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ABSTRACT

Most earthquake engineering and seismological models make the sweeping assumption that the world is flat. The
ground surface topography, however, has been repeatedly shown to strongly affect the amplitude, frequency, duration
and damage induced by earthquake shaking, effects mostly ignored in earthquake simulations and engineering design.
In this talk, | will show a collection of examples that highlight the effects of topography on seismic ground shaking, and |
will point out what these results suggest in the context of the current state-of-earthquake engineering practice. Examples
will range from semi-analytical solutions of wave propagation in infinite wedge to three-dimensional numerical
simulations of topography effects using digital elevation map-generated models and layered geologic features. | will
conclude by demonstrating that ‘topography’ effects vary strongly with the stratigraphy and inelastic behavior of the
underlying geologic materials, and thus cannot be accurately predicted by studying the effects of ground surface

geometry alone.

1 INTRODUCTION

The term local site conditions refers to the mechanical
properties of near-surface geological formations and the
geometry of the ground surface and subsurface. Local
site conditions can significantly distort the seismic waves
that travel from the deeper layers of the crust compared to
what the ground motion would have been on the surface
of a flat homogeneous linear elastic half-space. This
distortion that takes place in the near-surface is referred
to as ‘site effects’, and includes phenomena such as large
amplification, frequency content shifts and significant
spatial variability of seismic ground motion, all of which
are very important for the assessment of seismic risk, in
microzonation studies, and in the seismic design of
important surficial and subterranean facilities.

Although the problem of seismic wave scattering by
topographic irregularities has been studied for several
decades in seismology and geophysics, only recently it
has attracted the attention of geotechnical earthquake
engineering researchers. Topography effects are promi-
nent changes of seismic signals (intensity, frequency
content and duration) that systematically take place when
seismic waves encounter in their path topographic
features (hills, ridges, canyons, cliffs, and slopes);
subsurface geologic formations (sedimentary basins,
alluvial valleys); and/or geological lateral discontinuities
(e.g., ancient faults, debris zones). The effects of the
interaction between propagating waves and surface or
subsurface irregular geologic features can be dramatic:
examples of records that have been attributed in part to
topography effects include the PGA=1.93g recording of
the hilltop Tarzana station during the 1994 Northridge
Earthquake (Bouchon 1973); the Pacoima Dam
(PGA=1.25g) recording during the 1971 San Fernando
earthquake (Boore 1972a); and the recent extraordinary
ground motion (PGA=2.75g) recorded at K-Net station
MYGO004 on the crest of a 5m high, steep man-made
slope during the 2011 Tohoku Earthquake (Nagashima et

al. 2014). Extensive review studies that include numerous
other examples have been published by Geli et al. (1988),
Bard (1999), and Assimaki et al. (2005a).

Observational evidence from past earthquakes
indicates that damage concentration occurs where steep
slopes or complicated topography are present; buildings
located on the tops of hills, ridges, and canyons, suffer
more intense damage than those located at the base.
There is also strong-recorded evidence that surface
topography affects the amplitude and frequency content
of the ground motions. Reviews of such instrumental
studies and their comparison to theoretical results can be
found in Geli et al. (1988), Faccioli (1991), Finn (1991)
and Bard (1999). Prompted by observational and
instrumented evidence, the problem of scattering and
diffraction of seismic waves by 2D idealized topographies
on the surface of elastic homogeneous half-spaces has
been studied by many researchers (e.g. Boore 1972b,
Bouchon 1973, Sanchez-Sesma and Rosenblueth 1979,
Sanchez-Sesma 1983,1985,1990). A limited number of
studies on complex configurations such as topography
with soil layering and/or 3D effects can be found in Bard
and Tucker (1985), Ashford et al (1997), Graizer (2009),
Assimaki et al (2005b,c) and Assimaki and Jeong (2013).

Numerical and semi-analytical published studies have
qualitatively corroborated these observations, but when
compared to field recordings, have been shown to syste-
matically underestimate the absolute level of amplification
up to an order of magnitude or more in some cases. This
discrepancy between theory and observations has been
attributed, at least in part, to idealizations of the above
studies such as the assumptions of 2D geometry, homo-
geneous medium, linear elastic response, and mono-
chromatic or narrowband ground shaking.

