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ABSTRACT 
 
 Soil dynamic properties can be determined in centrifuge tests through the shear stress-strain cycles 

obtained from the accelerations recorded within the soil model. Despite its simplicity, a significant 
source of uncertainty of the method has been recognized to lie in the determination of the strain 
amplitude. Recently, a method was proposed to compute the mobilized shear modulus and 
damping ratio using the nonlinear fit of experimental transfer functions with the analytical 
expression of the amplification function for a viscoelastic layer on a rigid base (Conti & Viggiani, 
2012). According to this method, the corresponding shear strain is a function of the particle 
velocity and of the shear wave velocity. However, the equation proposed by the Authors strictly 
holds only for almost mono-frequency signals. This paper addresses the problem of using velocity 
measurements to compute the shear strains induced by vertically propagating shear waves in a 
uniform soil layer. Theoretical results are applied to the interpretation of centrifuge dynamic tests. 

 
Introduction 

 
The non-linear and hysteretic behaviour of soils is generally described by the shear modulus, G, 
and the damping ratio, D, and their variation with shear strain level, γ.  As amplification 
phenomena inside a soil layer depend strongly on the shear stiffness and the damping ratio 
mobilised during the earthquake, the G(γ) and D(γ) curves are crucial ingredients to determine 
the seismic response of geotechnical systems in soil-structure interaction problems. 
 
Zhegal et al. (1995) showed that G and D can be determined from in-situ acceleration time 
histories recorded during real earthquakes.  The method is based on the evaluation of shear 
stress-strain cycles obtained from down-hole acceleration time histories recorded at different 
depths in the soil at instrumented test sites. The same method has been applied to the 
acceleration time histories recorded in centrifuge models (Zeghal et al., 1998; Brennan et al., 
2005).  In this case, the greatest source of uncertainty lies in the determination of the shear strain 
amplitude (Zeghal et al. 1998) which may be affected by large and not easily definable errors. 
 
More recently, Conti & Viggiani (2012) suggested to compute the mobilised shear modulus and 
damping ratio using the nonlinear fit of experimental transfer functions obtained at different 
depths in centrifuge models. Moreover, they showed that the free-field shear strain induced into 
the soil model by a vertically propagating shear wave cannot be computed using the theory of 
wave propagation in homogeneous isotropic elastic media, i.e. γ = v/VS (v = particle velocity, 
VS = shear wave velocity), due to multiple refraction and reflection of waves generated by 
boundary conditions. However, the equation proposed by the Authors was derived for the sole 
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case of a uniform undamped soil layer and, also, strictly holds only for the almost mono-
frequency signals applied in the centrifuge dynamic tests analysed in their paper. 
 
This work addresses the problem of using velocity measurements to compute the shear strains 
induced by vertically propagating shear waves in a uniform soil layer. After recalling the main 
steps of the data reduction procedure proposed by Conti & Viggiani (2012), the exact point wise 
relation between particle velocity and shear strain is derived through the definition of a suitable 
transfer function, under the assumption of isotropic viscoelastic behaviour for the soil. 
Theoretical results are applied to the interpretation of centrifuge dynamic tests. 
 

Evaluation of Soil Dynamic Properties in Centrifuge Tests 
 
According to Conti & Viggiani (2012), the shear modulus and the damping ratio mobilised 
during an earthquake at mid-height of the centrifuge model can be estimated from the 
amplification function of the soil layer A(f), obtained from the free-field accelerations measured 
at the bottom and close to the surface. The proposed method includes three steps: (i) 
identification of the range of frequencies significant for both signals, and calculation of the 
experimental amplification function within this range; (ii) non-linear interpolation of the 
experimental curves with the analytical expression of the amplification function of a visco-elastic 
layer on a rigid base and determination of G and D; (iii) calculation of the mobilised shear strain 
at mid-height of the sand layer. The procedure for data reduction will be recalled briefly in the 
following, with reference to one of the test performed by the Authors on dry sand (Test CW6). 
 
Step 1: Identification of Relevant Frequencies 
 
The range of frequencies that are common to signals x(t) and y(t), registered at the bottom and 
close to the top of the sand layer respectively, can be identified by the cross-power spectrum 
Gxy(f) of the two signals, given by: 
 

)()()( * fYfXfGxy ⋅=                 (1) 

 
where X(f) is the Fourier spectrum of x(t) and Y*(f) is the complex conjugate of the Fourier 
spectrum of y(t). In particular, the frequencies that are significant for both signals can be 
identified as those at which the amplitude of the normalised cross-power spectrum is greater than 
a threshold (TOL = 10-4÷10-5). The procedure is illustrated in Figure 1 which shows, for one of 
the earthquakes applied in the test, (a,b) the Fourier spectra of the accelerations recorded in free 
field conditions, (c) the normalised cross-power spectrum of the two signals, and (d) the 
experimental amplification function. In Figure 1(d), the continuous line is the original 
amplification function for all frequencies in the Fourier spectra, while the dots represent the 
subset of the amplification function for those frequencies where the normalised cross power 
spectrum of x and y is larger than the prescribed threshold. 
 



