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ABSTRACT 
 

 The most common procedures for predicting pore pressures generated by earthquake loading in 

saturated soil deposits are usually calibrated on laboratory data obtained in strain- or stress-

controlled cyclic tests. A new stress-based approach under one-dimensional conditions is 

proposed, based on a single variable, called ‘damage parameter’, allowing the direct generalization 

of the cyclic test data to irregular stress histories. This method may greatly simplify dynamic 

response analyses of saturated sand deposits with both total and effective stress approaches, by 

removing the need for evaluating equivalent uniform stress cycles and avoiding to assess soil 

parameters for sophisticated plasticity-based models. Due to its simple and explicit formulation, 

the model can be incorporated in a time domain program to perform coupled effective stress 

dynamic analyses. Its implementation in a nonlinear 1D code has been examined through the 

analysis of a case study of a dyke damaged during the 2012 Emilia seismic sequence. 

 

Introduction 
 

The build-up of excess pore water pressure in sandy soils during seismic loading causes 

reduction in stiffness and strength and can lead to liquefaction. Consequently, the importance of 

numerical predictions of pore water pressure has been widely recognized for reliable evaluations 

of strong-motion response and liquefaction of saturated deposits. 
 

Pore water pressure (pwp) changes can be taken into account in seismic soil response in two 

ways: (1) ‘decoupled’ seismic response analyses in total stresses, used in combination with 

simplified semi-empirical models for pwp generation, and (2) ‘coupled’ analyses, where the pwp 

change, computed by either a simplified or an advanced soil constitutive model, leads to a 

reduction of soil strength and stiffness. 
 

Simplified pwp models are all based on the results of cyclic laboratory tests carried out in strain- 

or stress-controlled conditions. The earliest models were built on the stress-based approach (Seed 

et al., 1975; Booker et al., 1976); subsequently, Dobry et al. (1985) proposed a strain-based 

model where the pore pressure build-up occurs only when a threshold strain is exceeded. To 

apply these empirical models for the prediction of pore pressures induced in saturated soil 

deposits, it is preliminarily necessary to convert the earthquake into an equivalent number of 

cycles of uniform shear stress. The latter, in principle, should produce the same pore pressure 

build-up expected at the site. A wide range of conversion procedures is available for evaluating 
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the equivalent number of cycles (Seed et al., 1975; Annaki & Lee, 1977; Biondi, 2002; Green & 

Terri, 2005). These procedures, however, are rather complex and their results strictly depend on 

the adopted conversion curve and on the techniques for choosing and counting the stress cycles 

that significantly affect the pore pressure build-up (Biondi et al., 2012). To bypass such 

conversion procedures, Park et al. (2014) presented a stress-based model based a on a single 

variable, called ‘damage parameter’, which can be computed for both cyclic test data and 

irregular stress histories. This model can be applied to carry out dynamic response analyses of 

saturated sand deposits with both total and effective stress approaches, by removing the need for 

evaluating equivalent uniform stress cycles. The approach is based on well-established empirical 

relationships, thus allowing for a simple calibration of the parameters.  
 

In this paper, the formulation of the model, its generalization and guidelines for calibrating its 

parameters are briefly recalled. The model has been incorporated in a 1D time domain program, 

in order to carry out both decoupled and coupled dynamic analyses. Both approaches were 

applied and compared to analyse the case history of a dyke damaged during the seismic sequence 

occurred in Emilia plain (Italy) in May, 2012. 
 

Main features of the simplified pore pressure model based on the damage parameter 
 

Very recently, Park et al. (2014) suggested a pore pressure model based on the measurements in 

cyclic undrained stress-controlled tests. The proposed approach permits to compare the irregular 

time-history of shear stress induced by earthquake with the liquefaction resistance, this latter 

evaluated in the laboratory by applying uniform series of cycles of shear stress to soil specimens. 

The comparison is expressed in terms of the so-called ‘damage parameter’, which can be 

computed for any loading pattern avoiding equivalence criteria. 
 

The damage, κ, is an incremental function of the shear stress ratio, SR, i.e. the shear stress 

normalized by either the mean effective confining pressure in a cyclic triaxial test or the effective 

vertical stress in a simple shear test. The function increases when SR overcomes a value, SRt, 

that represents the threshold below which no pore pressure can build up, as follows: 
 

tSR SR> ⇒ ακ tΔ (SR SR )= −  (1) 

 

tSR SR<  ⇒ κΔ = 0  (2) 

 

The parameters SRt and α can be evaluated from the cyclic resistance curve obtained from a 
stress-controlled cyclic test. In detail, the parameter α describes the steepness of the (N, SR) 
curve, where N is the number of cycles, while SRt is the horizontal asymptote of the curve, that 

is defined adopting the following equation (Park & Ahn, 2013): 
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                     (3) 

 

where (Nr, SRr) is a reference point on the cyclic resistance curve. 
 

Since for a regular shear stress history the damage parameter, κ, is proportional to the number of 

cycles, N, it is possible to represent the pore pressure ratio, ru, as a function of the damage 

parameter and to define the best fitting relationship on the available experimental results. 