In this paper, we give an overview of our work in the
past 10 years to bridge the quantitative gap between
theoretical studies and observations by systematically
studying the role of geometry, stratigraphy, and ground
motion characteristics through a series of elaborate



numerical analyses. We specifically start from the
topographic amplification caused by a 2D infinite wedge
on the surface of a homogeneous elastic halfspace, and
extend the state-of-the-art understanding of wave
focusing and scattering by this fundamental block of
irregular ground surface geometries. From there, we
gradually increase the geometric and stratigraphic com-
plexity up to a 3D convex layered topographic feature,
identifying in each level the controlling factors of topogra-
phic amplification. All simulations are performed for linear
elastic materials, appropriate to represent the geologic
material response to low strain motions. Our results prov-
ide new insights into the effects of surface topography
and its nonlinear coupling with subsurface soil layering,
and suggest that in real conditions, topographic ampli-
fication can only be quantitatively captured when geo-
metry and stratigraphy of the site are simultaneously
accounted for in theoretical predictive models.

2 INFINITE WEDGE: FIRST ORDER GEOMETRIC
COMPLEXITY

Wedge models have been traditionally used in wave
propagation studies as fundamental blocks of geometric
discontinuities. Typical wedge shaped features that are of
interest in various fields of science and engineering
include continental margins, mountain roots, and crustal
discontinuities in geophysics and seismology; ground
surface topographic features in earthquake engineering;
and surface defects and cracks in non-destructive testing.

In seismology and geotechnical earthquake enginee-
ring, the solution of wedge problem is an important step in
understanding the behavior of seismic waves at wedge
shaped obstacles. When the incoming seismic wave,
which is generated by various mechanisms (e.g. the
causative fault), propagates through the medium and hits
the wedge-shaped scatterer, its characteristics (e.g.
amplitude, frequency and duration) can significantly
change because of such geometrical heterogeneity. That
is the reason why simple theories cannot adequately
explain the recorded wavefield. The wedge solution also
helps to describe the scattering of elastic waves from
surface topographies with traction free boundary and
within dipping layers with mixed boundary conditions.
Real surface and sub-surface topographies can first be
approximated by simplified convex or concave geo-
metries, and then analyzed as the sum of isolated wedge
parts (as a first order approximation).

Let us first consider the initial-boundary value problem
of elastic wave scattering by an infinite wedge (Figure 1);
we simulate the problem using a finite difference (FD)
model, and validate it for amplification of in-plane shear
wave at the tip of two wedges (6 = 90° and 120°) using
the analytical solution by Sanchez-Sesma (1990).

For these two scenarios, the complete reflection of
incident SV waves — mode preserving for 90° and mode
converting for 120°- enabled Sanchez-Sesma (1990) to
obtain the analytical solution using geometric methods.
The velocity time histories at the wedge tip (Figure 2)
show the amplification factors of 6e-4 and 4.0006 for 90°
and 120° wedges, respectively, which —considering
numerical rounding errors and resolution—is exactly

equal with the corresponding analytical solutions, namely
0 and 4. Figure 3 shows seismogram synthetics for these
two wedge and wave propagation scenarios, and
highlights the path of different wave types. As can be
seen, the waveforms consist of the incident SV wave (S)
and its specular reflection from the wedge tip (S1). The
waves S and S; completely satisfy the boundary

conditions along the wedge faces, which is why there is
no diffracted wave generated at the vertex.
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Figure 2. Velocity time history at the tip — 90° and 120° for

an incident ground motion with amplitude 1. Note that the

free surface response (180°) would have amplitude 2.

n
T
I

Velocity (L/T)

o

After validating the numerical model, we extend the
solution to a broader range of internal angles. One of the
most interesting cases is the vertically propagated SV
wave incident on the wedge face at the critical angle. For
Poisson material (v = 0.25), the critical angle of incidence
and the corresponding wedge angle (critical wedge angle)
are obtained as 35.26° and 109.48°. Beyond the critical
angle, the mode converting part of reflection propagates
along the wedge face as a surface wave. This is important
for our analysis because the maximum tip amplification
occurs at this wedge angle. The scattered wavefield of
this geometry is more complex because of additional
diffracted P, S and surface waves from the tip.
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Figure 3. Seismogram synthetics of horizontal velocity —
1:90°, |:120°. Vertical axis depicts the distance from the
crest (X) normalized by the dominant wavelength of the
Ricker incident pulse (A). The wedge geometry is indi-
cated by the brown line next to the vertical axis.
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Figure 4. Seismogram synthetics of horizontal velocity —
109° wedge.