 
 
Figure 1. Fourier spectrum of the accelerations at (a) the bottom and (b) on top of the sand layer 
and corresponding (c) normalised cross-power spectrum and (d) amplification function (Conti & 

Viggiani, 2012 - Test CW6, EQ1) 
 
Step 2: Computation of Mobilized Shear Modulus and Damping 
 
The experimental amplification function A(f) is given by: 
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where X(f) and Y(f) are the amplitudes of the Fourier spectra of x(t) and y(t), calculated for 
the range of frequencies in common to the two signals. The analytical expression of the 
amplification function for a visco-elastic soil layer on a rigid base, defined at a depth z in the 
sand layer, is given by: 
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where k = 2πf/VS is the wave number. For a given depth z, the amplification function depends on 
the shear wave velocity and the damping ratio of the sand layer. Therefore, it is possible to 
determine the mobilised VS and D by means of a nonlinear least-squares interpolation of the 
experimental data through Equation (3). The shear modulus mobilised during each earthquake is 
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then calculated as G = ρVS
2. As an example, Figure 2 shows the experimental data and the best 

fitted amplification functions for all the earthquakes of Test CW6. 
 
Step 3: Computation of Mobilized Shear Strain 
 
According to Conti & Viggiani (2012), the maximum shear strain mobilised at a given depth, z, 
is related to the maximum horizontal ground velocity and to the shear wave velocity as: 
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where the wave number k is computed using the mean quadratic frequency of the acceleration 
signal. It follows that the maximum shear strain mobilised at mid-height of the sand layer 
(z = H/2) can be estimated from the maximum horizontal velocity obtained integrating the 
horizontal acceleration registered at mid-height. However, Equation (4) refers to the case of a 
uniform undamped soil layer and, also, strictly holds only for almost mono-frequency signals. In 
the next section, a more refined solution is derived under the assumption of isotropic viscoelastic 
behaviour for the soil.  
 

 
 

Figure 2. Experimental data and best-fitted amplification functions between the bottom and the 
top of the sand layer (Conti & Viggiani, 2012 - Test CW6). 

 
Computation of Free Field Shear Strains from Velocity Recordings 

 
In the following, the simple case of a pure harmonic input motion will be considered first, and 
then the result will be extended to the general case of real earthquakes or multi-frequency input 
signals.  
 
 
 

2 2.8 51 13

4 2.8 49 15
3 3.0 56 12

5 2.8 49 12

EQ fn G D
Hz MPa %

1 3.0 58 15

EQ4

0 2 4 6
f [Hz]

EQ5

0 2 4 6
f [Hz]

EQ3

0

2

4

6

A
(f

 )

0 2 4 6
f [Hz]

EQ1

0

2

4

6

A
(f

 )

EQ2



Case I: Simple Harmonic Input Motion 
 
The problem under consideration consists of a uniform layer of isotropic, linear visco-elastic 
material overlying a rigid base, corresponding to which a simple harmonic input motion of 
angular frequency ω  is applied: 
 

tiUetHu ω=),(                  (5) 

 
For the problem at hand, the solution of the equation of motion is (Kramer, 1996): 
 

zkeAtzu ti *cos2),( ω=                 (6) 

 
where k* = ω/VS

* is the complex wave number, VS
* is the complex shear wave velocity, 

G* = G(1+2iD) is the complex shear modulus, and D is the damping ratio. By differentiating 
Equation (6) with respect to t and z, we get:  
 

zkeAitzv ti *cos2),( ωω=                 (7) 

 

zkeAktz ti ** sin2),( ωγ −=                 (8) 

 
It follows that the shear strain and the particle velocity at a given depth within the soil layer are 
related by the equation: 
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is the strain transfer function, depending on the mechanical and physical properties of the soil 
layer (VS, D), on the frequency content of the input motion (ω), and on the soil depth (z). 
Therefore, the maximum shear strain at a given depth can be computed as 
 

)(),()( maxmax zvzFz ⋅= ωγ               (11) 

 

where, for small values of the damping ratio, ),( ωzF  is given by (see Appendix): 
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As an example, Figure 3 shows the absolute value of the strain transfer function, |F(z,ω)|, 
multiplied by the shear wave velocity, VS. Local maxima of the function are attained for 
kz = (n+1/2)π, with n = 0,1,2,…,∞ or, equivalently, for z/H = ωn/ω = fn/f, where 

ωn = VS/H·(n+1/2)π are the natural frequencies of the soil stratum. It is evident from the plot that 
each component in the velocity signal would be filtered differently depending on both the depth, 
z, and the frequency, f.  
 
