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ABSTRACT 
 

 
 We investigate the potential capabilities of the discontinuous Galerkin method (DG-FEM) for 

non-linear site response analysis. The method combines the geometrical flexibility of the finite 

element method, and the high parallelization potentiality and the capabilities for accurate 

simulations of strongly non-linear wave phenomena of the finite volume technique. It has been 

successfully applied to elastic, visco-elastic and anisotropic media. The natural next step is to 

extend the method to non-linear soil rheologies.  

 

 We develop a discontinuous Galerkin method (nodal approach) for seismic waves in 

heterogeneous non-linear 1D media. The method is based on high-order Lagrangian interpolation 

within elements, upwind fluxes, and a fourth-order Runge-Kutta time scheme. The parallel Iwan 

model is used to account for the non-linear soil behavior with hysteresis loops based on extended 

Masing rules. Comparison with different numerical methods shows satisfactory results for some 

canonical cases, at least for strains lower than 1%. Validation with real kik-Net data is work in 

progress within the Prenolin benchmark project (see this volume). 

 

Introduction 

 

In the recent years, advances in computer architectures render large-scale seismic wave 

propagation simulations feasible in heterogeneous media. Several numerical methods are 

available and the final choice is clearly problem dependent, as explained in a recent review by 

Moczo et al. (2014). Among them, the methodologies based in the variational formulation of the 

dynamical system allow for accurate implementation of boundary conditions through structured 

or unstructured meshes. This is extremely important for accurate simulation of surface waves, 

which cause the most earthquake related damage due to their relatively high amplitude and long 

shaking duration. 

 

Numerical modeling of non-linear site response has been carried out mainly using classical finite 

differences (Joyner and Chen, 1975; Kramer, 1996; Gélis and Bonilla, 2012) or finite elements 

techniques (Taborda et al., 2012, Santisi d’Avila et al., 2013). Less known in earthquake 

geotechnical engineering is the discontinuous Galerkin finite element technique (DG-FEM), 

which is basically a classical finite element method but without imposing the solution field 

continuity across neighboring elements of the mesh that produces very accurate and flexible 
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solvers. On the contrary, this technique needs the calculation of numerical fluxes at the interfaces 

between neighboring elements which is the key point of the method and is problem dependent. 

Many different strategies have been proposed in the literature and therefore a huge list of specific 

techniques is already known. The reader is referred to Cockburn et al. (2000) or Hesthaven and 

Warburton (2008) for detailed information about DG method and its applications in engineering. 

 

In this study we propose a high-order discontinuous Galerkin finite element technique to assess 

the site response analysis. The technique has been successfully applied to simulate wave 

propagation in elastic (Dumbser et al. 2006, Delcourte and Glinsky, 2015, Etienne et al., 2010, 

Mercerat and Glinsky, 2015), visco-elastic (Käser et al., 2007, Peyrusse et al., 2014) and 

anisotropic media (de la Puente et al., 2008). The methodology is well-suited for solving 

dynamic rupture problems, or any other problem involving discontinuous solutions, in the 

velocity-stress formulation as the variables are naturally discontinuous at the interface between 

neighboring elements (de la Puente et al, 2009). The difficulty lies in the development of fluxes 

with good numerical properties. In the case of non-linear soil dynamics, jumps in stress and 

strain fields can be found at the interfaces with high impedance contrast (Gélis and Bonilla, 

2012; Santisi et al, 2013). The next step is to extend the discontinuous Galerkin method to non-

linear soil rheologies and this is the purpose of this work. We start by the simplest case of 1D site 

response modeling but the methodology can be easily extended to higher dimensions and is the 

subject of current research.  

 

Soil column DG-FEM discretization 

 

We solve the elastodynamics system of partial differential equations by choosing as primal 

variables the velocity and the strain fields. If the medium is 1D and we consider only one 

transverse degree of freedom, both are scalar fields. The first-order system of equations becomes  
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where v  and ε  are respectively the velocity and strain fields, ρ  is the bulk density, σ  is the 

stress which is related to the strain by the relationship εσ G= , where G  represents the shear 

modulus. The notations t∂ and z∂ refer to time and spatial derivatives respectively. Contrary to 

the linear elastic case, the system becomes non-linear because of the complex dependence of the 

shear modulus G with strain, i.e. ),( εε GG = ; this particular point will be detailed later. 

