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ABSTRACT 
 
 Following the advancement of numerical analysis methods, such as the discrete element method, 

the behaviors of falling rocks due to slope failure can be estimated to some extent. The present 

study proposes a method for calculating the probability of a falling rock to collide with a specific 

structure based on the assumption that the distribution of the arrival positions of the falling rocks 

can be obtained from a numerical analysis. Because information about the intensity of a collision 

is just as important as its probability, the present study considers that the intensity of the impact is 

a factor of the residual distance and assesses the relationship between this residual distance and the 

exceedance probability. The residual distance denotes the additional travel of a falling rock that 

does not hit a structure and represents the amount related to the impact velocity when the rock 

does hit. 

 

Introduction 

 

When an earthquake occurs, slope failure may occur, thereby affecting the neighboring facilities. 

Appropriately assessing the effects of slope failure and establishing measures against slope 

failure are important tasks, and many studies have been performed using these tasks. When a 

slope exists near a nuclear power plant, an important structure, the stability of the slope during an 

earthquake is an important assessment item. It is important to verify a slope’s safety against basic 

earthquake ground motion and assess the damage caused by slope failure or falling rocks, which 

are assumed to occur during an earthquake, by estimating the distribution of falling rocks due to 

slope failure. To understand total probability for assessing the collision hazard of rocks against a 

structure following slope failure and falling rocks when an earthquake occurs, the earthquake 

hazard, slope failure, falling rocks, and conditional probability used in the present study must be 

comprehensively assessed. The present study proposes a method to assess the conditional 

probability of damage caused by slope failure or falling rocks. 

 

Assessments of the effects of slope failure and falling rocks vary considerably; thus, it is difficult 

to quantitatively assess the effects of slope failure and falling rocks on structures by performing a 

numerical calculation. Therefore, an assessment method that can account for the variance is 
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required. The arrival positions of falling rocks should be assessed using probability distributions. 

Assuming that the distribution of the arrival positions of falling rocks due to slope failure is 

given using the discrete element method (DEM), the present study assesses the probability 

distribution and attempts to establish a method to assess the probability of a falling rock to 

collide with a specific structure (collision probability). The present study examines slope failure 

as rock slope failure, in which multiple rocks fall simultaneously. Tochigi et al. performed two 

experiments in which rocks were dropped from the top of a slope: in one case, they were dropped 

individually, and in the other case, they were dropped simultaneously. The arrival positions of 

the dropped rocks were then plotted. Based on the results obtained from these experiments, the 

present study assesses the probable distribution of the arrival positions of the falling rocks and 

calculates the probability of them striking a particular structure. Because information about the 

intensity of a collision is just as important as its probability, the present study also attempts to 

create a collision hazard curve that expresses the intensity of the impact. In these experiments, 

only information regarding the distribution of the positions of the fallen rocks could be obtained. 

Therefore, the present study considers that the intensity of the impact is a factor of the residual 

distance and assesses the relationship between this residual distance and the exceedance 

probability. The residual distance denotes the additional travel of a falling rock that does not hit a 

structure and represents the amount related to the impact velocity when the rock does hit. The 

exceedance probability is the probability that at least one rock with an arbitrary residual distance 

collides with a structure. 

 

Probability Distribution of the Arrival Positions of Falling Rocks Obtained by 

Performing Experiments 

 

Overview of the Experiments by Tochigi 

 

To examine the characteristics of the distribution of rocks scattered after slope failure, 

experiments were performed in which two sizes (20−30 mm and 40−80 mm) of rocks were 
dropped individually (one by one) and simultaneously (as a group). The rocks were selected 

based on Zingg’s shape classification. Figure 1 shows an experiment in which rocks were 

dropped one by one (individual experiment) and an experiment in which rocks were dropped as a 

group (simultaneous experiment). The amounts of rocks dropped in the simultaneous 

experiments were 10 and 50 kg. In the individual experiment, 300 rocks were selected from 

rocks that were 20−30 mm and 40−80 mm, and the arrival position of each individual rock was 
recorded. After dropping a rock, the rock was removed from the flat plate and the next rock was 

dropped. The method of dropping a rock is as follows: (1) a rock was set just before the top of a 

slope at its center, as shown in Figure 1; (2) the long side of a rock was parallel to the inclination 

direction of the slope; and (3) a rock was pushed with a finger, little by little, until it dropped. 

