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ABSTRACT: The survey of the damage occurred on land, buildings and infrastructures
extensively affected by liquefaction, coupled with a comprehensive investigation of the subsoil
properties enables to identify the factors that determine the spatial distribution of the phe-
nomenon. With this goal, a database was created in a Geographic Information platform mer-
ging records of local seismicity, subsoil layering evaluated by cone penetration tests and
groundwater level distribution for the relevant case study of San Carlo (Emilia Romagna-
Italy) struck by a severe earthquake in 2012. Here liquefaction phenomena were observed on a
portion of the village in the form of sand ejecta, lateral spreading and various damages on
buildings and infrastructures. The location of damage allows to test possible relations with the
factors characterizing susceptibility, triggering and severity of liquefaction. The relation
among the different variables has been herein sought by training a specifically implemented
Artificial Neural Network. A relation has thus been inferred between damage and thickness of
the liquefiable layer and of the upper crust, seismic input and soil characteristics.

1 INTRODUCTION

Although seismic liquefaction is rarely cause of casualties, it is often responsible for significant
economic losses, with serious repercussions on the life of the communities. To reduce eco-
nomic and social losses and develop plans to mitigate the effects of liquefaction risk assess-
ment procedures have been envisaged (e.g. HAZUS-MH, FEMA 1998). The first step to
determine risk is the study of the distribution of hazard on the studied area.
From a mechanical viewpoint, seismic liquefaction is a complex local phenomenon that

requires the concomitance of an intense seismic shaking with the presence at shallow depths of
loose saturated deposits of sand. The great variety of ground manifestations added to the
influence of the soil-building coupling determines the need to analyze the situations with ad
hoc models capable of reproducing the role of all factors that determine the triggering and
development of liquefaction in the subsoil and, moreover, the interaction between liquefied
soil and structures. On the other hand, the quantification of risk at a territorial scale implies
the adoption of expeditious solutions, capable of providing answers even with incomplete
information. In other words, there is the need to balance accuracy with completeness.
The back-analysis of real examples where the effects of liquefaction have been observed and

quantified, coupled with a detailed investigation of the subsoil offers a unique opportunity to
establish a relation among the different variables that can be profitably used for risk assessment.
Normally, the quantification of liquefaction severity implies three subsequent stages. A first

step is the determination of susceptibility of the subsoil to liquefaction, i.e. the existence of the
factors capable of determining the occurrence of liquefaction, without considering specific
information on the earthquake but just magnitude. This study, often accomplished in a quali-
tative way, is sometimes used as a preliminary risk response in some catastrophe models.
However, the fact itself that a soil is susceptible to liquefaction does not necessarily imply that
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liquefaction will be actually triggered by a seismic event. Therefore, the next step is to deter-
mine the likelihood of liquefaction occurrence for given earthquake and subsoil mechanical
properties. Magnitude Mw and PGA are normally taken as earthquake parameters for this
analysis. During an earthquake, liquefaction is triggered in a soil when the seismic demand,
expressed in terms of the cyclic stress ratio (CSR), exceeds the resistance of such soil as
expressed by the cyclic resistance ratio (CRR).
The third step consists in assessing liquefaction severity at the ground level (Bird et al.,

2006). Several indicators have been proposed in the literature as proxies of the permanent
ground deformation (PGDf) and, more generally, of damage. The efficiency of these indica-
tors was tested in specific cases (Bray and Macedo, 2017), but their validity needs to be
proved in an enlarged number of case studies, by comparing predictions with observations.
Liquefaction severity indicators can also be seen as the “liquefaction demand” for the assess-
ment of the response of the overlying structures and infrastructures, characterized by their
own vulnerability. Following the above logic, liquefaction hazard can be defined for a generic
structure as the probability that a given value of the liquefaction severity indicator (demand)
will be produced during the lifetime of the structure. The practice of characterizing liquefac-
tion hazard through these indicators is applied in many countries to quantify risk on struc-
tures and infrastructures present in a given territory (e.g. DPC 2017, MBIE 2016, Yasuda and
Ishikawa, 2018).

1.1 Liquefaction severity indicators

For a given soil profile, the triggering of liquefaction at different depths can be evaluated by
applying several approaches. One of the most popular is the cyclic stress approach, which
implies the calculation of a liquefaction safety factor (FSL), obtained by dividing the cyclic
stress ratio τ/σ‘v producing liquefaction (CRR) with the one induced by the earthquake (CSR).
Boulanger and Idriss (2014) provide an empirical formulation of the Cyclic Resistance

Ratio based on the survey of liquefaction and the results of common geotechnical and geo-
physical in-situ tests (CPT, SPT, Vs profile). A simplified method to estimate the CSR profile
was developed by Seed and Idriss (1971) based on the maximum ground surface acceleration
(amax) at the site.