Figures 4 and 5 show the seismogram synthetics and
wavefield snapshots for the critical wedge. In addition to
incident SV wave (path S), there is a complete set of
diffracted wavefield from the wedge tip (all components
with Tip subscript) as well as a secondary reflected P
wave (P1). The later shows that the compressional part of
primary reflection from each face will further reflected
from the opposite side. In addition, the slopes of tip-
diffracted wave components show their relative velocity as
expected. The superposition of surface waves that
contain most of the incident wave energy result in such a
high peak amplitude (amplification factor of ~13.5 in
Figure 6). Different parts of the total scattered wavefield
along with the extraordinary large surface motion at tip
are better represented in the snapshots.

Figure 5. Snapshots of total wavefield — 109° wedge; (top)
incident waveform (S) has not encountered the crest yet
(time 1.5 sec in Figure 4); (middle) incident waveform
arrives at the crest (time 2.0 sec in Figure 4); and
(bottom) reflected, refracted and scattered waves travel
away from the crest (2.5 sec in Figure 4)

3 2D TOPOGRAPHY

We next increase the geometric complexity of our study
on topography effects by adding characteristic (finite)
length(s) to the infinite wedge problem, and performing a
set of systematic analyses on the resulting idealized
feature. The feature is characteristic of a dam (emban-
kment) geometry subjected to vertically propagating
Ricker SV wave (Figure 7). For different dimensionless
width ¢ (normalized by the incident wavelength, D/A), the
problem is divided into three groups, namely a single
slope, a wedge and a dam. For each case, we calculate



amplification factors as a function of the slope angle, the
dimensionless height (normalized by the incident wave-
length, H/A), and dimensionless width. A sample of our
results for the case of slope angle a =45° is presented in
Figure 8.
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Figure 6. Tip velocity response for critical incidence
(incident wave pulse has amplitude 1 and peak response
at the wedge crest has amplitude 13.5)
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Figure 7. General configuration for 2D topography
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Figure 8. Horizontal amplification factor (vertical axis: ratio
of peak response at the crest to incident amplitude) vs.
normalized width at different dimensionless heights, which
are proxies of different frequencies (slope angle: a=45°)

Note that for the same slope angle, the amplification
curves for different dimensionless heights and widths
yield similar amplification curves of different amplitude,

namely similar waveform patterns. Changing the
normalized height, we generally see oscillations of larger
amplitude for higher frequencies (for example, moving
from gray to red in Figure 8). In other words, the
dimensionless height determines whether the incident
wave ‘see’ the topography or not. The normalized width,
on the other hand, is related to the interaction of two sides
in terms of constructive and destructive interferences.
Therefore, we see a wedge and single slope types of
behavior for sufficiently small and large dimensionless
width, respectively. In between, there may be a couple of
peaks and troughs due to the interaction of surface
waves. It is noteworthy that the practical large distance,
which gives rise to single slope response, is much smaller
than the theoretical value ({ — «). Thus, we can define a
threshold distance beyond that the additive effect of either
side on the response of other side is negligible.

There are three dimensionless widths where the
response of dam topography with n = 1.0 shows a drastic
change (peak and trough), namely ¢ = 0.88, 1.38 and
2.09. Seismogram synthetics of horizontal and vertical
accelerations are presented for the scenario of maximum
amplification (¢ = 0.88) in Figure 9.
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Figure 9. Seismogram synthetics of acceleration for dam
(1: horizontal motion (H), |: vertical motion (V)) for a = 45°
and ¢ =0.88.