Table 1 presents the four cases used in the present study. 

 

Figure 2 shows the distribution of the arrival positions of the rocks in each of the four cases. As 

shown in this figure, no large difference was observed in the distribution of the arrival positions 

between cases 1a and 2a and between cases 1b and 2b. However, both rocks of 20−30 mm and of 
40−80 mm moved longer distances in the individual experiment than in the simultaneous 

experiment. In the simultaneous experiment, the rocks were distributed mainly in a place just 

below the slope, and the rocks were partially piled up. The reasons for the differences in the 



distributions of the arrival positions of the rocks are examined in the next section.  

            

(a) Case 1b: 50 kg of rocks (40–80 mm)     (b) Case 2b: 10 kg of rocks (20–30 mm) 

 

Figure 1. Outline of the experiments performed by Tochigi et al. at various sizes 

 

Table 1. List of experiments 

 

Case 1a 1b 2a 2b 

Size of rocks 40-80 mm 20-30 mm 

Method of dropping rocks Individual Simultaneous (50 kg) Individual Simultaneous (10 kg) 

Number of rocks 300 177 300 442 

 

   

(a) 40-80 mm             (b) 20-30 mm 

 

Figure 2. Distribution of the arrival positions of falling rocks obtained in the experiments 

 

Relationship between the Distribution of the Arrival Positions of the Rocks and the Collision 

Frequency 

 

In this section, the reasons for the differences in the distributions of the arrival positions of the 

rocks between the two experiments are examined using DEM analysis. The present study 

reproduces the experiments performed by Tochigi et al. using the DEM analysis. Table 2 

presents the parameters used in the analysis and a falling-rock model, in which five balls were 

sequentially connected with each other. A falling-rock model is a rigid body in which the relative 
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displacements of five balls are zero. In the normal contact model, if one ball rolls on a flat plate 

boundary layer, it will continue rolling. Therefore, it is necessary to model irregularities that are 

classified into bulk like rocks used in experiments. Meanwhile it is necessary to model the 

irregularities with as few balls as possible in order to prevent an increase in the calculation cost. 

The minimum number of balls that can reproduce the irregularity of the surface and construct a 

model of the bulk is five according to pre-calculation. The surfaces of the slope and the bottom 

were composed of a flat plate boundary layer. A contact model proposed by Cundall uses a 

spring, dashpot, non-tension divider, and slider. The parameters used for an interparticle contact 

model were also used for the contact model between particles and a plate in the present study. 

 

Table 2. Simulation parameters 

 

Diameter of particle (m) 0.025 

Falling- 

rock 

model  
 

Density (kg/m3) 2600 

Spring coefficient (N/m) 2×10
6
 

Viscous damping 0.258 

Frictional coefficient 0.566 

 

Figure 3 (a) shows the arrival position coordinates of case 1a, where falling-rock models were 

individually dropped, and those of case 1b, where falling-rock models were simultaneously 

dropped. The number of the models distributed on the foot of the slope was larger in case 1b than 

in case 1a, qualitatively reproducing the experimental results. 

 

Figure 3 (b) shows the relationship of the average collision frequency per rock with the Y 

direction. The collision frequencies per rock at the top of the slope (Y = -1) and at the starting 

point of the flat section (Y = 0) were significantly higher in case 1b than in case 1a. This result 

likely occurs because the distance between rocks was small at the top of the slope immediately 

after collapse, making the average collision frequency high. Another reason is that a following 

rock collided with an already reached rock at the starting point of the flat section, further causing 

a high average collision frequency. When rocks were dropped as a group, they had difficulty 

reaching faraway places and were easily concentrated at the foot of the slope because the average 

collision frequency was high and energy was easily dispersed. 