CSR ¼ 0:65�
amax

g

� �

�
σvo
σvo0

� �

�rd ð1Þ

in which σv and σ’v represent respectively the total and effective vertical stress at a depth z, amax/
g is the maximum horizontal acceleration (as a fraction of gravity) at the ground surface and rd
is the shear stress reduction factor that accounts for the dynamic response of the soil profile.
Once the Factor of Safety has been calculated at each depth, synthetic indicators of the

liquefaction severity on the ground (free field) are provided.
In general terms, a liquefaction severity indicator can be defined as the integral of the prod-

uct between a function of the Factor of Safety against Liquefaction f1(FSL) and a weight
function that emphasizes the severity of liquefaction at a lower depth.

INDEX ¼

ðzmax

zmin

f1 FSLð Þ�w zð Þdz ð2Þ

In Table 1, the two functions f1(FSL) and w(z) and the limits of integration are defined for
the most commonly used liquefaction severity indicators.

1.2 Ishihara’s methodology

Ishihara and Ogawa (1978) used borehole data from sites where liquefied material ejection at
the ground surface was observed after past earthquakes to develop a general relationship
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linking the thickness of non-liquefying material (H1) and the underlying thickness of liquefied
stratum (H2) to the manifestations at the ground surface. In particular, in the three-strata
model defined by Ishihara, the liquefiable layer is identified by loose saturated sands having
NSPT less than 10.
Considering the importance of the non-liquefied capping layer, H1, and the liquefied strata

thickness, H2, Ishihara (1985) proposed boundary curves for predicting liquefaction manifest-
ation as a function of H1, H2 and peak ground acceleration. As shown in Figure 1: for a given
PGA, there is a limiting value of the non-liquefiable crust thickness beyond which surface
manifestations do not form regardless of H2. It means that the liquefied deposit must be both
of sufficient thickness and close enough to the ground surface for the resulting excess pore
water pressure to rupture the ground surface.
Based on Ishihara‘s experiences and supported by the numerical modeling of the phenom-

enon, an alternative CPT-based method to quantify the liquefaction hazard is herein proposed
and applied. In fact, since the numerical models show that the triggering of liquefaction in the
deepest layer prevents the development of the phenomenon in the upper layers, a CPT profile
can be processed following a bottom-up approach (Figure 2). This allows to obtain a simpli-
fied three-strata model, by isolating the deepest liquefiable layer (i.e. where the Factor of
Safety is found less than 1 for at least 1 m) and considering all the superior layers as crust
(H1). In addition to the crust thickness (H1), the thickness (H2) and the mean Factor of Safety
are evaluated for the liquefiable layer thus identified.

Table 1. The most widespread indicators, except the LDI which was defined for lateral spreading, quan-
tify the damage to the ground by integrating the estimated effects of liquefaction in the first 20 m depth.

INDEX REFERENCE f1(FSL) w(z) Z

LPI Iwasaki, 1978 1� FSL if FSL 51

0 if FSL1

10� 0:5z Zmin ¼ 0
Zmax ¼ 20 m

LPIISH Maurer, 2014 1� FSL if FSL � 1\H1 �m FSLð Þ � 3
0 otherwhise

�

Where: m FSLð Þ ¼ exp 5
25:56 1�FSLð Þ

� �

� 1

25:56
z

Zmin ¼ H1

Zmax ¼ 20 m

W Zhang et al.,
2002

εv ¼ εv FSL; qc1Ncsð Þ - Zmin ¼ 0
Zmax ¼ max depth

LDI Zhang et al.,
2004

γmax ¼ γmax FSL; qc1Nð Þ - Zmin ¼ 0
Zmax523 m

LSN van Ballegooy,
2014

εv ¼ εv FSL; qc1Ncsð Þ
1000
z

Zmin ¼ 0
Zmax ¼ 20 m

Figure 1. Ishihara boundary curves and criteria to define H1 and H2 for a soil profile (Maurer, 2014).
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2 ARTIFICIAL NEURAL NETWORKS

