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ABSTRACT: Each ground motion prediction equation (GMPE) provides different
median ground motion measures and variances computed from a set of input parameters
since the data set and methodology used to develop the GMPE vary. These differences are
captured by the epistemic uncertainty that can be reduced by combining multiple models.
We describe how to minimize the epistemic uncertainty by sensitivity testing on various
combinations of four NGA-West2 GMPEs. The correlation levels among models are sug-
gested based on the ranges of moment magnitude, site-to-source distance, site conditions,
and selected sub-regions. The prediction errors are highly correlated at short periods
among all models, whereas correlations are coarse at long periods. The optimized weight
method which uses correlations between errors of models is the most effective to reduce the
error variation comparing to other weighting methods. The use of optimized weight
method using conditional weights, however, does not significantly further reduce the
variation.

1 INTRODUCTION

Ground motion prediction equations (GMPEs) are often used to predict the expected,
median ground-motion shaking levels as a function of various model parameters repre-
senting the seismic source characteristics, site-to-source distances and site conditions with
their associated uncertainties. For a given set of source and site conditions, each GMPE
prediction varies because the data set and methodology used to develop the GMPE are
different. The ground-motion uncertainty can be attributed to two categories: 1) aleatory
uncertainty is the inherent variability in the physical system; it is stochastic and cannot be
reduced by improving the existing approach; 2) epistemic uncertainty is associated with
the lack of data and knowledge; it is subjective and can be improved with additional
information. The question that is quite commonly asked among researchers and practi-
tioners is how to combine the GMPEs (i.e. GMPE selection and weight assignment) to
reduce the epistemic uncertainty to improve our current understanding of the seismic
hazard assessment applications. Combining individual models to perform seismic hazard
calculations requires weights or ranking of the GMPEs based on the performance of one
model over another.

We often combine multiple models linearly. A particular weight, of which the sum is unity,
is assigned to each model, and we calculate the weighted sum as the final model prediction.
This method is called “linear combination method.” Generally, there are three linear combin-
ation methods based on weighting schemes:
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1. Equal weight (EQ): Assign equally distributed weights to each model. EQ method is often
used when models are ranked closely, and only median predictions are available coupled
with inadequate knowledge.

2. Inverse-variance weight (INV): The weight is proportional to the inverse of the variance.
This method is used when error distributions for each model are available.

3. Optimized weight (OPT): Optimized weights can be determined by minimizing the predic-
tion variance, for which both distributions and correlations among the multiple models are
needed.

Above three methods are used in various applications. Seyhan et al. (2014) provide inverse-
variance weights to proxy-based models predicting Vgs3o for each region (California, Japan,
Taiwan) applied to Next Generation Attenuation (NGA-West2) site database. Kwak et al.
(2018) compare how much each linear combination method could reduce the epistemic uncer-
tainty of the combined Vg3(. Kishida et al. (2018) present optimized weights to existing local
magnitude models to predict the moment magnitude using Iranian data sets.

In this study, we applied these linear combination methods to main four NGA-West2
GMPEs to test the possibility of minimization of the epistemic uncertainty. The variance of
the residuals and correlation coefficients, which are used for INV and OPT methods, are cal-
culated using the dataset used for the NGA-West2 GMPE development. The model and the
dataset are further described in the following section. Correlation coefficients are evaluated
from total residuals as well as residuals conditional on key input parameters such as magni-
tude, source-to-site distance, site conditions, and selected sub-regions to seek the possibility of
the further deduction.

