K. The solution
is developed in the frequency domain considering a harmonic base motion of constant fre-
quency ω and amplitude €Xgg at the foundation soil – backfill interface, which leads to vertical
S-wave propagation through the foundation soil and backfill.
To determine the response of the backfill, the method of separation of variables is employed:

u x; yð Þ ¼ X xð Þ � yð Þ ð1Þ

where u = u(x, y) is the total horizontal soil displacement, X(x) is an unknown function
having dimensions of length, and Φ(y) is a known, in the finite-element sense, dimensionless
function of depth.
Considering the equilibrium of horizontal forces acting on an arbitrary soil element in the

retained soil medium and applying the assumptions of zero dynamic vertical normal stresses
and zero variation of vertical displacement with the horizontal spatial coordinate (Matsuo &
Ohara 1960, Veletsos & Younan 1994), the weak form of the equilibrium equation is obtained
in terms of the differential equation:

d2X xð Þ

dx2
�

a2oc � a2o þ coc

H2ψ2
e

� �

X xð Þ ¼
L €Xg

VSψeð Þ2
ð2Þ

where,

ao ¼ ωH=V�
s ; a

2
oc ¼ H2

Z H

0

�0 yð Þ2dy=

Z H

0

� yð Þ2dy; coc ¼ H2� 0ð Þ�0 0ð Þ=

Z H

0

� yð Þ2dy;

ð3a; b; cÞ

L ¼

Z H

0

� yð Þdy=

Z H

0

� yð Þ2dy; ψ2
e ¼ 2� �ð Þ= 1� �ð Þ ð4a; bÞ

Of the above parameters, ao and aoc denote a dimensionless excitation frequency and a cut-off
frequency beyond which stress waves start to propagate horizontally in the backfill, respectively,
while coc is a parameter associated with the non-zero horizontal displacement at the base of the
backfill. ℒ is a modal participation coefficient, Vs

*2 = G*/ρ is the complex wave propagation
velocity in the backfill, and ψe is a pertinent compressibility coefficient. G* = G (1+2iδ) is the
complex soil shear modulus. The validity of the associated simplifying assumptions of Matsuo
& Ohara 1960 and Veletsos & Younan 1994 has been verified by Papazafeiropoulos & Psarro-
poulos 2010 by means of an exact analytical solution. Also, contrary to formulations pertaining
to rigid rock conditions (Kloukinas et al 2012, Brandenberg et al 2017b), the derivative of the
shape function Φ΄ appears outside the integral sign in parameter coc (Equation 3a).

The general solution to Equation 2 is:
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X xð Þ ¼ A1e
mx þ A2e

�mx �
L €Xg

a2oc � a2o þ coc

H

V�
s

� �2

ð5Þ

where m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2oc � a2o þ coc
p

= Hψeð Þ is a complex wavenumber associated with horizontally
propagating waves. Determining the integration constants A1 and A2 requires imposing the
following boundary conditions (Koutsantonakis et al. 2018):

u x ! ∞; yð Þ ¼ uff yð Þ; u 0; yð Þ ¼ w yð Þ ð6a; bÞ

where uff(y) is the free-field soil displacement at an infinite distance from the wall, and w
(y) is the deflection of the wall, at elevation y. To ensure finite response at large distances
from the wall, integration constant A1 must vanish. To determine uff (y), the shape function
Φ(y) can be taken equal to the fundamental natural mode shape of a homogeneous soil stra-
tum on a flexible foundation (see Section 2.2 below). The associated soil thrusts are obtained
in a straightforward manner from the easy-to-derive expression (Kloukinas et al. 2012):

σx 0; yð Þ ¼
2

1� �

� �

G� dX xð Þ

dx
jx¼0� yð Þ ð7Þ

2.2 Fundamental shape function of backfill

To determine the fundamental shape function of the retained soil layer, the one-dimensional
wave function of Li (1999) is employed:

u yð Þ ¼ A3 cos k yð Þ þ A4sin k yð Þ ð8Þ

where k is a wavenumber to be obtained as an eigenvalue; A3 and A4 are integration con-
stants associated with the following boundary conditions:

∂u y ¼ Hð Þ

∂y
¼ 0;

∂
2u y ¼ 0ð Þ

∂y2
¼ i

ω

V�
sf

 !

ρ

ρf

 !" #

∂u y ¼ 0ð Þ

∂y
ð9a; bÞ

Equation 9b stands for the displacement compatibility and shear stress continuity at the base
of the retained soil layer, where (ω=V�

sf Þ is the wave number of the foundation soil layer. Com-
bining Equations 8 and 9 yields the following characteristic equation for the eigenvalues k:

Figure 1. (a) System of an anchored flexible retaining wall and retained soil on a viscoelastic base stra-

tum; (b) Equilibrium of forces on the wall.
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cos kHð Þ þ i
V�

s

V�
sf

 !

