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ABSTRACT: This paper deals with numerical modelling of rock failure around an under-
ground tunnel under remote seismic loading. A continuum based numerical model consisting
of a vis-codamage-viscoplastic material model for rock and a polygonal finite elements
scheme to model the wave propagation in rock is presented. The numerical simulations of an
underground opening under a compressive stress wave demonstrate that this approach, des-
pite the limitations of the continuum approach in modelling rock fracture, predict many
important features of the rockburst (ejection) into the tunnel in computation times fractional
to those of the particle methods.

1 INTRODUCTION

Numerical modelling of rockbursting in underground tunnels due to remote seismic event
is an important task in geotechnical engineering. A model with predictive capabilities pro-
vides a valuable tool, e.g. for the design of the rock support systems based on rockbolting
(Brady & Brown, 1993; Li, 2017). Modern computers enable full-blown simulations of
fracture processes in geostructures under complex dynamic loadings. Numerical modelling
reduces substantially the experimentation costs and increases the understanding of the fail-
ure processes under dynamic loading. The two major approaches for numerical modelling
in geomechanics are the finite element method (FEM) and the discrete element method
(DEM). Due to the underlying discontinuum assumption, DEM is naturally more suitable
for modelling problems such as rockbursts in underground tunnel walls during seismic
events, see Raffaldi & Loken (2016). However, FEM can provide vital information on the
tunnel stability under seismic loading in computation times drastically shorter than those
with DEM, see Wen et al. (2017).
This paper deals with numerical modelling of rockbursts in an underground tunnel

under seismic loading. This problem is tackled with a numerical method including a con-
stitutive model for rock and a finite element model for seismic wave propagation simula-
tion. As for the constitutive model, the viscodamage-viscoplasticity model for rock by
Saksala (2018) is employed. In this model, the Rankine criterion indicates the tensile
stress states leading to rate-dependent anisotropic damage. In compression, a Mohr-Cou-
lomb viscoplasticity model governs the inelastic deformation and compressive strength
degradation. The rock around the tunnel is described by polygonal finite elements. The
equations of motion are solved with an explicit time marching scheme.
In the numerical examples, 2D analyses of an underground tunnel are presented in

order to demonstrate the performance of the method. The seismic loading is specified
as a synthetic waveform. Two cases are simulated: First, the tunnel is close to the sur-
face so that the overburden pressure can be neglected while in the second case the
tunnel is subjected to a confining pressure simulating a case of deep underground
opening.
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2 NUMERICAL MODELLING

2.1 Constitutive model for rock

The constitutive model for rock is developed within the small deformation framework, which
enables the additive decomposition of the strain into elastic, viscoplastic, and viscodamage
components, respectively, as

ε ¼ εe þ εvp þ εvd ð1Þ

This decomposition is justified by the brittle nature of rock.
Rocks exhibit both stiffness and strength degradation as well as irreversible strains (Brady

& Brown, 1993). Irreversible deformation takes place especially in compression while in ten-
sion it can be usually neglected. Therefore, a constitutive model capable of accounting for
both damage and plasticity is needed to correctly predict the behavior of rocks. Moreover,
microcracks in rock usually display loading induced orientation which results in damage-
induced anisotropy. For this reason, an anisotropic damage model is often preferable. Rocks
are also strongly strain rate-sensitive materials (Zhang & Zhao, 2014) which should be
accounted for in modelling. In the present model, the rate-sensitivity is accommodated by
viscosity.
In compression, the viscoplasticity model based on the Mohr-Coulomb (MC) criterion is

formulated with the consistency approach by Wang et al. (1997) as

fMCðσ; λvp; _λvpÞ ¼
k’�1

2
ðσx þ σyÞ þ ðk’ þ 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σx�σy

2

� �2
þ σ2xy

q

� σcðλMC; _λMCÞ

_εvp ¼ _λMC

∂gMC

∂σ
; σcðλMC; _λMCÞ ¼ σc0 þ hMCλMC þ sMC

_λMC

gMCðσÞ ¼
kψ�1

2
ðσx þ σyÞ þ ðkψ þ 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σx�σy

2

� �2
þ σ2xy

q

k’ ¼ ð1þ sin’Þ=ð1� sin’Þ; kψ ¼ ð1þ sinψÞ=ð1� sinψÞ

fMC � 0; _λMC0; _λMCfMC ¼ 0

ð2Þ

where the components of the stress σ are given in xy-coordinate system, λMC, λMC denote
the viscoplastic increment and its rate, respectively, σc0 is the compressive strength, hMC and
sMC are the softening and viscosity moduli in compression, gMC is the plastic potential defined
with the dilation angle ψ, instead of the friction angle φ. The amount of softening is calibrated
by model II fracture energy: hMC = –σc0