Case II: Earthquake Input Motion 
 
As far as real earthquakes or multi-frequency signals are concerned, a standard two-step 
procedure can be followed to compute the soil shear strain from a recorded velocity time history 
at a given depth, that is: (i) decompose the velocity signal by means of its Fourier transform 
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and (ii) exploit the linearity of the system and the principle of superposition to compute the shear 
strain as: 
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Finally, the maximum shear strain is simply ),(max)(max tzz γγ = . 

 

 
 

Figure 3. Strain transfer function (VS = 300 m/s, γ = 18 kN/m3, D = 0.1, H = 50 m). 
 
 



Discussion of Results and Applications 
 
Figure 4 shows the normalised shear modulus and the damping ratio computed using the 
nonlinear fit of experimental transfer functions for all the earthquakes of the nine centrifuge tests 
described in Conti & Viggiani (2012). Maximum shear strain at mid-height of the sand layer is 
computed using both Equation (4) and the more rigorous solution proposed in this paper. For 
comparison, Figure 4 shows also the empirical upper and lower bounds given by Seed & Idriss 
(1970) for dry sand (shaded area) and the experimental curves (dashed lines) suggested by 
Vucetic & Dobry (1991) for cohesionless soils (plasticity index, PI = 0). These curves must be 
considered as average responses since they were derived from a variety of test procedures and 
tested sands. The maximum difference between the two solutions is about 100%, computed at 
relatively small value of the mobilised shear strains (γ ~ 0.05÷0.1 %), but no relevant differences 
exist in the experimental curves. This observation is mainly due to the fact that the accelerations 
applied in the tests are almost mono-frequency signals and, hence, the approximate procedure 
proposed by Conti & Viggiani (2012) induces no significant errors in the estimation of the 
mobilised shear strain. As far as the shear modulus reduction curve is concerned, physical model 
results obtained using both methods are in very good agreement with literature data. On the other 
hand, a more dispersed trend is observed in terms of damping ratio. In fact, in this case 
centrifuge data are generally higher than values reported in the literature and show a broader 
scatter compared to the shear modulus values, which can be partly attributed to the larger 
percentage errors in the estimates of D (Conti & Viggiani, 2012). Note that a certain amount of 
scatter in damping ratios has been observed by other authors (Brennan et al., 2005; Rayhani & El 
Naggar, 2008), for different soils and stress states. 
 

 
 

Figure 4. (a) Shear modulus and (b) damping ratio from centrifuge data. 
 

Conclusions 
 
This note focused on the problem of using velocity measurements to compute the shear strains 
induced by vertically propagating shear waves in dynamic centrifuge tests. Specifically, the exact 
point wise relation between particle velocity and shear strain was derived through the definition 
of a suitable transfer function, under the assumption of isotropic viscoelastic behaviour for the 
soil. The main motivation for this work was the new method proposed by Conti & Viggiani 

0.0001 0.001 0.01 0.1 1

g (%)

0.0

0.2

0.4

0.6

0.8

1.0

G
/G

0

(a)

Vucetic (1992)
Seed & Idriss (1970)
Conti & Viggiani (2012)
proposed method

0.0001 0.001 0.01 0.1 1

g (%)

0

10

20

30

40

D
 (%

)

(b)



(2012) to compute the mobilised shear modulus and damping from the non-linear fit of 
experimental transfer functions. 
 
Theoretical results were applied to the interpretation of nine tests carried out on small scale 
models of dry sand. In general, the experimental data compare very well with the literature data 
in terms G/G0(γ) curve, while a more dispersed trend is observed for D(γ). 
 
The relation proposed for the estimation of mobilised shear strains could be applied for the 
interpretation of centrifuge dynamic tests when either real earthquakes or multi-frequency 
signals are applied to the soil models.   
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Appendix 
 

For small values of the damping ratio ( 1<<D ) we have )1(* iDVV SS +≈  and )1(* iDkk −≈ . 

Exploiting the identities: 
 

yxiyx 222
sinhcos)cos( +=+            (A.1) 

 

yxiyx 222
sinhsin)sin( +=+            (A.2) 

 
it is possible to write: 
 

DkzkziDkzzk 22* sinhcos)1(coscos +=−≈          (A.3) 

 

DkzkziDkzzk 22* sinhsin)1(sinsin +=−≈          (A.4) 

 

Finally, since SS VV ≈*  and DkzDkz ≈sinh  for small values of D, Equation (12) is proved. 
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