ρ

ρf

 !" #

sin kHð Þ ¼ 0 ð10Þ

which can be solved analytically for the complex fundamental eigenvalue, k1. The corres-
ponding shape function is complex valued, due to the effect of radiation and material damp-
ing, and is given by:

� yð Þ ¼ sin k1yð Þ � i
ao

ao1

� �

V�
s

V�
sf

 !

ρ

ρf

 !" #

cos k1yð Þ ð11Þ

2.3 Equation of motion for the wall

The retaining wall is modelled as an Euler-Bernoulli plate of unit width, as depicted in
Figure 1b. Considering the equilibrium of horizontal forces acting at an arbitrary segment of
the wall (Figure 1b) and employing Equation 7, the following governing equation is obtained:

EI�w 4ð Þ yð Þ þ
2

1� �
G�m� ω2ρw

� �

w yð Þ ¼ ω2ρw �
2

1� �

LH2ρm� yð Þ

a2oc � a2o þ coc

� �

€Xg ð12Þ

where w(y) denotes the wall deflection, EI* = Ew
* tw

3/[12 (1t νw
2)] and Ew

* = Ew (1+2 i δw)
denote the wall bending stiffness under plane strain conditions and the corresponding complex
Young’s modulus of the wall material, respectively. Equation 12 is a non-homogeneous,
fourth-order ordinary differential equation, which can be solved in a straightforward manner
once the function Φ(y) has been established.

3 PROPOSED SOLUTION

The general solution to Equation 12 can be derived and contains a number of integration con-
stants that can be determined from the boundary conditions. It should be noticed that in the realm
of the present analysis, the existence of the anchor does not affect the response of the free-field soil
away from the wall. On the other hand, the anchor strongly influences the response of the wall
due to the relative wall-soil displacements. The wall deflection is expressed in modular form as

w1 yð Þ ¼ C1 cos βyð Þ þ C2 sin βyð Þ þ C3 cosh βyð Þ þ C4 sinh βyð Þ þ
ρw

€Xg

4β4EI�
þ �� yð Þ ð13Þ

w2 yð Þ ¼ C5 cos βyð Þ þ C6 sin βyð Þ þ C7 cosh βyð Þ þ C8 sinh βyð Þ þ
ρw

€Xg

4β4EI�
þ �� yð Þ ð14Þ

where, β4 ¼ 2= 1� vð ÞG �m� ω2ρw
� �

=4EI � and � ¼ LH2m €Xgρ= a2o � a2oc � coc
� �

1� vð Þ2E
�

I � β4 þ k41
� �

�. Note that Equation (13) holds for y < Ha (below anchor), and Equation (14)
holds for y ≥ Ha.

The integration constants C1, C2, C3, C4, C5, C6, C7, C8 are determined by enforcing the
following boundary conditions at elevations y = 0 (base), y = Ha (anchor level), and y = H
(top) of the wall:

w1 0ð Þ ¼ u 0ð Þ; EI�w
2ð Þ
1 0ð Þ ¼ KRw

1ð Þ
1 0ð Þ ð15a; bÞ

w1 Hað Þ ¼ w2 Hað Þ; w
1ð Þ
1 Hað Þ ¼ w

1ð Þ
2 Hað Þ;w

2ð Þ
1 Hað Þ ¼ w

2ð Þ
2 Hað Þ ð15c; d; eÞ

w
3ð Þ
1 Hað Þ ¼ w

3ð Þ
2 Hað Þ þ K=EI� w2 Hað Þ � w1 0ð Þ½ � ð15fÞ

w
2ð Þ
2 Hð Þ ¼ 0; w

3ð Þ
2 Hð Þ ¼ 0 ð15g; hÞ
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which pertain, respectively, to the equilibrium of shear stresses and moments at the base of the
backfill, the boundary conditions at the anchor elevation Ha (compatibility of deflections and
curvatures, equilibrium of bending moments and shear forces), and the boundary conditions of
zero shear forces and moments at the top of the wall (Ghayesh 2012). Please note that the first
of Equations 15a is tantamount to Equation 6b and naturally leads to a trivial result, so
Equation 9b is used instead. KR stands for the rotational stiffness of the wall foundation under
plane strain conditions (Mushkelishvili 1954). It is stressed that in a more rigorous approach the
anchor might undertake a portion of the total moment. In such a case, the anchor rotational
stiffness must be included in the equilibrium of moments, but the specific effect is neglected here.