This dimensionless width corresponds to the constru-
ctive interference of wavefield components generated
from two adjacent slopes and the incident wave. These
components comprise of surface Rayleigh and body P, S
waves diffracted from the toe and tip of each slope. We
can also see the trapping of diffracted body waves in the
middle part of dam that gradually leaks to the lower half-
space. Snapshots of the total wavefield for the same
geometry (Figure 10) provides us with further information
about the underlying scattering mechanism. Diffraction of
incident shear wave at the toe, constructive interference
of wave components at the maximum station, and the
trapping of diffracted energy within the feature are clearly
shown in Figure 10. Finally, we can see the two-sided
effects parameterized by means of the dimensionless
width through the spatial variation of amplification factors.
Figure 11 shows a sample of such plots for a = 45° dam
at three characteristic points of ¢ = 0.88, 1.38 and 2.09.
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Figure 10. Snapshots of total wavefield — a = 45°, { =
0.88. From top to bottom, the figures correspond to times
1.5 sec, 2.0 sec and 2.5 sec.

Increasing the width from the point of maximum
amplification (¢ = 0.88) gives rise to a local minimum due
to destructive interference. The scattered wavefields
generated by two slopes starts to separate if we further
increase the width between the crests (as for the case of {
= 2.09). We should note that while the resultant scattered

wavefield is very sensitive to the distance of the crests on
the top of the embankment, due to constructive and
destructive interference, the amplification curves that
generated by the wave diffraction at the toe is practically
identical in all three cases, both in spatial distribution and
amplification order of magnitude (ranging between ampli-
fication 1.0 at the free-field and 1.1 near the toe).
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Figure 11. Spatial variation of amplification factor — a= 45°

4 NONLINEAR COUPLING EFFECTS

So far, we looked briefly at the effects of geometric
discontinuities, from the simple case of 2D infinite wedge
to more complex 2D convex features. The results, which
are presented in the form of topography amplification
patterns, could be used to explain field observations in a
more realistic way. Nonetheless, a complete site
response analysis for strong ground motion should also
account for the change in material properties.

We next investigate the effect of surface topography
when it is combined with subsurface soil stratigraphy as a
simple case of material heterogeneity. We systematically
investigate the soil-topography coupling effects for the 2D
dam-type topography with two different types of near
surface layering (Figure 12). Controlling parameters in
this case, in addition to the geometric features explained
above, are the thickness of upper layer and the stiffness
contrast between two layers have been defined in
dimensionless form. To study the coupling effect, we
compute the variation of horizontal peak amplification with
dimensionless width for several combinations of
impedance contrast, Q, and normalized thickness of
surface layer, & (Q is less than unity for near surface soft
layer). Figure 13 shows a sample of these results for both
layered models with a = 45° and n = 1.0 where the
amplification curve of homogeneous model is added for
comparison purpose (blue curve). For the layered model
with horizontal interface, to which we shall refer as M1,
we approach the problem similarly to the case of single
layer dam. However, there are two differences between
M1 and the original problem. First, the transmitted wave in
the top layer carries less energy than the incident wave,
depending on the stiffness contrast.



For stiffness ratios considered in this study, the soil
amplification (1D site response) controls the overall
behavior at the far-field and gives rise to larger
amplification factors. Another deviation of M1 from the
homogeneous problem is its finite depth (as opposed to
the homogeneous halfspace of the previous section). This
results in multiple reflections between two layers (the
stiffness contrast controls the number of reflections) and
higher order diffracted waves (both body and surface)
from tips and toes.
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Figure 12. Configurations of layered models used for
investigating the coupling effect — (1: M1, |: M2)
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Figure 13. Horizontal amplification factor vs. normalized
width for various values of thickness and stiffness contrast

Model M2 on the other hand, with identical topography
geometry but with a surface layer of constant thickness
instead of a flat interface between soil and rock at depth,
creates more sources of scattering (tips and toes of
interface) and narrower surface region for trapping the
incident energy. This additional complexity results to an
even larger number of reflections between two layers as
compared to model M1.

