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ABSTRACT: This paper presents a proof-of-concept application of the Artificial Intelli-
gence method Case-Based Reasoning (CBR) for the prediction of liquefaction triggering
potential in natural deposits. The method was applied using data from 24 case history sites in
the Christchurch, New Zealand, region that experienced liquefaction during the 2010-2011
Canterbury Earthquake Sequence (CES). Liquefaction triggering at two of the 24 sites was
predicted using CPT-based datasets for two separate earthquake events: the 4 September 2010
Darfield earthquake (Mw 7.1) and the 22 February 2011 Christchurch earthquake (Mw 6.2).
Results from this work show that the CBR method can be used to accurately identify critical
liquefiable layers and that it can produce results that are comparable to a widely-used CPT-
based liquefaction triggering procedure.

1 INTRODUCTION

This paper presents a proof-of-concept application of the Case-Based Reasoning (CBR)
method for predicting soil liquefaction triggering in natural deposits. CBR is an artificial
intelligence (AI) method in which new problems are solved using the known solutions to old
problems. While in the past 20 years there has been a steady increase in the use of AI
methods in civil engineering, the majority of CBR applications are found in the area of con-
struction management where researchers are using it for project cost and resource estima-
tions (Kim and Shim 2014, García de Soto and Adey 2015, Zima 2015, and Lesniak and
Zima 2018), construction hazard identification (Goh and Chua 2009), and construction
planning and project delivery method selection (Yau and Yang 1996, Rankin et al. 1999,
Ryu et al. 2007, Yoon et al. 2016). Geotechnical engineers, however, have preferred various
neural network methods for applications such as predictions of liquefaction triggering, pile
capacity, foundation settlement, and slope stability (Juwaied 2018). One of the main advan-
tages over artificial neural networks (ANN) is that CBR is a fully transparent method and it
allows users to follow the reasoning steps on every level. Although there are recent powerful
tools for ANN (e.g. tensor flow) that allow for visualization of the network strength, the
relationship between the input and output is still difficult to quantify, leaving users with a
system that is more like a black box.
In this study, CBR was used to predict soil liquefaction triggering in the subsurface and to

identify critical layers using raw CPT data and peak ground acceleration (PGA), much like
the widely-used CPT-based liquefaction triggering methods such as Boulanger and Idriss
(2016). The case history database has been populated using data from the Christchurch, New
Zealand, area and from two specific earthquake events: the 4 September 2010 Darfield earth-
quake (Mw 7.1) and the 22 February 2011 Christchurch earthquake (Mw 6.2). The full and
detailed characterization of the sites that were included in the database was originally per-
formed by the authors of Green et al. (2014) and raw data was downloaded from the New
Zealand Geotechnical Database (NZGD).
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2 CONSTRUCTION OF THE CBR CASE HISTORY DATABASE

The CBR case history database was populated using values of PGA, ground water table
depth, and critical layer depths that were reported in Green et al. (2014) and using raw CPT
data that was downloaded from the New Zealand Geotechnical Database (NZGD 2018). In
the end, only 24 of the 25 sites from the Green et al. (2014) study were included in the CBR
study because CPT data from one of the sites (Site 20) could not be located in the New Zea-
land Geotechnical Database. Of those 24 sites, 22 sites were included in the case history data-
base and 2 sites were isolated to use as test cases.
The CPT data used in the CBR case history database only included raw values of depth, cone

tip resistance qc, cone side friction fs, and pore pressure u2. The site-specific PGA values
reported in Green et al. (2014) were originally estimated by the authors using conditional PGA
distributions. These conditional PGA distributions were computed from accelograms recorded
at strong motion stations throughout the region during the two earthquake events. The ground
water table depths reported in Green et al. (2014) were estimated from the CPT data or P-wave
refraction results. The identification of the critical layer depth range by the authors of Green
et al. (2014) was aided by the use of soil behavior type index (Ic) and relative density (Dr) pro-
files derived from CPTs at each site. CPT-based liquefaction triggering procedures were used to
identify the most critical layer only if there were credible alternative critical layers at a given site.
From the authors of Green et al. (2014), the critical layer was defined as the following:

“In the context of this study, the “critical” layer is the soil layer that is believed to have
liquefied and caused the observed surface manifestations for cases where surficial lique-
faction manifestations were observed. For cases where no evidence of liquefaction was
observed, the “critical” layer is that which is believed to be the most susceptible to lique-
faction and that would have resulted in at least minor surficial manifestations if it indeed
liquefied during an earthquake.”