2le/2GIIc with le being a characteristic length of a finite
element. Finally, the last equations in (2) are the Kuhn-Tucker type of consistency conditions.
In tension, the Rankine criterion based viscodamage consistency model governs the soften-

ing and anisotropic stiffness degradation. This model, given in the compliance damage
format, is defined as

fRðσ; λR; _λRÞ ¼
1
2
ðσx þ σyÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σx�σy

2

� �2
þ σ2xy

q
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f̂RðσÞ

�σtðλR; _λRÞ

_D ¼
_λR

f̂ RðσÞ

∂fR

∂σ
�

∂fR

∂σ

σtðλR; _λRÞ ¼ σt0 þ hRλR þ sR _λR; hR ¼ �gσt0 expð�gκRÞ

fR � 0; _λR0; _λRfR ¼ 0

ð3Þ

where σt0 is the tensile strength, D is the (fourth order) compliance tensor, whereas the
meanings of the rest of symbols are equivalent to the corresponding ones related to the
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viscoplastic model. The softening in tension is exponential and it is controlled by mode I frac-
ture energy through g = σt0le/GIc.
In the present compliance damage format, the current value of compliance tensor, which

evolves by damage from the initial value D(t = 0) = 0, is added to the elastic compliance to
obtain: Ed = (Ce + D)-1 with Ed and Ce being the damaged stiffness and the standard elasticity
tensor, respectively. Finally, the relation between the damage compliance and the damage
deformation reads ɛd = D:σ.

The stress return mapping with this combined viscodamage-viscoplastic consistency model
can be performed with the standard methods of multisurface plasticity (i.e. the elastic pre-
dictor-plastic corrector split) due to the fact the consistency is enforced in both of the compo-
nents, see Saksala (2018) for details.

2.2 Polygonal finite elements

Polygonal finite elements have resurfaced into the focus of research. Compared to the usual
triangular and quadrilateral elements, they offer, in many cases, greater flexibility in meshing
arbitrary geometries, better accuracy in the numerical solution, better description of certain
materials, and less locking-prone behavior under volume-preserving deformation (Sukumar &
Tabarraei, 2004). Saksala (2018) applied the polygonal finite elements in numerical modelling
of heterogeneous rocks with good results.
The present finite element formulation is based on the Wachspress interpolation functions

implemented in Matlab by Talischi et al. (2012b). The standard isoparametric mapping from
a reference element to the physical element, as illustrated in Figure 1, is used here as well.
The mathematical expression for a barycentric Wachspress shape function at node i of a

reference n-gon reads

NiðξÞ ¼
αiðξÞ

Pn
j¼1 αjðξÞ

; αiðξÞ ¼
Aðpi�1; pi; piþ1Þ

Aðpi�1; pi; ξÞAðpi; piþ1; ξÞ
ð4Þ

where A(a, b, c) denotes the signed area of triangle a, b, c (Figure 1a). The numerical inte-
gration scheme is based on a sub-division of the reference polygon into triangles and applying
a three-point quadrature for each triangle (resulting 3n integration points for each n-gon), as
illustrated in Figure 1b. The polygonal finite element mesh is generated by the PolyMesher
code developed by Talischi et al. (2012a). This code generates 2D Voronoi diagrams (tessella-
tions) consisting of centroidal (or alternatively non-centroidal) Voronoi cells.
Since strain rate effects of rock are considered, the governing equations of motion are

solved with an explicit time integrator. The explicit modified Euler method (Hahn, 1991) is
selected for time integration. According to this scheme, the system response is calculated as

Figure 1. Illustration of the triangular areas used in the definition of Wachspress shape function (a),

and the triangulation of the reference regular polygon with 3 integration points in each triangle, and the

isoparametric mapping to a physical element (b).
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M€ut þ ANel
e¼1f

int;e
t ðσÞ ¼ fextt with fint;et ¼

Z

Ωe

BT
e σdΩ

e

_utþΔt ¼ _ut þ Δt€ut; utþΔt ¼ ut þ Δt _utþΔt

ð5Þ

where is the global nodal displacement vector, Δt is the time step, fextt is the global external
force vector, fint;et is the internal force vector for a finite element e, Be is the kinematic oper-
ator, A is the assembly operator, and, finally, M is the lumped mass matrix obtained by the
row summing technique.