 

We consider a soil column discretized by a series of eN 1D finite elements, named ih , eNi ,..,1= , 

as shown in Figure 1a). The spatial interpolation functions are chosen as Lagrange polynomials 

of order N based at the N+1 interpolation nodes (in this case, the Gauss-Lobatto-Legendre 

points) within the elements. In the standard element [-1, 1], the Lagrange polynomials of order 3 

are shown in Figure 1b). Consequently, the solution fields (for instance v ) are expanded in each 

finite element as  
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a)  
 

b) 

 

Figure 1: a) 1D soil column discretization with finite elements of degree 3 (4 nodes per element). 

Free surface boundary condition on top, rigid (or elastic) condition at the bottom. b) Lagrange 

interpolation polynomials of degree 3 in the standard element [-1,1] 

 

Note that the interpolation functions ih

jφ are defined locally in ih . The system of partial 

differential equations (1) is multiplied by a test function φ  and integrated over the domain. Since 

the test functions are local, after integration by parts, the integrals corresponding to both 

equations can be written as 
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where the brackets correspond to integrals on the boundary of the element (reduced to two nodes 

in 1D), that is the difference of the fluxes at both boundaries +z and −z of the element. The 

calculation of these terms is not straightforward since the approximation is discontinuous, then v  

and σ are not defined at the interface but on both sides. Following a technique proposed by 

Hesthaven and Warburton (2008) for the Maxwell equations, we propose to approximate the 

fluxes at the interface between elements by a standard upwind scheme: 
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where the mean values {.} and jumps [[.]] at the interfaces between elements are defined by 
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a  and [ ][ ] +− −= aaa . We can impose different boundary conditions by defining 

exterior ghost states ),( ++ vσ . At the free surface (Neumann boundary condition), we impose

),(),( −−++ −= vv σσ . At the bottom of the model, we may find elastic, rigid or absorbing 

boundary conditions (inhomogeneous Dirichlet conditions). Therefore we should impose

),(),( TsIvIv +−= −−++ σσ , where I is the impedance contrast between the soil layer and the 

bedrock, T is the transmission coefficient and s=s(t) is the input motion (e.g. weakly imposed 

velocity). 

 

After introducing the approximations of Equation (2) in the integrals of Equation (3) and 

transforming each element to the standard element [-1, 1], we obtain two types of integrals that 

are calculated analytically. The time approximation is carried out by a fully explicit fourth-order 

Runge-Kutta method. 

 

Non-linear soil model 

 

The non-linear Iwan model (Iwan, 1967) is implemented by means of a series of Iwan parallel 

elements composed of a spring and a perfect plastic slider. Then the non-linear model parameters 

are H spring stiffnesses and Hr threshold stresses per interpolation node. Even if the model 

allows to fit any modulus reduction curve (e.g. by spline interpolation), we decide here to fit an 

hyperbola to the shear modulus degradation curve by fixing the lower and upper strain limits and 

the reference strain (i.e. strain for which the modulus reduction is 50%). The model parameters 

are set at the beginning of each simulation. Up to now there is no constraint on the hysteretic 

damping of the Iwan model, then it is expected the calculated seismograms are overdamped, 

especially when high strains are mobilized. 

 

As the strain is a primal variable of the scheme, it is straightforward to firstly correct the stresses 

corresponding to the level of strain obtained at the previous time step, calculate the numerical 

fluxes and advance in time the system of Equations (3). The algorithm reads, 

 
for each timestep 

 for each element 

  ε (t)<- ε (t-1), v(t)<- v(t-1) 
  if NL element 

   σ=Iwan(ε ) 
  else 

   σ=Gε  
  endif 

  call Runge-Kutta(dt,v,σ,ε,G(ε)) 
  if NL element then G=G(ε) 
 next element 

next timestep 

 

The Iwan routine calculates the stress from the strain taking into account unloading effects (i.e. 

hysteresis loops) by means of generalized Masing rules. The Runge-Kutta routine is in charge of 



the numerical flux calculation (right-hand side of equations (3)) and then it advances in time the 

scheme. It remains unchanged for linear or non-linear elements what ease the implementation in 

existing DG codes. The proposed scheme shows to be robust up to strains levels around 1%. For 

larger strains, simulations carried out with real accelerograms as input motions have shown some 

instabilities (spiky behavior) in the output time histories when the shear modulus reduction goes 

beyond 90%. As already mentioned, the development of numerical fluxes is a difficult task, 

especially for non-linear systems of partial differential equations. If the standard upwind scheme 

of equation (4) has been successfully verified against other numerical methods (see Regnier et al 

2015) for low to moderate strain values, it is necessary to improve it for larger strains. Current 

research is focused on this subject. 