The dynamic soil thrusts are given by Equation 7 as:

σx1 0; yð Þ ¼ �
2

1� �
G�m

L €Xg� yð Þ

a2oc � a2o þ coc

H

V�
s

� �2

þ w1 yð Þ

 !

; y5Ha ð16Þ

σx2 0; yð Þ ¼ �
2

1� �
G�m

L €Xg� yð Þ

a2oc � a2o þ coc

H

V�
s

� �2

þ w2 yð Þ

 !

; yHa ð17Þ

Based on the above analysis, the total base shear force Qb and the base moment Mb of the
wall can be obtained by integrating the soil thrusts along the wall height, taking into account
the anchor force Qk = K [w2(Ha) t w1(0)]. This leads to the expressions:

σb 0; yð Þ ¼ �
2

1� �
G�m

L €Xg� yð Þ

a2oc � a2o þ coc

H

V�
s

� �2 Z H

0

� yð Þdyþ

Z Ha

0

w1 yð Þdyþ

Z H

Ha

w2 yð Þ

" #

� K w2 Hað Þ � w1 0ð Þð Þ

ð18Þ

Mb ¼�
2

1� �

� �

G�m
€Xg

a2oc � a2o þ coc

H

V�
s

� �2 Z H

0

y� yð Þdyþ

Z Ha

0

yw1 yð Þdyþ

Z H

Ha

yw2 yð Þdy

" #

� KHa w2 Hað Þ � w1 0ð Þð Þ

ð19Þ

For a better interpretation of the solution, the normalized flexibility dw = GH 3/EI*, normalized
rotation compliance dθ=GH

2/KR, normalized anchor cable stiffness dk = GH/K, and normalized
excitation frequency ω/ω1 (ω1 being the fundamental natural frequency of the retained soil mass),
are introduced as the main independent variables (similar to Younan & Veletsos 2000).

4 PARAMETRIC INVESTIGATION

An extensive parametric investigation was carried out for the effects of flexible foundation,
anchor and wall flexibility. In addition to the aforementioned dimensionless ratios dw, dθ, dk and
ω/ω1, the following parameters were considered: ν = 1/3, δ = δf = 10%, δw = 4% and ρf/ρ =1.3 .

4.1 Influence of compliant foundation

For the pseudo-static case (ω = 0) the fundamental shape function Φ(y) takes the form of a
sinusoidal function and is not affected significantly by the ratio (Vs/Vsf). Figure 2a presents the
dynamic soil pressures at resonance. Note that the fundamental frequency depends on the ratio
(Vs/Vsf), thus the fundamental frequency is different in each case examined (Vsf/Vs =1, 3 and 5).

Note that wall flexibility in Figure 2 does not significantly affect the distribution of soil
thrusts, as the curves for different values of dw almost coincide. Nevertheless, a stiffening of
the foundation (Vsf/Vs =1 to 5) leads to an increase in normal stresses at all frequencies. Fur-
thermore, a stiffer base attracts higher stresses. It should be noticed that the compliance of
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foundation soil under the wall and the backfill is neglected in “bathtub” solutions involving a
rigid base (Kloukinas et al. 2012; Brandenberg et al. 2017a, Koutsantonakis et al. 2018).
Integrating soil pressures with height, the total base shear force is obtained by means of Equa-

tion 18. Figure 2b depicts the normalized base shear force against excitation frequency. To pro-
vide a common reference for all plotted results, ω1 in the abscissa of Figure 2b corresponds to a
rigid base (i.e. ω1=πVs/2H; Vsf/Vs → ∞). For most applications the dominant energy from the
input motions corresponds to ω/ω1 ≪ 1 which defines the most important range in the plot and
highlights how significant it is to consider frequency effects in the particular problem. Evidently,
foundation flexibility reduces significantly the base shear force even for small (Vsf/Vs) ratios.
The reduction between the cases for Vsf/Vs = 1 and 5 is close to 30% at resonance. Also, a more
flexible foundation (considering the variation in ρf/ρ values) leads to a more compliant system,
thus the fundamental period increases, therefore reducing the seismic load imposed on the wall.