0 0.5 1 1.5 2 25 3
Dynamic Time (sec)
Figure 14. Seismogram synthetics of acceleration (1:M1,
1:M2)-C=0.88,£=1/4,Q=4

For model M1, the amplification curves are similar to
that of single layer as expected, since the peak is
determined at the first arrival. The main difference lies in
the duration and frequency content. Also, the peak
amplification factor occurs at the same dimensionless
width as in the single layer case (¢ = 0.88). Furthermore,
they are clustered in three different categories (black, red
and blue) based on the stiffness contrast with higher
values at larger contrast. The dimensionless thickness of
upper layer, on the other hand, has little effect on the
amplification response. This is also expected as the
constructive interference of first arrivals (direct and
diffracted waves) gives rise to peak amplification. The
lower plot of Figure 13 shows a different wave mechanism
for model M2. First, they are no longer similar to the
single layer model inasmuch as peaks and troughs occur



at different dimensionless widths. In addition, there is no
clustering based on stiffness contrast. Instead, the
thickness of upper layer play a more important role in the
form of amplification curves. One could see that the
curves of same line type and different colors are almost
similar. This is because the free surface boundary and
interface form a single scatterer whose characteristic
length (thickness) controls the consequent wavefield.
Finally, the threshold dimensionless width, beyond that
the dam response turns into that of single slope, is much
larger than model M1.

Figure 14 shows the seismogram synthetics of the
horizontal ground motion component at the peak width of
homogeneous case (¢ = 0.88) for £ = 1/4 and Q = 4.
Model M1 has the same general structure (diffracted
surface and body waves from tips and toes on both sides)
as that of the halfspace case. The main difference
between the two is the reverberation of the body waves in
the upper layer, which mask the low amplitude diffracted
Rayleigh waves that are prominent in the halfspace case.
Model M2 on the other hand has an amplification trough
in the normalized width scenario { = 0.88 as opposed to
M1, and causes a larger number of multiple reflections of
body waves because of the shallower sediment depth
between two toes, and the increase number of scattering-
inducing points.
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Figure 15. Spatial variation of horizontal amplification
factor (1:M1, |:M2) - =0.88

Figure 15 compares the spatial variation of
amplification factor of the two-layered models with the
dam model on homogeneous halfspace presented earlier.
The nonlinear coupling between soil and topographic
amplification can be shown in this figure: the blue curve
shows that for this geometry, the topography ampilification
factor —in absence of soil layers—is 2.05. The red and
black curves depict the spatial variation of soil
amplification, whose free-field peak amplitude is 1.49 and
2.03 correspondingly for Q = 2 and 4. The amplification
factor from soil and topography together is 2.84 and 3.38
for model M1; and 1.86 and 2.55 for model M2,
respectively. Had the problem been a pure superposition
between the amplification caused by soil and by
topography, one would need to scale up the spatial
variation curve of the halfspace with the amplification
value of the 1D far-field response of the layered structure,
to obtain the combined effects of soil and topography.
Clearly, this is not the case.

Finally, snapshots of total wavefield for model M2 with
¢ =0.88, ¢ =0.25, and Q = 4 are shown in Figure 16. The
top, middle and bottom plots respectively show the initial
scattering of incident waves by a surface crust, the
maximum amplification that occurs at the two opposite
crests, and multiple reflections of energy trapped in the
upper layer, respectively.

Figure 16. Snapshots of total wavefield for model M2 —
(=0.886=025 Q=4



5 REAL 3D TOPOGRAPHIC FEATURES

To get a better understanding of the complexity of site
effects in real cases, we consider a topographic feature
near strong motion station CI-LCP in California. Figure 17
shows the bird-eye view of this site along with its
topographic map with the strong motion station
designated by a yellow triangle. It is clearly seen in the
topographic map that the feature is not symmetric with
respect to the azimuth angle. To describe the effects of
topography in this case, we define two major axes (based
on the geometry and expected wave focusing) and
subject the feature to incident shear waves polarized in
these two directions. We used DEM data of 1/3 arc-
second resolution to construct the 3D surface of
topographic map. Due to lack of detailed information
about the spatial distribution of the stratigraphy, we
assumed each a near surface layer with a constant depth.
Assuming elastic linear material, we extracted the
properties of the various layers in our analysis from Yong
et al. (2013) and we list them in Table 1. Along with the
layered model, we also consider a homogeneous case to
use as benchmark for pure topography effects.