 

                    

(a) Distribution of the arrival positions of the rocks (b) The average collision frequency per rock 
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Figure 3. DEM simulation results 

Assessment of the Probability Distribution of the Arrival Positions of the Rocks 

 

Models were created for the cumulative distribution probability of the arrival positions of the 

rocks in the X and Y directions. The method used to create a model for case 1a, where the rocks 

are individually dropped in the X direction, is described below. The arrival positions of the rocks 

are sorted in the order of smallest to largest coordinate value (xi, i = 1, …, n). Here, n represents 

the rock number. Figure 4 shows the relationship between the coordinate value xi and the 

standardization variable zi in case 1a. In this figure, the vertical axis represents the coordinate 

value xi, and the horizontal axis represents the standardization variable zi that was obtained by 

the reverse calculation of the above probability. 
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where Φ-1
 represents the inverse function of the cumulative standard normal distribution. When 

the arrival positions of the rocks follow a normal distribution, the relationship between the 

coordinate value xi and standardization variable zi forms a straight line, the inclination of which 

represents the standard deviation, and the section of which represents the average. As shown in 

Figure 4, the relationship between the coordinate value xi and standardization variable zi forms 

an approximately straight line, so the model for case 1a can be created using a normal 

distribution. Similar to case 1a, Figure 3 shows the relationship between the coordinate value xi 

and standardization variable zi in the X direction for cases 1b, 2a, and 2b. Some rocks were not 

on a straight line in cases 1a and 2a, in which the rocks were dropped individually. In cases 1b 

and 2b, in which the rocks were dropped simultaneously, the rocks form an approximately 

straight line. The average arrival position was nearly zero in each case. The standard deviation 

was smaller in cases 1b and 2b than in cases 1a and 2a. 

 

     
 (a) 40-80 mm               (b) 20-30 mm 

 

Figure 4. Creation of models using a normal distribution of the arrival positions of falling rocks 

in the X direction 
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        (a) 40-80 mm             (b) 20-30 mm 

 

Figure 5. Creation of models using a logarithmic normal distribution of the arrival positions of 

falling rocks in the ln(Y-Y0);Y0 = 10 cm 

 

Next, the Y direction was handled as a logarithmic normal distribution because the rocks were 

concentrated at the foot of the slope and mainly distributed in the direction of the horizontal 

plane. In case 1b, although the foot of the slope was used as the origin of the Y coordinate, some 

rocks exhibited negative Y coordinate values; that is, these rocks were on the slope. These rocks 

could not be involved in the logarithmic normal distribution, so Y-Y0 was applied to these rocks. 

Figure 5 shows the relationship between the coordinate value xi and standardization variable zi in 

the Y direction when Y0 = 10 cm was applied to ln(Y-Y0). As shown in this figure, the rocks 

formed an approximately straight line in each case, indicating that the model for each case can be 

created using a logarithmic normal distribution. The obtained averages and standard deviations 

are used to calculate the collision probability, as described below. 

 

Methods to Assess the Collision Probability and Residual Distance Hazard Curve 

 

Method of Calculating the Collision Probability 

 

The collision probability and hazard curve were assessed based on the results obtained using the 

model described in Chapter 1. The collision probability in this study represents a conditional 

probability for when a slope failure or rockfall occurs. The collision probability is obtained by 

integrating the probability density distribution of the arrival position coordinates of a falling rock 

p(x, y). As shown in Figure 6 (a), the domain of integration was determined based on the 

assumption that falling rocks collided straight, with the specific structure in the center of the 

collapse region, and the region behind the specific structure was determined as the domain of 

integration. Although the entire region behind the specific structure should be integrated, the 

region with a certain area is actually sufficient for integration. As shown in this figure, segment 

da was set at the right and left sides to form a rectangular domain of integration, where the length 

of da is sufficiently large. Formula (3) expresses a two-dimensional integration problem, and 

several methods can be used to solve this problem. Because this problem was suitable for 

calculating the residual distance hazard, it was integrated using an interpolation function with 

quadrilateral elements (finite elements) as follows: 
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Coordinates x and y are a global coordinate system, and coordinates r and s are a local coordinate 

system. In the case where n rocks drop, the probability of at least one rock colliding against a 

specific structure (collision probability) can be calculated if these rocks are assumed to be 

independent of each other. 