2 NGA WEST2 GMPES AND SELECTED DATA SET

2.1 NGA-West2 GMPEs

In 2014, the Pacific Earthquake Engineering Research Center (PEER) published a flatfile con-
taining strong-ground motion recordings from shallow crustal earthquakes in active tectonic
regions worldwide and five GMPEs as an outcome of a multi-year research program called
NGA-West2. Among the five, four main GMPEs that are applicable to broad ranges of site
conditions can be listed as Abrahamson et al. (2014), Boore et al. (2014), Campbell and
Bozorgnia (2014), and Chiou and Youngs (2014) (hereafter, ASK14, BSSA14, CB14, CY14,
respectively). Although each developer team started from the same NGA-West?2 flatfile, their
data filtering criteria and data selection rules created a variation in the final dataset used for
model development. Also, each team uses different ranges of input parameters for the ground
motion predictions. The variation in their input parameters selected are shown in Table 1.

The general functional form of median NGA-West2 GMPEs consists of source (fg), path
(fp), and site (fs) terms:

Y = fr+fp+fs (1)
InY =InY +R (2)

where Y is recorded intensity measure, Y is the median prediction, and R is the total
residual. While R can be further divided into between-event and within-event residuals, we use
R for the calculation of variance and correlation coefficient in this study to compare model-
to-model, not event-to-event or site-to-site, relationships.

2.2 Selected NGA-West2 dataset

Each of NGA-West2 GMPE:s selected ground-motion records filtered by their own criteria for
the model development. In this study, we are not concerned with replicating the number of
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Table 1. The variation of input parameters adopted for the model development in NGA West2 project.

Parameter ASK14 BSSA14 CB14 CYl4
Magnitude My My, My, M.,
Top of Rupture (km) Zior - Zior Zior
Style of faulting FR\/,FNM,SS U, FR\/,FNM,SS FR\/,FNM,SS FR\/,FNM,SS
Dip (deg) Dip - Dip Dip
Down-dip rupture width (km) W - w -
Closest distance to rupture(km) Riup - Riup Riup
Hor. dist. to surface proj. (km) R;p Rp R;s R;p
Hor. dist. from edge of rupture (km) Ry - Ry Ry
Hor. dist. off end of rupture (km) Ry - - -
Hanging wall model Fuaw (Ryp) Faw Faw
Vs30 (m/s) Vs3o Vs30 Vs30 Vs30
Vg3 for reference rock (m/s) 1100 760 1100 1130
Depth to Vs (km) Zyo Z, (dzy ) Zys Zio
Hypocentral depth (km) - - Zhyp -
Directivity term - - (Znyp) DDPP
Regional variations Region Region Region Region
Aftershock factor Fas - - -
Magnitude Rrup (km) VS30 (m/s)
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Figure 1. Distribution of selected records conditional on magnitude (M), source-to-site distance (Ryp),
and site condition (Vg30) per region. The column represents M, R, and Vg3 from 1% to 3", and the
row represents northern California, southern California, and other regions from 1° to 3.

recordings selected by various filtering criteria per each GMPE, thus, we included all the
applicable recordings from the flatfile to test if all four models can produce the competitive
median predictions using the same input parameters. Figure 1 shows the data histograms of
selected records conditional on magnitude (M), source-to-site distance (Ryp), and time-aver-
aged shear-wave velocity down to 30 m depth of the soil column (Vs30) per each sub-region.
Parent regions are divided into three sub-regions: Northern California, Southern California,
and others. Other regions include many countries worldwide, but some countries only have
tens of data points so that we combined them as one category. Distribution shapes of M,
Rup, and Vg3 generally follow the log-normal distribution, and it is not region-dependent,
except M for “others” region. For “others” region, greater M events are included in the flatfile
so that there are not many records with low M events. Note that we apply the lowest usable
frequency filter; response spectra with spectral periods higher than the inverse of lowest usable
frequency are filtered, so the number of records decreases with periods.