In practical applications where data management and interpretation are required for a signifi-
cant amount of information, especially in cases where complex (e.g. non-linear) relationships
exist between variables, Artificial Neural Networks (ANNs) represent a powerful tool able to
establish a link between input datasets and output. The basic principle of ANN is that the
mathematical connection between the variables is not given a priori but is established training
data which can come from real examples. The idea behind an ANN is to produce a machine
or a model that simulates the learning capacity of a human brain, seen as a non-linear and
highly parallel computer which organizes its elementary units (neurons) in order to carry out
some types of calculations (daily actions).
Similarly, artificial neural networks are constituted by the interconnection of elementary com-

putational units (called neurons) having two fundamental characteristics: 1) knowledge is acquired
from the environment through a process of learning or training; 2) the knowledge is stored in the
parameters of the network and, in particular, in the weights associated with the connections.
Neurons, on the other hand, are defined as nodes of a geared network provided with pro-

cessing capacity. Some neurons receive information from the outside (input unit), others emit
responses to the outside (output unit) and a third group still communicate only with the
internal elements of the network (hidden units). Each unit becomes active if it receives a quan-
tity of signal that exceeds its activation threshold. After that, this unit emits a new signal to
the surrounding units to which it is connected, through the connection points. These act as
weight, amplifying or reducing the intensity of the received signal according to their individual
characteristics (Floreano and Mattiussi, 2002).
The response signal emitted by a node (ni) can be described as a function Φ of the sum of

the products of all input signals (nj) for the respective weights (wij) minus the value of the acti-
vation threshold (θi).

ni ¼ �

X

j

wijnj � θi

 !

ð3Þ

One of the most important properties of artificial neural networks is generalization. In fact,
once the network has been appropriately trained on a limited number of models, it is possible

Figure 2. Schematic procedure to obtain the simplified three-strata model from CPTs, analyzed follow-
ing a bottom-up approach.
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to apply it to a potentially infinite number of input combinations. This capability, together
with the development of the backpropagation algorithm (Rumelhart et al., 1986), has signifi-
cantly extended the field of application of ANN not only in computer science and control sys-
tems but also in engineering, medical and statistical applications.

3 APPLICATION OF ANN’S TO LIQUEFACTION HAZARD ASSESSMENT

Past studies (Goh, 2002; Ülgen and Engin, 2007) shown that ANNs can also be exploited in the
prediction of liquefaction-induced damage on the ground. In particular, Kurup and Dudani
(2001) focused on the use of the backpropagation algorithm to evaluate the liquefaction potential
starting from CPTs. This possibility is now enhanced by the tendency to create rich databases
including the results of subsoil investigations collected at a local or regional scale. These data can
be profitably coupled with the survey of damage achieved in cases where liquefaction has occurred
to train the ANNs and establish a logical connection between severity factors and damage.
Following the recent major seismic events that produced significant liquefaction damage,

such as the 2010-2011 and 2016 Christchurch (New Zealand) earthquakes, the 2012 Emilia-
Romagna (Italy) earthquake, the 2016 Kumamoto (Japan) earthquake, the scientific commu-
nity has decided to support reconstruction strategies by establishing databases in order to
facilitate the data sharing among the stakeholders and to support the post-earthquake, polit-
ical and economic evaluations. One of the most important examples is the Canterbury Geo-
technical Database CGD, established and founded by the New Zealand Government (MBIE)
and the Earthquake Commission (EQC), after the 2010-2011 Christchurch earthquake
Sequence that was characterized by 5 major shocks with extensive evidence of liquefaction.
For the Emilia-Romagna Region, a large amount of geological-technical data was already
available in numerous and fragmented archives of public and private property, collected to
support cognitive investigations of various nature. In recent years, the Region encouraged the
collection of the existing data and their loading into numerical archives, that are constantly
updated. After the May-June 2012 seismic sequence, a considerable amount of new geotech-
nical information and surveys, coming from the report prepared for the reconstruction of
buildings have been added to the already existing information. The Geotechnical Database
includes, at January 2018, more than 85 000 publicly available tests.

3.1 The case study of S. Carlo

The San Carlo district of the municipality of Sant’Agostino (Italy) was hit by the May-June 2012
seismic sequence, which main event was the Mw 5.9 20th May earthquake, characterized by huge
building damage (around 200 buildings suffered different levels of damage only in San Carlo dis-
trict) and extensive liquefaction (sand boils and cracks). Geological features of the area and past
studies (Galli and Meloni, 1993; Romeo, 2012), highlight the presence of numerous paleochan-
nels where different lithologies, constituting the alluvial plain, can be found. In particular, it can
be observed that almost the entire municipality of Terre del Reno is located along the old Reno
River, where the most of liquefaction-induced phenomena was observed (Figure 3a).
For the study area of S. Carlo, the map of liquefaction evidence (on both ground and build-

ings) was converted in terms of liquefaction severity classes. A regular grid of 25x25 meters
covering the municipality was considered; then, it was possible to estimate the severity of
liquefaction-induced damage as a function of the distance between each centroid and the
liquefaction evidence (Figure 3b).