 

    

(a) Local coordinates for integration  

and the domain of integration 

(b) Domain of integration corresponding  

to the residual distance 

 

Figure 6. Domain of integration regarding the arrival position coordinates for calculating the 

collision probability 

 

Method of Calculating the Residual Distance Hazard 

 

The present study defines a curve that expresses the probability corresponding to the residual 

distance as a residual distance hazard. The exceedance probability corresponding to the residual 

distance d can be obtained by integrating the domain shown in Figure 6 (b). Because the local 

coordinate s represents the direction of a straight line from the center of the collapse region, the 

exceedance probability corresponding to the residual distance corresponding to the residual 

distance d is the value obtained by integrating the domain [-1 + 2d/da, 1] for local coordinate s. 

Therefore, the probability P(d) corresponding to the residual distance d, that is, the residual 

distance hazard curve, can be easily obtained. 
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Examples of Assessing the Collision Probability and Residual Distance Hazard Curve 

 

Based on the experimental results described in Chapter 1, the residual distance hazard curve is 

calculated as an example while assuming an appropriate structure. Regarding the probability 

density distribution p(x, y) of the arrival position coordinates of a falling rock necessary for 

Equation (5), a normal distribution is used for the x direction and a logarithmic normal 

distribution is used for the y direction, as described in Chapter 1. These two distributions are 

assumed to be independent of each other. In this case, the probability density distribution p(x, y) 

can be obtained using the following formula: 
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and ζ represent the average and standard deviation when Y0 = 10 cm was applied to ln(Y-Y0), 

respectively. These averages and standard deviations are shown in Chapter 1. The coordinates of 

the collapse center were set as (0, -92 cm). The collapse center was required to determine the 

domain of integration for calculating the exceedance probability corresponding to the residual 

distance.  

 

                             

(a) Position of a structure assumed  

to calculate the collision probability 

(b) Residual distance hazard curve 

corresponding to the location of a structure 

 

Figure 7. Example of calculating the residual distance hazard curve 

 

Figure 7 (a) shows specific structures A1, A2, A3, B1, B2, and B3. Each of these structures was 

expressed as a segment without considering the shape, and the region behind the segment was 

integrated to obtain the exceedance probability. Figure 7 (b) shows an example of calculating the 

residual distance hazard curve for case 1b. Figure 7 (b) shows the residual distance hazard for the 

probability of at least one rock colliding against a specific structure. The exceedance probability 

with a residual distance = 0 cm correspond to the collision probability. As shown in Figure 7 (b), 

the exceedance probability decreased as the residual distance increased (the collision became 

more severe). When A2 was compared with B1, the exceedance probability was slightly larger at 

A2 than at B1 because A2 was closer to the slope than B1. However, the exceedance probability 

with a residual distance > 60 cm was larger at B1 than at A2. Thus, the residual distance hazard 

curve can be assessed based on the positional relationship between the slope and a specific 

structure, and the exceedance probability corresponding to the residual distance can also be 

assessed. 

 

Conclusion 

 

The present study proposed a method to quantitatively assess the risk of slope failure to a 

structure based on the positional relationship between the slope and structure as the residual 

distance hazard. For this purpose, the present study created models based on the experimental 

results and used assessment examples. The present study used a method to assess the conditional 

probability when a slope failure or rockfall occurs. The model proposed in the present study can 

contribute to a practical method for assessing the probability and damage caused by a rock 

falling against a structure following slope failure triggered by an earthquake. Our future tasks are 

as follows: 
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(1) The first task is to create a new index for collision hazards. Although the residual distance is 

related to the impact force when a rock collides with a structure, this index is not always easy 

to use. We will create a model for the relationship between the impact velocity and residual 

distance, and we will calculate the impact velocity hazard using the created model. 

(2) The second task is to develop a method to assess a three-dimensionally shaped landform. 

Currently, we are discussing how to develop the method. We will report these results in the 

future. 
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