2.3 Residuals

Figures 2 a-d show total residuals (R in Eq. 2), mean (ur), and standard deviation (og) of R
for each GMPE. Since the selected dataset is not the same with the dataset used for the model
development, the non-zero ug at each spectral period is not surprising. The pg is close to zero
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Figure 2. Mean and +/- one standard deviations from mean of residuals. (a) ASK14 (Abrahamson et al.
2014) (b) BSSK14 (Boore et al. 2014) (c) CB14 (Campbell and Bozorgnia 2014) (d) CY14 (Chiou and
Youngs 2014). Comparison of standard deviations of four models is shown at (e).

at short periods (< 0.2 sec) consistently for all models, while it becomes larger at long periods.
Figure 2e shows the comparison of or of all GMPEs, which are comparable at periods less
than 0.2 sec, but the variation of og becomes large at long periods. Herein the GMPE with the
lowest or does not necessarily mean that the GMPE is superior over other GMPEs because
the selected dataset in this study is different with the one used for the model development, and
the dataset used for the comparison is also a sample dataset which does not represent the
whole population.

3 CORRELATION OF RESIDUALS

3.1 Universal correlation coefficients of residuals

For the optimized weight (OPT) methods, it is necessary to define correlation coefficients (pr)
among models. If no dataset were available, it would be difficult to evaluate the correlation
coefficients. Using the residuals calculated from NGA-West2 flatfile, pgr are evaluated
between two GMPESs as shown in Figure 3. The pr are high regardless of model combination
for periods less than 0.4 sec. For longer periods (> 0.4 sec), ASK14-CY'14 results in the least
pr at 2 sec, which is approximately 0.72. The combination of ASK14-BSSA14 and ASK14-
CBI14 also have relatively lower pr at long periods comparing to the combinations among
BSSA14, CB14, and CY14. This indicates that ASK14 is the most independent model from
others. The reduction correlation in Figure 3 for ASK14 also corresponds to the increase in
or in Figure 2(e). However, this is only in terms of the relativity, and the overall correlation is
high among the models.
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Figure 3. Correlation coefficients between error terms of two NGA West2 GMPEs per period.
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3.2 Conditional correlation coefficients of residuals

In this section, we evaluate pg between models, which varying by selected input parameters
such as M, Ry, Vs30, and regions to see the possibility of further reduction by selecting opti-
mized weights for each condition.

Figure 4 shows pr from two selected GMPEs for varying M, R, Vs30, and regions,
respectively. The M, Ry, and Vg3 are divided as five categories from low to high (M < 4, M
=4-5M=5-6,M=6-7,and M > 7), close to far (R, < 30 km, Ry, = 30 — 80 km, Ry,
=80 — 150 km, R, = 150 — 250 km, and R, > 250 km), and slow to fast (Vg3p < 270 m/s,
Vs30 = 270 - 360 m/s, Vs30 = 360 — 560 m/s, Vs30 = 560 — 760 m/s, and Vs30 > 760 m/s),
respectively. Table 2 describes the trends of pr variations per each condition and GMPE
combination.

— M<4 — Rrup<30km — V830 <270 m/s — Others
M 4-5 Rrup 30-80 km VS30 270-360 m/s — Northern California
~— M5-6 — Rrup 80-150 km — VS30 360-560 m/s — Southern California
— M6-7 — Rrup 150-250 km — VS30 560-760 m/s
— M>7 — Rrup>250km — VS30>760 m/s
Magnitude Distance V830 Region

St e
iy
T

12

PLAD-VIMSY  ¥180-PIMSY LVSSE-VIMSY

§ R iPs
1) 4d

:w

= =

002 0.1 0512 510 0.02 01 0512 510 002 01 0512 510 002 04 0512 510
Periods (sec)

YLAD-¥L80 vLAD-¥LVSSE t180-#LVSSH

Figure 4. Correlation coefficients between residuals of two selected NGA West2 GMPEs per period.
The column represents conditions of magnitude (M), source-to-site distance (Ryp), Vs30, and sub-region
from 1% to 4", and the row represents combination of ASK14-BSSA14, ASK14-CB14, ASK14-CY 14,
BSSA14-CB14, and CB14-CY 14 GMPEs from 1% to 6'". The range of condition is shown in the legend at
the top of figures.
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Table 2. Descriptions of correlation coefficients variations by magnitude (M), source-to-site distance
(R.yp), site condition (Vs30), and selected sub-region per each combination.