Figures 18 and 19 show the amplification factor maps
overlaid by topography contour lines of 5m interval for the
homogeneous and layered cases respectively. The ampli-
fication factor is defined as the ratio of peak ground acce-
leration of each point relative to the peak amplitude of the
homogeneous model at free-field (FF). Values of peak
and free-field amplification factors are also shown on
each plot for reference.
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Figure 17. CI-LCP site (1: bird-eye view, |: topo. map)

Since the feature is relatively symmetric with respect
to the azimuth angle, we see a little difference between
amplification factors/patterns of X and Y polarization
scenario for homogeneous model. However, it is still
evident that vertical/horizontal ridges are more amplified
by X/Y polarized input motion (lines A, B and C vs. lines D

and E). Larger amplification is observed at the
intersection of horizontal and vertical ridges. The
amplification pattern is consistent with the pure

topographic effects i.e. amplification/de-amplification in
convex/concave regions. Nevertheless, the presence of
adjacent topographies and the added complexity of
amplification and de-amplification regions is evident. As
we can see in Figure 19, however, removing the soil
amplification contribution leads to a counter-intuitive
distribution of ground motion amplitude, where the peak
amplification occurs along canyons and the maximum de-
amplification along the ridges.
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Figure 18. Amplification factor for homogeneous case —
1: X, |:'Y polarization



Table 1. Thickness and material properties for different
layering scenarios — site CI-LCP

Saronnd Laver T?riqc)k' Vs (mis) v (kg?m3)

Homogeneous 1 - 486 0.333 2000
1 7 179 0.333 1800

True Layering 2 17 255 0.333 1870
3 >2\ 486 0.333 2000

Furthermore, the top soft layers, which has an
adequate thickness compared to the incident wavelength,
plays a decisive role in the overall amplification pattern.
Again, the amplification factors of the layered models
demonstrate the nonlinear coupling effect of soil layering
amplification and topographic focusing and scattering
effects. For example, while the 1D site response of the
layered structure yields 80% peak amplification (1.80)
relative to the homogeneous case, the 3D amplification is
only magnified by 33% (2.98) for in the case of the Y-
polarized motion, and less so for the X-polarized motion.
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Figure 19. Amplification factor for layered case —
1: X, ;Y polarization

6  CONCLUSIONS

In this study, we gave an overview of our systematic
analysis on the key parameters governing the problem of
topographic amplification. We started from the
topographic amplification caused by 2D infinite wedges on
the surface of a homogeneous elastic half-space, and
extended the understanding of wave focusing and
scattering by this fundamental block of irregular ground
surface geometries. From there, we gradually increased
the geometric and stratigraphic complexity up to a real 3D
layered topographic feature.

Amplification response of the infinite wedge does not
depend on the frequency of excitation because it involves
no characteristic length. Nonetheless, the wedge angle
determines how various wave components i.e. the incident
wave, surface waves ftravelling towards the apex,
geometric elastodynamic part, and a set of tip diffracted
wavefields interact with each other. Adding an explicit
characteristic length in 2D topographies, we introduced
further constraints on the wave interference pattern, which
in turn, gave rise to a more complex scattered wavefield
and amplification patterns. This became even more
involved when we replaced the homogenous halfspace
with a layered medium that can trap the incident energy,
and introduce further scattering.

The most important finding of our work is that the
causative factor of what is frequently referred to as
topographic amplification is not the ground surface
geometry alone, but instead the nonlinear coupling of
geometry and underlying soil stratigraphy that affects the
amplitude, frequency, duration and direction of wave
propagation, even if the underlying soil behavior is linear.
Our findings have significant implications that we expect
to see precipitating to extreme ground motion predictions;
parameterization of ground motion prediction equations;
and physics-based simulated ground motions and hazard
maps, which should revisit, parameterize and simulate 3D
site effects in a way that integrates site, topography and
coupling effects thereof.
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