In the CBR case history database, each case history is a discretized layer of a certain thickness
with input parameters of depth, qc, fs, u2, PGA, and the binary occurrence of liquefaction trig-
gering. The depth, qc, fs, and u2 values were averaged over the depth range of the discretized
layer, which for this study ranged from layer thicknesses of 0.05 to 0.20 m. As a result, a CPT
sounding recorded in the depth range of 0.0 to 10.0 m that was discretized into 0.1-m thick
layers would result in 100 case histories, each with a unique value of depth, qc, fs, and u2 but
with an identical values of PGA that corresponded to that site and specific earthquake event.
The input parameter for liquefaction triggering was set as 0.0 if the depth of case history layer
did not line up with the depth of the critical layer identified by Green et al. (2014) and was set to
1.0 if the two layers did line up. Layers that were located above the water table were removed
from the case history database and from the set of test cases prior to the assessment so that only
soils below the water table were evaluated for liquefaction triggering potential.

3 CBR FRAMEWORK FOR PREDICTION OF LIQUEFACTION TRIGGERING

In the framework of CBR, a case history database is composed of ‘old problems’ that will be
matched to ‘new problems’ and of ‘old solutions’ that will be reused to solve ‘new problems’. Here
the ‘old problems’ are defined as the combination of values of depth, qc, fs, u2, and PGA while the
‘old solution’ is whether or not liquefaction occurred. As such, the input parameters of the test
cases that serve as ‘new problems’ to test the CBR case history database are also combinations of
depth, qc, fs, u2, and PGA while the output, or ‘new solution’, will be whether or not liquefaction
is predicted to occur based on the ‘old solutions’ from the most similar ‘old problems‘.

The heart of the CBR method is the process of sorting the case history database to identify
case histories that are most similar to the test case. The first step is to use parameter-specific
similarity functions to compare an input parameter to all of the available parameters in the
case study database. The result is a similarity index that ranks the each parameter in the case
history database by how similar they are to the input test case parameter. The second step is
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to weigh the similarity index of each parameter according to that parameter‘s relative import-
ance to obtaining the overall solution. The final similarity score that is used to identify the
case histories most similar to the test case is defined in Formula 1 and is the summation of the
parameter-specific similarity index multiplied by the parameter-specific weight:

sim ¼ simz � wz þ simqc � wqc þ simfs � wfs þ simu2 � wu2 þ simPGA � wPGA ð1Þ

where sim is the overall similarity score, simparameter is the parameter-specific similarity
index, and wparameter is the parameter-specific weight.

3.1 Similarity functions

The shape of the similarity functions used in this study were normalized normal probability dens-
ity functions (PDFs). The shape of a normal PDF is defined by a mean value and a standard
deviation, and the function was normalized so that it had a maximum value of 1.0 at the mean
value. In this case, the standard deviation for the PDF-based similarity function of each param-
eter was defined as the standard deviation for that parameter in the subset of case histories that
experienced liquefaction triggering. The standard deviations for each parameter from the subset
of liquefied case histories are summarized in Table 1. The mean value for the PDF-based similar-
ity function of each parameter was defined as the input value from a test case. As a result, the
PDF-based similarity function for each parameter had a static value for the standard deviation
but a unique mean value that varied according to the input from each test case. The similarity
functions from Test Case #420 for the two parameters depth and fs are shown in Figure 1. In
Test Case #420, the input value for depth is 7.15 m and for fs is 0.121 MPa, which were used as
the mean values to define the PDF-based similarity functions. The standard deviations, which are
not test case-dependent, were 2.13 m for the depth parameter and 0.02 MPa for the fs parameter.