Models  Condition Description

ASK14- M Correlation levels does not vary significantly at short periods (< 0.4 sec). At long
BSSA14 periods, small M (< 5) tends to have higher correlation levels than large M (> 5).
The M 6-7 has the highest correlation at very long periods.
Riyp The correlation level variation is not significant by R, for peridos < 1 sec. The mid-
Ryp range (30 — 150 km) have higher correlation levels than others at periods > 1 sec.
Vs30 The slow Vg30 (< 270 m/s) has lower correlation levels at short-to-mid periods.
The faster Vg3 tends to have high correlation at periods > 0.3 sec.
Region Northern and southern CA regions have lower correlation levels at periods > 0.2
sec, but the other region has high correlation levels for all periods.
ASK14- M The M 6-7 has the highest correlation among others at periods > 0.6 sec. Others
CB14 have similar trends.
Riup The correlation level variation is not significant by R,,. The mid-R,, range (30 —
150 km) have higher correlation levels than other R,,, range at long period (> 2 sec).
Vs30 The correlation of the fast V3o (> 760 m/s) falls down above the periods of 5 sec.

Region Northern and southern CA regions have lower correlation levels after 0.2 sec, but
other regions have high correlation levels for all periods.

ASK14- M Correlations start varying above periods > 0.3 sec. The M 5-6 has the lowest
CY14 correlations, and M 6-7 has the highest correlations.
Riup The correlation level variation is not significant by R.,;,. The mid-R ., range (30 —
150 km) has higher correlation levels than other R, range at long period (> 2 sec).
Vs30 The faster V3o tends to have lower correlations for periods > 0.3 sec. The Vg0 >

760 m/s has lower correlations at short periods as well.
Region Northern and southern CA regions have lower correlation levels after 0.2 sec, but
other regions have high correlation levels for all periods.

BSSA14- M Correlation levels are high regardless of M.
CB14 Riwp Correlation levels are high regardless of Rp,.
Vs30 Correlation levels are high but it becomes lower after 2 sec for fast Vgzg (> 760 m/s).
Region Correlation levels are high regardless of region.
BSSA14- M Correlation levels are high regardless of M.
CY14 Riwp Correlation levels are high regardless of Rp.
Vs30 Correlation levels are high regardless of V3.
Region Correlation levels are high regardless of region.
CB14- M The high M (> 7) has lower correlations at periods of 0.1 — 3 sec.
CYl4 Riyp Correlation levels decreases when R, decreases at mid-period range (0.5-5 sec).
Other periods have high correlation levels regardless of Ry,
Vs30 At med-period range (0.4 — 3 sec), the faster Vg3o tends to have the higher

correlations. The correlation for Vgsg > 760 m/s falls down after 5 sec.
Region Correlation levels are high, but it becomes lower after 0.2 sec for northern CA region.

4 REDUCTION OF EPISTEMIC UNCERTAINTY

The standard deviation of the combined GMPE (o,) that is the linear summation of » models
with weights can be calculated as:

ol o o | [w
or = [wi...w,) (3)
T

where w; and ¢, are the weight and variance for the i model, and o; is the covariance of it
and j'™ models. Kwak et al. (2018) describe the estimation of o, using three linear combination
methods: equivalent weights (EQ), inverse-variance weights (INV), and optimized weights
(OPT), which essentially define the weight vector with different scheme as described in the
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section Introduction. Using variances and correlation coefficients from all residuals of the
selected dataset, we find weight vector for each method and evaluate the o. as shown in
Figure 5. The or from individual GMPEs are also shown. Comparing ¢, among EQ, INV,
and OPT methods, the OPT method provides the least o., but the difference from other two
methods is minor for short period range (< 1 sec), whereas it becomes greater at long period
range (> 1 sec). The maximum reduction of ¢, by OPT method from EQ method is about
8.7% at 5 sec. This is because the correlation levels become relatively low at long periods, for
which the OPT method is more efficient. Comparing OPT method with individual GMPE, the
CY 14 generally provides the least og and the OPT method is slightly lower than CY14. The
OPT method provides 1.5% lower o, at 2 sec than CY 14.