3.2 Example of analysis

Considering the district of S. Carlo, around 200 CPTs were processed. The analysis of the trad-
itional liquefaction hazard, carried out on the entire municipality of Terre del Reno, is reported
here for the (Mw 5.9) 20 May 2012 earthquake. The factor of safety was evaluated by applying
the Boulanger & Idriss (2014) procedure, while, in addition to the traditional “LPI” index, the

4313



Ishihara inspired "LPIISH" (Maurer, 2014) was also calculated. The values of such indicators
were then interpolated through geostatistical analysis to obtain maps of liquefaction severity.
An example is the map of the “LSN”, shown in Figure 4, that highlights a heterogeneous distri-
bution of values in the area with a concentration of potentially liquefiable layers, corresponding
to LSN > 20-25, along the Reno River Paleochannel. This trend is strongly influenced by the
geology of the area consisting mainly of modern alluvial deposits (Figure 3a).
The bottom-up analysis of the available CPTs showed that for the selected study area, the

mean factor of safety against liquefaction ranges between 0.1 and 0.7, while no liquefiable
layers thicker than 8 m were evaluated. In order to find a correlation between the prediction
and surficial observation of liquefaction-induced phenomena, an Artificial Neural Network
was trained (Figure 5). In particular, the backpropagation algorithm was applied to an archi-
tecture consisting of one hidden layer and one hundred neurons. This architecture was found
with a trial and error process to give the best compromise between computational effort and
the quality of output. The evaluated H1, H2 and FSm represent the input variables and the
respective liquefaction damage level is the output, assuming a value of 1.75 as a threshold of

Figure 3. a) Paleochannels and alluvial deposits present in the study area; red stars represent the local-
ized liquefaction ground observations; b) Liquefaction ground observations after the 20 May 2012
earthquake.

Figure 4. Geostatistical interpolation of “LSN” on the entire municipality of S. Agostino and Mirabello
(a) and on the district of S. Carlo (b), with liquefaction ground observations and liquefaction-induced
building damage.
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liquefaction-induced damage. For the case below mentioned, a binary classification of
damage/no damage was applied.
Once the neural network was trained and validated (with a reliability coefficient equal to

0.85), it was tested on 10 000 random combinations of the input values to represent a more
extensive and generalized case series. The obtained results were plotted on the plane H1, H2 for
given values of the mean Factor of Safety (FSm), ranging in 0.2 and 0.9 values (Figure 6). This
allowed to separate, for each class of FSm, the liquefiable domain (i.e. above the limit curve)
from the region where surficial liquefaction observations are unlikely (i.e. below the limit curve).

3.3 Conclusions

Given the nature of liquefaction and its impact on a community, seismic and liquefaction risk
assessment must be undertaken to reduce the total economic loss. The first step of such ana-
lysis is the characterization of the hazard. Since liquefaction is governed by non-linear rela-
tionships between the involved variables, artificial neural networks (ANNs) can be a useful
alternative to traditional indicators in predicting the liquefaction severity on the ground. In
this work, for the case study of S. Carlo (2012 Emilia earthquake, Mw 5.9), liquefaction
hazard was assessed both through the traditional severity indicators (LPI, LSN, post-liquefac-
tion settlement) and on the basis of a new approach inspired by Ishihara and the numerical
models of liquefaction. Thus, a neural network was trained for binary classification (damage/
no damage) on the district of S. Carlo and curves that relate the thickness of the non-liquefy-
ing crust (H1) to the thickness of the liquefiable layer (H2), as a function of the mean factor of
safety, are proposed. However, the effectiveness of the procedure must be confirmed by the
extension of the study area to the whole municipality of Terre del Reno and by the consider-
ation of new case studies.

Figure 5. Simplified scheme of functional relationships between input (H1, H2 and mean factor of
safety) and output (Liquefaction damage level) data of the artificial neural network.

Figure 6. Relationship between the crust thickness (H1) and the liquefiable thickness (H2) as a function
of the mean factor of safety (FSm) for sites where ground liquefaction occurred during the 20 May 2012
earthquake, after the training of an ANN for the selected study area.
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