3.2 Weighting functions

The weighting functions for each parameter were evaluated using the statistical property coeffi-
cient of variation (C.O.V.) and were normalized so that the summation of the parameter weights
was equal to 1.0. The C.O.V. of each parameter was evaluated once using the entire case history
database and a second time using only the subset of case histories that experienced liquefaction.
The non-normalized parameter weight was then defined as the ratio between the full database
C.O.V.s and the liquefied database subset C.O.V. as shown in Formula 2. The weight was then
normalized by dividing the parameter weight by the summation of all the parameter weights.

wparameter ¼
C:O:V :parameter All case historiesf g

C:O:V :parameter Liquefied case historiesf g
ð2Þ

Figure 1. Similarity functions for the parameters a) depth and b) fs as defined for the input Test Case

#420. The black dot represents the input test case value and the blue dots are the values from the case

history database.
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This method of defining parameter weights reflects the recognition that parameters that are
important to liquefaction triggering will likely have different statistical distributions than the
parameters that are not important to liquefaction triggering. As seen in Figure 2a, the normal
PDF of the qc parameter defined using the full case history database is significantly different than
the normal PDF defined using the subset of case histories that experienced liquefaction. In con-
trast, Figure 2b shows that there is little difference between the normal PDFs of the u2 parameter
defined using the full case history database and the subset of case histories that experienced lique-
faction. The resulting weights, 0.251 for qc and 0.151 for u2, reflect this presumed importance of
each parameter based on differences between the full case history database and those case histor-
ies that experience liquefaction. Indeed, it makes sense that the qc parameter has a much higher
weight than the u2 parameter for predicting liquefaction triggering. The full list of standard devi-
ations, C.O.V.s, and weights for each of the parameters are summarized in Table 1.

4 RESULTS

Two of the 24 sites reviewed by Green et al. (2014) were set aside as test cases: Site 24 and Site
25. In addition to using the original identification of critical layers by the authors of Green
et al. (2014) for a validation of the method, a second, independent analysis was performed for

Table 1. Summary of parameter-specific statistical characteristics used to define the shape of the PDFs

for both the similarity functions and the parameter weights.

Depth qc fs u2 PGA

Mean value

for liquefied layers

5.01 m 5.72 MPa 0.03 MPa 0.03 MPa 0.27 g

Standard deviation

for liquefied layers

2.13 m 2.61 MPa 0.02 MPa 0.03 MPa 0.10 g

C.O.V.

for liquefied layers

0.42 0.46 0.58 1.19 0.36

Mean value

for all layers

7.61 m 9.92 MPa 0.07 MPa 0.04 MPa 0.25 g

Standard deviation

for all layers

4.67 m 7.37 MPa 0.07 MPa 0.05 MPa 0.09 g

C.O.V.

for all layers

0.61 0.74 0.92 1.21 0.35

Normalized parameter

weights

0.217 0.245 0.239 0.153 0.146

Figure 2. Normal PDFs of the a) qc and b) u2 parameters evaluated using the full case history database

and the subset of case histories that experienced liquefaction.
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comparison using the deterministic Boulanger and Idriss (2016) CPT-based method with a 15
% probability of liquefaction triggering. The analysis using the CBR method also included a
simple sensitivity study to investigate the effect of layer discretization thickness on the results.
In the sensitivity study, the four thicknesses used to discretize the site profiles into case histor-
ies and test cases were 1 cm, 5 cm, 10 cm, and 20 cm.
The results of the analysis using the three methods are presented in Figures 3 through 6.

Figures 3 and 4 present the results for Site 24 as assessed for the Darfield Earthquake and the
Christchurch Earthquake, respectively. Figures 5 and 6 present the results for Site 25 as
assessed for the Darfield Earthquake and the Christchurch Earthquake, respectively.
At all four test sites, the CBR and Boulanger and Idriss (2016) methods accurately predicted

the high liquefaction susceptibility of the critical layer that was identified by Green et al. (2014).
It is further consistent with observations of surficial liquefaction reported in Green et al. (2014)

Figure 3. Location of the critical layer at Site 24 for the Darfield Earthquake (Mw 7.1, PGA 0.215 g)

from Green et al. (2014) and predictions for liquefaction triggering from the CBR and Boulanger and

Idriss (2016) methods.