3 NUMERICAL EXAMPLES

3.1 Model geometry, mesh, boundary conditions and the material parameters

The material properties and model parameters used in the simulations are as follows: Young’s
modulus E = 70 GPa, Poisson’s ratio ν = 0.2, density ρ = 2600 kg/m3, σc0 = 200 MPa, σt0 = 11
MPa, φ = 50°, ψ = 5°, GIc = 50 J/m2, GIIc = 5000 J/m2, sR = sMC = 0.05 MPas. These values
correspond to a hard rock like granite. Moreover, the rock is assumed homogeneous and
without any initial faults for simplicity. The loading rate effects are not considered in this
paper. Therefore, the viscosity moduli values are set relatively small so that they do not cause
significant strain rate hardening effects at the strain rates occurring in the simulations here,
see Saksala (2018) where these values did not result in observable strain rate hardening at a
loading rate of 5 s-1 neither in compression nor in tension. However, viscosity in general has a
stabilizing effect on numerical simulations.
The boundary conditions and the polygon mesh are shown in Figure 2.
The shape and dimensions of the tunnel as well as the seismic disturbance are the same as in

the study by Li et al. (2018). This magnitude, 50 MPa, of the stress wave corresponds to the
maximum particle velocity of 10 m/s.

Figure 2. A detail of the mesh around the tunnel (the dimensions in [m]) (a), the seismic disturbance (b),

the polygonal mesh with 10000 polygons and the boundary conditions (c).
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3.2 Unconfined case

If the tunnel is close to the surface, there is neither significant overburden pressure nor hori-
zontal pressure. This case is simulated first. The simulation results at few representative time
stations are presented in Figure 2. It is not very illustrative to plot the components of the com-
pliance tensor D. Instead of this, the damage parameters for plots are calculated as Dii = 1 –

Ed,ii/E0,ii where Ed,ii and E0,ii are the diagonal entries of damaged and intact stiffness tensor,
respectively. These behave as the classical scalar damage variable being 0 for intact rock and 1
for fully damaged rock. Moreover, it should be mentioned that compressive (shear) failures by
the MC viscoplasticity model (2) above are not activated at the stress levels occurring in the
present simulations.

Figure 3. Simulation results for unconfined case: velocity magnitude at t = 1.9 ms (a), damage compo-

nents Dxx (b) and Dyy (c) at t = 3.7 ms, the velocity magnitude plot with arrows indicating the direction

and relative magnitude of nodal velocities at t = 2.5 ms (d), the damage components in the deformed

mesh (magnification = 20) at the same time station (e), major (f) and minor (g) principal stresses at t =

1.9 ms.
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According to the results in Figure 3, rockburst takes place at the left wall of the tunnel
due to the stress wave reflection. This is indicated in the damage component plots in
Figure 3e and in Figure 3d where the velocity arrows in an area at the left surface of the
tunnel point to the tunnel interior. This means that the material is ejected into the tunnel.
The damage component plot at a later stage in Figure 3b and c show that the rock on the
left side of the tunnel is severely damaged. Moreover, a large horizontal crack has initiated
at the right wall of the tunnel and propagated some 2 meters to the right, as attested in the
Dyy component plot in Figure 3c. Finally, the major and minor principal stresses plotted at t
= 1.9 ms in Figure 3f and g demonstrate the reflection of the compressive stress wave at the
left wall of the tunnel.

3.3 Tunnel under overburden and horizontal pressure

When a tunnel is excavated deep down in the bedrock, it is subjected to static overburden ver-
tical and lateral pressures. Here, a simulation of a tunnel in such conditions with pv = 20 MPa
and ph = 10 MPa (see Figure 2c) is carried out using the same seismic disturbance as in the
unconfined case. The simulation results are shown in Figure 4.
In the confined case, the vertical overburden pressure suppresses considerably the rock fail-

ure reflected in the Dyy plot in Figure 4d. In contrast, the amount of damage in x-direction
has not diminished as much (see Figure 4c). Indeed, the rock is still severely damaged at the
area where the stress wave reflection takes place. Higher horizontal pressures would suppress
the damage in horizontal direction more but, on the other hand, at high depths the walls of
the tunnels become susceptible to a static failure. In any case, it can be observed that the pre-
sent approach can predict a rockburst in an underground tunnel under in-situ stresses. Finally,
it is noted that these simulation results are in qualitative agreement with those by Li et al.
(2018) obtained by the particle based numerical manifold method.

Figure 4. Simulation results with pv = 20 MPa and ph = 10 MPa: Major (a) and minor (b) principal

stresses at t = 1.9 ms, and damage components Dxx (c) and Dyy (d) at t = 3.7 ms.
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4 CONCLUSIONS

A numerical method including an anisotropic visodamage-viscoplasticity model for rock
implemented with the polygonal finite elements scheme was presented for modelling an under-
ground tunnel under a seismic disturbance. The simulations demonstrated that the model
could predict the rockburst, i.e. the ejection of crushed rock into the tunnel, induced by the
seismic disturbance in terms of damage component plots and velocity quiver plots. Naturally,
the present approach, due to the underlying continuum assumption, is inferior to discrete
element methods in modelling rock crushing but superior in computational efficiency. Finally,
this method should be further developed to include a method to account for the natural dis-
continuities in the rock mass. At the scale of an underground tunnel for cars for example,
rock cannot be adequately assumed homogeneous and flawless.
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