Dynamic analysis of a dyke damaged during 2012 Emilia seismic sequence 

 

The above mentioned model was used to estimate the pore pressure build-up, likely induced by 

the Emilia earthquake in Italy (20.V.2012, Mw=6.1), in the sandy soil deposits constituting a 

river bank at the site of Scortichino, where significant evidences of soil deformation and building 

damages were observed after the main seismic event (Gottardi et al., 2014). Ground cracks about 

2 to 5 cm wide developed along the dyke crest, while sand boils were not observed at surface, so 

that it is not yet clear if soil liquefaction triggered the damage. Cracks and local sand flows were 

conversely observed on the ground surface near the downstream side of the dyke, so as in other 

sites with similar soil deposits (Fioravanti et al., 2013). 

 

To this aim, updated dynamic analyses were carried out by adopting decoupled and coupled 

approaches, both implemented in the 1D non-linear code SCOSSA (Tropeano et al., 2011). The 

code models the soil profile as a system of consistent lumped masses, connected by viscous 

dampers and springs with hysteretic behaviour. The stress-strain relationship is described by the 

MKZ model (Matasovic & Vucetic, 1993) and the modified Masing rules (Phillips & Hashash, 

2009).  

 

In the decoupled approach, the shear stress-time history, as computed at specific depths by a total 

stress seismic response analysis, was then introduced as seismic demand into the proposed pwp 

model, to predict ‘off-line’ the accumulation of pore pressure build-up. 

 

In the coupled approach, instead, an 1D effective stress analysis was performed by implementing 

the proposed pwp model in SCOSSA. In this case, excess pore water pressures were computed at 

each time step and the resulting reduction of effective stress and stiffness were taken into 

account in the response analysis. 

 

Input motion 

 

Seismic response analyses were carried out with reference to the main event (20.V.2012) of the 

sequence. Since no acceleration records were available at the site of Scortichino, the input 

motion was defined through a selection of records within the Italian database ITACA, based on 

the magnitude and distance bins approach. Five accelerometric time histories matching the 

requirements were then scaled to the PGA estimated at the site through the attenuation law by 

Bindi et al. (2011) and further processed following the criteria suggested by Athanasopoulos-

Zekkos & Saadi (2012) for selecting reference ground motions for liquefaction analysis of earth 

levees. The NS component of the mainshock of Irpinia earthquake (11/23/1980), recorded at the 

Lauria station (Figure 1c) was finally selected and adopted as input motion in the analyses. 

 

Geotechnical model 

 

An extensive in-situ and laboratory geotechnical investigation carried out after the earthquake 

allowed to define an accurate subsoil model for the dynamic analyses (Gottardi et al., 2014). 

Figure 1a shows the stratigraphic sequence and the related shear wave velocity profile, as 

obtained by analyzing the results of boreholes and geophysical tests. The core of the dike (AR) 

and its foundation soil (B) consist of a silty sand, while a thick formation of alluvial sands (A), 

interbedded by clay (C), overlies an alternation of both materials (AL) and the bedrock. 

 



Figure 1b shows the normalized shear modulus and damping ratio curves, obtained from 

resonant column and cyclic simple shear tests and adopted to simulate the non-linear soil 

behaviour. The shear modulus reduction curves were analytically fitted by the MKZ model, 

modified according to the procedure for strength compatibility proposed by Gingery & Elgamal 

(2013), in order to better match the soil behaviour at large strains up to failure. As an example, 

Figure 2 reports the analytical curves obtained for the silty sand deposit (B) at a depth of 10.3 m.  

 

 
 

Figure 1. (a) Soil profile, (b) stiffness and damping vs strain, and (c) reference input motion  

 

 
 

Figure 2. (a) Shear modulus reduction curve and (b) backbone curve reproduced by MKZ and 

Gingery & Elgamal (2013) models at a depth of 10.3 m in the silty sand deposit B 
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Figure 3. (a) Cyclic resistance curve, (b) backbone curve τ-γ, (c) shear modulus reduction curve, 
(d) ru-N/NL relationship for the silty sand deposit B 

 

Cyclic resistance curves for silty sand (B) and sand (A) deposits were obtained performing 

Cyclic Simple Shear tests (Working group AGI-RER, 2013). These data were then used to 

calibrate the parameters of the pwp model by Park & Ahn (2013). In Figure 3a and 3d the 

experimental results taken on a soil sample at 10.30 m depth are plotted. The number of cycles at 

liquefaction, NL, was established assuming that liquefaction occurs at a pore pressure ratio 

ru=0.90. Since the threshold shear stress ratio was not clearly defined by the experimental data, 

SRt was estimated from the backbone curve as that corresponding to the volumetric threshold 

strain measured in RC tests (Figure 3b-c). The parameter α was finally determined from the 

slope of the cyclic resistance curve in the logarithmic plot (Figure 3a). 