4.2 Influence of anchor position and stiffness

4.2.1 Pseudostatic response
The results presented below correspond to pseudo-static response (ω = 0), fixed-base condi-
tions (dθ = 0), rigid base (Vsf/Vs → ∞), two values of normalized wall flexibility (dw = 10 and
20), three values of anchor’s cable stiffness (dk = 0.01, 0.1 and 0.5) and two values of anchor
height (Ha/H = 0.7 and 0.8). Note that dw usually varies between 1 and 30 for most walls, and
dk varies between 0 and 1. Comparisons are presented against a numerical FE solution using
Plaxis 2D, where a perfectly bonded soil-wall interface is assumed.
Figure 3a, b depict the variability of wall deformations, relative to the rigid base, against

normalized height for different wall flexibilities dw and anchor stiffness dk. The main influence
for wall deflections is the anchor location. High values of Ha/H ratio lead to small wall dis-
placements. Also, for low anchor stiffness the influence of wall flexibility decreases signifi-
cantly and the wall deflection atop the wall drops by as much as 80%.
The distribution of contact pressures (Figure 3c,d) is less affected by wall flexibility, but

strongly correlates to anchor stiffness. As dynamic soil stresses are related to relative wall-free
field displacements, a softer cable tends to produce lower relative-to-the-free-field wall dis-
placements and, therefore, lower soil thrusts (up to about 40% for Ha/H =0.7 and 25% for Ha/
H = 0.8). For high Ha/H ratios, stiff cables and flexible walls, the distribution of contact pres-
sures is almost linear with height. Generally speaking, wall flexibility (dw) affects the thrust
distribution near the top of the wall for low values of ratio of Ha/H, and near the middle of
the wall for high values of Ha/H.

The results in Figures 3 and 4 suggest a good agreement between the predictions of the pro-
posed solution and the numerical results by Plaxis 2D, both in terms of wall deflections and
wall pressures. Note that the total shear force Qtot is obtained by integrating the soil pressures,

Figure 2. (a) Normalized soil pressures against normalized depth at resonance; (b) Normalized base

shear force against normalized excitation frequency; dk →∞, dθ = 0, ρw = 0.
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the anchor shear force is Qk = K [w2(Ha) t w1(0)] and the base shear force is then obtained as
the difference between Qtot and Qk.

Figure 4 depicts the variation of Qtot and Qk with wall flexibility dw. Evidently, increasing
wall flexibility decreases the total amount of shear force while the anchor shear force remains
steady. Thus, increasing dw the base shear force decreases. Also, increasing the anchor stiffness
dk, the deviation between the proposed solution and the FE results increases.

4.2.2 Dynamic response
The influence of frequency on the dynamic response of the system is shown in Figure 5 in
terms of normalized base shear Qb and anchor shear force Qk.
As shown in Figure 5, the anchor undertakes a strong portion of the dynamic thrust (over

50%) and, as already discussed, provides an important kinematic constraint on the wall. For
stiffer cables (lower dk values), a higher percentage of the total shear force is carried by the
anchor (higher Qk) and a lower force is imposed on the foundation (lower Qb). The elevation
of the anchor is important as an increase in Ha/H from 0.7 to 0.8 leads to a 30% reduction in
anchor force and a 60% increment in base shear (Figure 4).
As shown in Figure 5, wall flexibility strongly affects the base shear only near resonance

regardless of Ha/H and anchor stiffness dk. The maximum reduction (Qk) or increment (Qb) for
ω/ω1 ≠ 1 as a result of wall flexibility, is lower than 20%. Note that contrary to the compliance of
foundation soil, the anchor and the wall do not affect the fundamental frequency of the system.

Figure 3. Normalized pseudo-static (a), (b) wall deflection and (c), (d) soil pressure against normalized

depth for a fixed-base, anchored flexible wall; ρw = 0.

Figure 4. Normalized (a) total shear, (b) anchor shear force against wall flexibility dw for pseudo-static

conditions; ρw = 0.
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5 CONCLUSIONS

A simplified analytical solution was developed to assess the dynamic response of flexible
retaining walls with anchors resting on a compliant soil. The results of a parametric investiga-
tion indicate that the stiffness of foundation soil relative to the backfill (expressed through the
ratio Vsf/Vs) has a profound effect on the response, by limiting the influence of wall flexibility
and anchor stiffness. By varying this parameter it was found that a stiff foundation soil
(accounting for the ρf/ρ ratio) generates higher dynamic loads and also increases the funda-
mental natural frequency of the system relative to a softer one. For a compliant foundation
soil, anchor elevation and stiffness strongly affect the response of the system by limiting wall
displacements and soil pressures. Anchor elevation Ha/H influences mainly wall displacements
and curvatures. Moreover, wall flexibility leads to lower dynamic thrusts in combination with
anchor elevation and stiffness. As a final remark, it should be reiterated that the above essen-
tial parameters are neglected by limit state methods, such as the Mononobe-Okabe formulae
and their variants, the use of which should gradually be discontinued.
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