The weights by OPT method in Figure 5 are calculated using all the residuals. We further
investigate how much the o, could be reduced by assigning different weights to each GMPE
based on correlation levels conditional on the model input parameters: M, R,, Vs30, and
sub-region (Figure 4). The o, for this case cannot be simply calculated using Eq. (1) because
the weight vector and covariance matrix are varying by each condition. For the o, calculation
in this case, we followed the following approach:

1. Subtract pr (Figure 2) from residuals (R);

2. Find correlation coefficients (p) between two particular GMPEs for a subset of R from (1)
based on a particular condition;

3. Using pg from (2) and or of all R, find weight vectors using the OPT method;

4. Apply weight vectors from (3), which are dependent on each condition, to GMPE predic-
tions and linearly combine;

5. Calculate R of combined GMPE and estimate o..

In this step, we forced the pr to be zero at Step 1, and used total ogr instead of o estimated
from the subset of data at Step 3 assuming that the GMPE prediction is not biased, and the R

[ 0 ASK14 &4 BSSA14 + CB14 x CY14 |

’ — Combined, EQ—Combined, INV—Combined, OPT

N

o oo

Standard Deviation
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Figure 5. Standard deviations of residuals from individual GMPE and three linear combination
methods (EQ: Equal weights; INV: Inverse-variance weights; OPT: Optimized weights). Optimized
weights are estimated from correlation coefficients of all residuals between GMPEs.
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Figure 6. Standard deviations of residuals from optimized weight method using weights defined from
correlation coefficients conditional on magnitude, site-to-source distance, V3o, and region.
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variation is independent from input parameter. We acknowledge that the R variation depends
on the GMPE input (Abrahamson et al. 2014, Boore et al. 2014, Campbell and Bozorgnia
2014, Chiou and Youngs 2014), but we did not consider here because we want to see the effect
of correlation on the reduction of variation independently.

Figure 6 shows o, following above procedure conditioned on M, Ry, Vg3, and region.
The o, without any condition (All) is also shown as a reference. As shown, the o, from condi-
tioned weights is not decreased from the reference. The maximum improvement is only 0.7 %
at 2 sec, which is the case of using p conditional on regions. This indicates that the combined
GMPE using OPT method without any conditions could be the best-fitted model for linear
combination method.

5 CONCLUSIONS

In this study, we investigated the potential use of the linear combination methods to reduce
the epistemic uncertainty from four main Next Generation Attenuation (NGA-West2)
GMPEs. Among the methods of equal weight (EQ), inverse-variance weight (INV), and opti-
mized weight (OPT), we found that the OPT method provides the least standard deviation
(o.). However, it is only effective at spectral periods longer than 2 sec. Although the correl-
ations among NGA-West2 GMPEs are generally high (correlation coefficient, p > 0.5),
ASK14 is found to be the most independent from the others relatively. The p values vary by
the input parameters of the GMPE such as magnitude, source-to-site distance, Vs3o, and sub-
region, especially for the case of combination of ASK14 with other GMPEs. The p variation
is minor among BSSA 14, CB14, and CY14. The o, reduction was further investigated by com-
bining the GMPEs with different weights conditional on the input parameters, but the reduc-
tion was negligible comparing to the result using all the residuals. The combined GMPE with
EQ method provides generally less o, from the individual GMPE. The ‘best” GMPE, at least
for the dataset used in this study, gives lower standard deviation, but it is recommended to
combine models if the variation information is unknown.
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