The relationship between the pore pressure ratio and the damage parameter was defined as the 

best fitting function through the available laboratory results (Figure 3d), as follows: 
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  (4) 

 

where a, b and c are curve-fitting parameters. The proposed relationship allows for better 

describing the experimental ru dependency on N, compared to other literature approaches. 

The parameters calibrated for the two sandy soil deposits are reported in Table 1. 

 

Table 1. Parameters of the pore water pressure model 

 

Soil deposit α SRt Nr SRr a b c 

Silty sand-B 1.85 0.078 5.9 0.24 0.91 0.53 0.098 

Sand-A 3.62 0.08 1.5 0.23 0.70 0.61 0.297 
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Decoupled analysis  

 

The results of the decoupled analysis are plotted in Figure 4 in terms of vertical profiles of 

maximum acceleration, shear strain and shear stress (blue lines). The distribution of the 

maximum strain shows the highest value at a depth of 10.9 m, while the peak of maximum shear 

stress ratio is attained at 15.1 m depth. The shear stress history computed by the response 

analysis at these two depths were considered in order to evaluate the excess pore pressure ratio 

by applying the proposed model. According to this model, liquefaction triggers in sand deposit 

(A) after 3.2 s from the beginning of the seismic event, while in the silty sand deposit (B) a 

maximum pore pressure ratio of 0.47 is reached (Figure 5 a-c). Due to the values of SRt 

evaluated for the two soil layers, only the first seconds of the records are meaningful to generate 

excess pore water pressure (Figure 5). 

 

 
 

Figure 4. Vertical profiles resulting from coupled and decoupled dynamic analyses 

 

Coupled analysis 

 

For the coupled analysis, the proposed pwp model was implemented into SCOSSA code so that 

the generation of excess pwp in soils yields a reduction of soil stiffness, which was taken into 

account adopting the modulus degradation model for cohesionless soils proposed by Matasovic 

& Vucetic (1993).  

 

The results are shown in Figure 4 and 5b-d. Excess pore water pressure is significant between 7 

and 30 m depth, but no liquefaction conditions are reached. Compared to total stress analysis, the 

profiles of amax and γmax show two singular spikes at 10.9 m and 15.1 m, respectively in the silty 

sand (B) and sand (A) layers. 
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Figure 5. Shear stress and excess pore pressure ratio histories at 10.9 m (a-b) and at 15.1 m (c-d) 

from decoupled (blue lines, a-c) and coupled (red lines, b-d) analyses 

 

Conclusions 

 

A simplified model for generation of excess pore water pressure has been presented, based on the 

results of stress-controlled laboratory tests. The main advantage is the ability of the model to 

directly simulate the development of excess pore water pressures under irregular cyclic loading. 

From a modelling viewpoint, the key objective of the pwp model is to accurately simulate the 

experimental liquefaction resistance curve. The high sensibility of the results to the threshold 

shear stress ratio requires that this value has to be assessed if a threshold volumetric strain is 

known. The other parameters of the model can be calibrated straightforward from a non-linear 

regression analysis, avoiding trial and error procedures.  

 

The pwp model was successfully implemented in the numerical code SCOSSA together with the 

Matasovic & Vucetic (1993) degradation model and Gingery & Elgamal (2013) strength 

compatibility criterion. 

 

Decoupled and coupled effective stress analysis were performed in order to predict excess pore 

water pressure induced by 2012 Emilia earthquake in the sandy subsoil of a river bank. 

Comparing the results (Figure 4 and 5) it is shown that the coupled analysis is less conservative 

for predicting pwp with respect to the decoupled approach, because the reduction of soil stiffness 

at each time step is taken into account by the degradation model. On the other hand, an increase 

of maximum accelerations and strains is observed within the layers where the pore pressure ratio 

is above 0.4 in the coupled analysis. 

 

The proposed coupled model is currently not able to simulate the dissipation and redistribution of 

excess pore pressure within a soil deposit, which should be considered for a more realistic 

0 5 10 15 20 25

t (s)

-40

-20

0

20

40

60

τ 
(k

P
a
)

0

0.2

0.4

0.6

0.8

1

r u

0 5 10 15 20 25

t (s)

-60

-40

-20

0

20

40

60

τ 
(k

P
a
)

0

0.2

0.4

0.6

0.8

1

r u

z = 10.9m (σ'v0= 171.6 kPa)

z = 15.1m (σ'v0= 214.1 kPa)

0 5 10 15 20 25

t (s)

-40

-20

0

20

40

60

τ 
(k

P
a
)

0

0.2

0.4

0.6

0.8

1

r u

0 5 10 15 20 25

t (s)

-60

-40

-20

0

20

40

60

τ 
(k

P
a
)

0

0.2

0.4

0.6

0.8

1

r u

z = 15.1m (σ'v0= 214.1 kPa)

z = 10.9m (σ'v0= 171.6 kPa)

(a) (b)

(c) (d)



simulation, taking into account for the recovery of stiffness and strength during the post-cyclic 

consolidation process. Also a relationship between the cyclic resistance curve and the effective 

confining pressure could be taken into account for a better modelling of the soil. 
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