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ABSTRACT

We investigate the potential capabilities of the discontinuous Galerkin method (DG-FEM) for
non-linear site response analysis. The method combines the geometrical flexibility of the finite
element method, and the high parallelization potentiality and the capabilities for accurate
simulations of strongly non-linear wave phenomena of the finite volume technique. It has been
successfully applied to elastic, visco-elastic and anisotropic media. The natural next step is to
extend the method to non-linear soil rheologies.

We develop a discontinuous Galerkin method (nodal approach) for seismic waves in
heterogeneous non-linear 1D media. The method is based on high-order Lagrangian interpolation
within elements, upwind fluxes, and a fourth-order Runge-Kutta time scheme. The parallel Iwan
model is used to account for the non-linear soil behavior with hysteresis loops based on extended
Masing rules. Comparison with different numerical methods shows satisfactory results for some
canonical cases, at least for strains lower than 1%. Validation with real kik-Net data is work in
progress within the Prenolin benchmark project (see this volume).

Introduction

In the recent years, advances in computer architectures render large-scale seismic wave
propagation simulations feasible in heterogeneous media. Several numerical methods are
available and the final choice is clearly problem dependent, as explained in a recent review by
Moczo et al. (2014). Among them, the methodologies based in the variational formulation of the
dynamical system allow for accurate implementation of boundary conditions through structured
or unstructured meshes. This is extremely important for accurate simulation of surface waves,
which cause the most earthquake related damage due to their relatively high amplitude and long
shaking duration.

Numerical modeling of non-linear site response has been carried out mainly using classical finite
differences (Joyner and Chen, 1975; Kramer, 1996; Gélis and Bonilla, 2012) or finite elements
techniques (Taborda et al., 2012, Santisi d’Avila et al, 2013). Less known in earthquake
geotechnical engineering is the discontinuous Galerkin finite element technique (DG-FEM),
which is basically a classical finite element method but without imposing the solution field
continuity across neighboring elements of the mesh that produces very accurate and flexible
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solvers. On the contrary, this technique needs the calculation of numerical fluxes at the interfaces
between neighboring elements which is the key point of the method and is problem dependent.
Many different strategies have been proposed in the literature and therefore a huge list of specific
techniques is already known. The reader is referred to Cockburn et al. (2000) or Hesthaven and
Warburton (2008) for detailed information about DG method and its applications in engineering.

In this study we propose a high-order discontinuous Galerkin finite element technique to assess
the site response analysis. The technique has been successfully applied to simulate wave
propagation in elastic (Dumbser et al. 2006, Delcourte and Glinsky, 2015, Etienne et al., 2010,
Mercerat and Glinsky, 2015), visco-elastic (Kédser et al., 2007, Peyrusse et al, 2014) and
anisotropic media (de la Puente er al., 2008). The methodology is well-suited for solving
dynamic rupture problems, or any other problem involving discontinuous solutions, in the
velocity-stress formulation as the variables are naturally discontinuous at the interface between
neighboring elements (de la Puente ef a/, 2009). The difficulty lies in the development of fluxes
with good numerical properties. In the case of non-linear soil dynamics, jumps in stress and
strain fields can be found at the interfaces with high impedance contrast (Gélis and Bonilla,
2012; Santisi et al, 2013). The next step is to extend the discontinuous Galerkin method to non-
linear soil rheologies and this is the purpose of this work. We start by the simplest case of 1D site
response modeling but the methodology can be easily extended to higher dimensions and is the
subject of current research.

Soil column DG-FEM discretization

We solve the elastodynamics system of partial differential equations by choosing as primal
variables the velocity and the strain fields. If the medium is 1D and we consider only one
transverse degree of freedom, both are scalar fields. The first-order system of equations becomes
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where v and ¢ are respectively the velocity and strain fields, p is the bulk density, o is the
stress which is related to the strain by the relationship o =G ¢, where G represents the shear
modulus. The notations 0, and 0, refer to time and spatial derivatives respectively. Contrary to

the linear elastic case, the system becomes non-linear because of the complex dependence of the
shear modulus G with strain, i.e. G = G(¢,€) ; this particular point will be detailed later.