Figure 4. Location of the critical layer at Site 24 for the Christchurch Earthquake (Mw 6.2, PGA 0.450

g) from Green et al. (2014) and predictions for liquefaction triggering from the CBR and Boulanger and

Idriss (2016) methods.
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that both the CBR and Idriss and Boulanger (2016) methods predicted larger levels of liquefac-
tion triggering during the Christchurch Earthquake than during the Darfield Earthquake.
Using various layer discretization thicknesses with the CBR method had a small but

observable effect on the accuracy of the results. In comparison to results from the Boulan-
ger and Idriss (2016) method, the layer thicknesses 1 cm and 20 cm resulted in slightly
worse, under predictions of liquefaction triggering than the 5 cm and 10 cm layer thick-
nesses. The method, however, is not particularly sensitive to the layer discretization thick-
ness in this small range of values. The main observable difference between results from the
CBR method and the Boulanger and Idriss (2016) method is that the CBR method consist-
ently underestimates the amount of potential liquefaction triggering in comparison to the

Figure 5. Location of the critical layer at Site 25 for the Darfield Earthquake (Mw 7.1, PGA 0.219 g)

from Green et al. (2014) and predictions for liquefaction triggering from the CBR and Boulanger and

Idriss (2016) methods.

Figure 6. Location of the critical layer at Site 25 for the Christchurch Earthquake (Mw 6.2, PGA 0.453

g) from Green et al. (2014) and predictions for liquefaction triggering from the CBR and Boulanger and

Idriss (2016) methods.
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Boulanger and Idriss (2016) method. The main reason for the under prediction is the fact
that the case history layers were only considered to have ‘liquefied’ if they lined up with the
single most critical layer that was identified by Green et al. (2014). By this criterion, the case
history database has mischaracterized the liquefaction triggering potential of other, fre-
quently deeper layers that also could have liquefied during the same earthquake event. This
shortcoming will be addressed in future work.

5 DISCUSSION AND CONCLUSIONS

In this study, CBR has been used successfully to predict liquefaction triggering at two test
sites in Christchurch, New Zealand, under two different earthquake events. The CBR case his-
tory database was composed of data from 22 out of 24 available sites that were profiled by
Green et al. (2014) and included raw CPT data (depth, qc, fs, and u2), water table depths, site
PGAs, and depth ranges of the critical layers. The raw CPT data was downloaded from the
New Zealand Geotechnical Database and the water table depths, site PGAs, and critical layer
depth ranges were sourced from Green et al. (2014). Each site was subjected to two separate
earthquake events (the Darfield Earthquake and the Christchurch Earthquake), essentially
doubling the number of cases in the case history database. A separate, independent assessment
of liquefaction triggering potential was performed at each test site for comparison using the
deterministic Boulanger and Idriss (2016) CPT-based method with a 15% probability of lique-
faction triggering.
At three out of the four test cases, the CBR method and the Boulanger and Idriss (2016)

methods correctly predicted liquefaction triggering of the critical layer that was identified by
Green et al. (2014). At the fourth site, Site 24 during the Darfield Earthquake, both the CBR
and the Boulanger and Idriss (2016) methods also predicted the liquefaction triggering of the
critical layer that was identified by Green et al. (2014), but this site had no observable mani-
festations of liquefaction triggering from the Darfield Earthquake.
A simple sensitivity study to assess the effect of layer discretization thickness showed that

the results of CBR are not particularly sensitive to selected case history layer thicknesses in
the range of 1 cm to 20 cm, but higher accuracy in comparison to the Boulanger and Idriss
(2016) method was seen with layer thicknesses of 5 cm and 10 cm.
The objective of this study is not to replace widely used CPT-based methods for liquefaction

triggering assessment, but rather to serve as a proof of concept for the use of CBR in geotech-
nical engineering applications. The future goal of this work would be to move beyond predic-
tions of liquefaction triggering and into more important applications such as the direct
prediction of liquefaction severity and the consequences of liquefaction triggering that include
settlement, lateral spreading, and structural damage. The current procedure for evaluating
many of these consequences involves stringing together several empirical methods that each
address one aspect of soil liquefaction. It is hoped that in the future, CBR can take advantage
of the large body of case histories from around the world that have been and continue to be
well-documented by researchers, and to create a unified, method-free approach for predicting
the consequences of liquefaction triggering.
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