 

Numerical results 

 

Verification against SEM 

 

As a first step, the verification of our 1D non-linear DG solver is accomplished by comparing the 

results with the ones calculated using a solver based on the Spectral Element Method (SEM) that 

also implements the Iwan non-linear model for soils (Oral E, 2015 pers comm). We have run a 

simple simulation of a non-linear layer over a rigid half-space with a Ricker wavelet of 4 Hz 

central frequency as input motion at the bottom of the soil layer (weakly imposed velocity). The 

soil characteristics are shown in Table 1. 

 

In Figure 2, we present the surface seismograms for both simulations indicating a quite good 

match all along the simulation, though some differences can be appreciated at the later times 

probably due to the different time schemes used (explicit 2nd order Newmark for SEM, 4th order 

Runge-Kutta for DG-FEM). 

 

 
 

Figure 2: Comparison of acceleration time histories at the surface of the model for the spectral 

element method (SEM) and the discontinuous Galerkin (DG) scheme 



Further verification tests with other well documented non-linear numerical simulation codes can 

be found in the present volume (Regnier et al, 2015). We use the present version of the solver for 

the validation phase of the Prenolin project with real data from the kik-Net network (Regnier et 

al, 2015). 

 

Effect of different G-γ decay curves 

 

We turn now to a comparison of the effect of different non-linear soil properties in the waveform 

characteristics at the free surface. The soil column is composed of a soil layer overlying an 

elastic half space (bedrock) with mechanical properties shown in Table 1. The linear elastic 

properties of the soils are kept constant for the simulations. On the contrary, three different 

modulus reduction curves will be used as shown in Figure 3. The soil column of 20 m depth is 

discretized by 10 finite elements with interpolation degree 4. The time step is kept fixed at 1 10
-4

 

seconds. As input motion, we use a Ricker wavelet of 4 Hz central frequency to better visualize 

the effect of the non-linear soil response. 

 

Table 1. Mechanical characteristics of the soil column 

 

 Z [m] Density [kg/m3] Vs [m/s]  

Soil 20 2000 300 Non-linear  

(soil 1, 2 and 3) 

Bedrock inf 2500 1000 Linear 

 

 

a)  b)  

 

Figure 3 : a) Non-linear modulus decay and damping curves for three different soils. b) Response 

spectra for the three different soils at the surface of the model. The spectral peak is shifted 

toward longer periods as the soil gets weaker for a given strain level (Soil 3 to Soil 1). 

 

The meshes are constructed supposing a minimum propagated wavelength of 1/10 of the 

minimum elastic wavelength , where   is the initial shear wave velocity and  the maximum 

frequency of the input motion (10 Hz in this case). 

 



In the acceleration time histories of Figure 4, we can clearly observe the distortion of the input 

wavelet (shown in gray at each panel) while propagating within the non-linear soil layer. The 

hysteretic damping effect is also put forward as there is no other damping (numerical or visco-

elastic) implemented in the scheme. For these simulations rigid boundary conditions are used. 

The response spectra of these three simulations are shown in Figure 3b 

 

   

   
 

Figure 4 : Surface accelerations (top row) and stress-strain hysteresis loops (bottom row) for the 

three different soils of Figure 3. 

 

Conclusions 

 

We present a nodal discontinuous Galerkin method for seismic waves in heterogeneous non-

linear 1D media. The method based on standard upwind fluxes and classical 4
th

 order Runge-

Kutta time scheme seems to be robust, at least for strain levels lower than 1%. We verified our 

approach by comparing the simulated time histories with the ones obtained using a SEM solver 

for the same soil column and non-linear soil model. The methodology possesses in principle 

many advantages with respect to more classical methods (finite differences, standard finite 

elements) for solving non-linear partial differential equations in realistic 3D media in the 

presence of non-regular solutions. The extension to multi-component wave propagation and 

effective stress analysis is subject of current research. 
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