We consider a soil column discretized by a series of N, 1D finite elements, named 4, i =1,..,N,,

as shown in Figure 1a). The spatial interpolation functions are chosen as Lagrange polynomials
of order N based at the N+1 interpolation nodes (in this case, the Gauss-Lobatto-Legendre
points) within the elements. In the standard element [-1, 1], the Lagrange polynomials of order 3
are shown in Figure 1b). Consequently, the solution fields (for instance v ) are expanded in each
finite element as
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Figure 1: a) 1D soil column discretization with finite elements of degree 3 (4 nodes per element).
Free surface boundary condition on top, rigid (or elastic) condition at the bottom. b) Lagrange
interpolation polynomials of degree 3 in the standard element [-1,1]
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Note that the interpolation functions ¢]h are defined locally in /. The system of partial

differential equations (1) is multiplied by a test function ¢ and integrated over the domain. Since

the test functions are local, after integration by parts, the integrals corresponding to both
equations can be written as

[ ppovaz=-[ opodz+lpc’l . [ poedz=-[ o.pvaz+lpv] 3)

where the brackets correspond to integrals on the boundary of the element (reduced to two nodes
in 1D), that is the difference of the fluxes at both boundaries z"and z of the element. The

calculation of these terms is not straightforward since the approximation is discontinuous, then v
and o are not defined at the interface but on both sides. Following a technique proposed by
Hesthaven and Warburton (2008) for the Maxwell equations, we propose to approximate the
fluxes at the interface between elements by a standard upwind scheme:
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where the mean values {.} and jumps [[.]] at the interfaces between elements are defined by



{a}: a era and [[a]]=a*—a+. We can impose different boundary conditions by defining

exterior ghost states (o*,v"). At the free surface (Neumann boundary condition), we impose

(c",v")=(-0o",v"). At the bottom of the model, we may find elastic, rigid or absorbing
boundary conditions (inhomogeneous Dirichlet conditions). Therefore we should impose
(c",v')=({o",—Iv +Ts), where I is the impedance contrast between the soil layer and the

bedrock, 7 is the transmission coefficient and s=s(z) is the input motion (e.g. weakly imposed
velocity).

After introducing the approximations of Equation (2) in the integrals of Equation (3) and
transforming each element to the standard element [-1, 1], we obtain two types of integrals that
are calculated analytically. The time approximation is carried out by a fully explicit fourth-order
Runge-Kutta method.

Non-linear soil model

The non-linear Iwan model (Iwan, 1967) is implemented by means of a series of Iwan parallel
elements composed of a spring and a perfect plastic slider. Then the non-linear model parameters
are H spring stiffnesses and H; threshold stresses per interpolation node. Even if the model

allows to fit any modulus reduction curve (e.g. by spline interpolation), we decide here to fit an
hyperbola to the shear modulus degradation curve by fixing the lower and upper strain limits and
the reference strain (i.e. strain for which the modulus reduction is 50%). The model parameters
are set at the beginning of each simulation. Up to now there is no constraint on the hysteretic
damping of the Iwan model, then it is expected the calculated seismograms are overdamped,
especially when high strains are mobilized.

As the strain is a primal variable of the scheme, it is straightforward to firstly correct the stresses
corresponding to the level of strain obtained at the previous time step, calculate the numerical
fluxes and advance in time the system of Equations (3). The algorithm reads,

for each timestep
for each element
e(t)<- &€(t-1), v(t)<- v(t-1)
if NL element
o=Iwan(g¢)
else
o=G¢&
endif
call Runge-Kutta(dt,v,o,g,G(g))
if NL element then G=G(g)
next element
next timestep

The Iwan routine calculates the stress from the strain taking into account unloading effects (i.e.
hysteresis loops) by means of generalized Masing rules. The Runge-Kutta routine is in charge of



the numerical flux calculation (right-hand side of equations (3)) and then it advances in time the
scheme. It remains unchanged for linear or non-linear elements what ease the implementation in
existing DG codes. The proposed scheme shows to be robust up to strains levels around 1%. For
larger strains, simulations carried out with real accelerograms as input motions have shown some
instabilities (spiky behavior) in the output time histories when the shear modulus reduction goes
beyond 90%. As already mentioned, the development of numerical fluxes is a difficult task,
especially for non-linear systems of partial differential equations. If the standard upwind scheme
of equation (4) has been successfully verified against other numerical methods (see Regnier et al
2015) for low to moderate strain values, it is necessary to improve it for larger strains. Current
research is focused on this subject.

Numerical results
Verification against SEM

As a first step, the verification of our 1D non-linear DG solver is accomplished by comparing the
results with the ones calculated using a solver based on the Spectral Element Method (SEM) that
also implements the Iwan non-linear model for soils (Oral E, 2015 pers comm). We have run a
simple simulation of a non-linear layer over a rigid half-space with a Ricker wavelet of 4 Hz
central frequency as input motion at the bottom of the soil layer (weakly imposed velocity). The
soil characteristics are shown in Table 1.

In Figure 2, we present the surface seismograms for both simulations indicating a quite good
match all along the simulation, though some differences can be appreciated at the later times
probably due to the different time schemes used (explicit 2nd order Newmark for SEM, 4th order
Runge-Kutta for DG-FEM).
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Figure 2: Comparison of acceleration time histories at the surface of the model for the spectral
element method (SEM) and the discontinuous Galerkin (DG) scheme



Further verification tests with other well documented non-linear numerical simulation codes can
be found in the present volume (Regnier et al, 2015). We use the present version of the solver for
the validation phase of the Prenolin project with real data from the kik-Net network (Regnier et
al, 2015).

Effect of different G-y decay curves

We turn now to a comparison of the effect of different non-linear soil properties in the waveform
characteristics at the free surface. The soil column is composed of a soil layer overlying an
elastic half space (bedrock) with mechanical properties shown in Table 1. The linear elastic
properties of the soils are kept constant for the simulations. On the contrary, three different
modulus reduction curves will be used as shown in Figure 3. The soil column of 20 m depth is
discretized by 10 finite elements with interpolation degree 4. The time step is kept fixed at 1 10™
seconds. As input motion, we use a Ricker wavelet of 4 Hz central frequency to better visualize
the effect of the non-linear soil response.

Table 1. Mechanical characteristics of the soil column

Z [m] Density [kg/m3] | Vs [m/s]
Soil 20 2000 300 Non-linear
(soil 1, 2 and 3)
Bedrock inf 2500 1000 Linear
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Figure 3 : a) Non-linear modulus decay and damping curves for three different soils. b) Response
spectra for the three different soils at the surface of the model. The spectral peak is shifted
toward longer periods as the soil gets weaker for a given strain level (Soil 3 to Soil 1).

The meshes are constructed supposing a minimum propagated wavelength of 1/10 of the
minimum elastic wavelength , where is the initial shear wave velocity and the maximum
frequency of the input motion (10 Hz in this case).
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In the acceleration time histories of Figure 4, we can clearly observe the distortion of the input
wavelet (shown in gray at each panel) while propagating within the non-linear soil layer. The
hysteretic damping effect is also put forward as there is no other damping (numerical or visco-
elastic) implemented in the scheme. For these simulations rigid boundary conditions are used.
The response spectra of these three simulations are shown in Figure 3b
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Figure 4 : Surface accelerations (top row) and stress-strain hysteresis loops (bottom row) for the
three different soils of Figure 3.

Conclusions

We present a nodal discontinuous Galerkin method for seismic waves in heterogeneous non-
linear 1D media. The method based on standard upwind fluxes and classical 4™ order Runge-
Kutta time scheme seems to be robust, at least for strain levels lower than 1%. We verified our
approach by comparing the simulated time histories with the ones obtained using a SEM solver
for the same soil column and non-linear soil model. The methodology possesses in principle
many advantages with respect to more classical methods (finite differences, standard finite
elements) for solving non-linear partial differential equations in realistic 3D media in the
presence of non-regular solutions. The extension to multi-component wave propagation and
effective stress analysis is subject of current research.
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