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ABSTRACT 
 
 Decision thresholds are central to the use of liquefaction hazard frameworks such as the 

liquefaction severity number (LSN). However, it is often unappreciated that proposed thresholds 
are inherently linked to: (1) the procedure used to compute FSliq within the hazard framework; (2) 
the assessed dataset; and (3) as demonstrated herein, the approach used to select thresholds, and 
the assumed misprediction economies implicit to such selections. This study proposes a 
standardized approach by which the economies (i.e., consequences) of misprediction are used to 
make logical decisions with respect to hazard assessment. Optimum LSN decision thresholds are 
proposed for varying misprediction economies via an analysis of 7,000 liquefaction case studies 
from the Canterbury earthquakes. These thresholds strongly depend on underlying economic 
assumptions, with LSN = 15.4 being optimal when false positives and false negatives have similar 
costs. Assumed misprediction economies, implicit to all threshold hazard values proposed in the 
literature, could thus have significant implications for forward assessments of liquefaction hazard.  

 

Introduction 
 

The severity of soil liquefaction manifested at the ground surface (i.e., extensity/intensity of 
liquefaction ejecta and ground settlement) serves as a practical proxy for liquefaction damage 
potential, particularly for pavement systems, buried lifelines, structures on shallow foundations, 
and other near-surface infrastructure. The greater the severity of surficial manifestation, the 
greater the likelihood of damage to infrastructure. By way of this simplifying proxy, hazard 
frameworks have been proposed to link the factor of safety against liquefaction triggering at 
depth (FSliq) to damage potential. Iwasaki et al. (1978) proposed the first such framework: the 
liquefaction potential index (LPI), which has been used to assess liquefaction hazards worldwide.  
 

Though widely adopted, evaluations of LPI following recent liquefaction events, such as the 
2010-2011 Canterbury Earthquake Sequence (CES), show that it performs inconsistently (e.g., 
Maurer et al., 2014). This inconsistency inspired the development of new hazard frameworks, to 
include an Ishihara (1985) inspired variation of LPI, termed LPIISH (Maurer et al., 2015a), and 
the liquefaction severity number (LSN) (van Ballegooy et al., 2014a), a variation of 1-
dimensional post-liquefaction reconsolidation settlement (e.g., Zhang et al., 2002). Central to all 
of these hazard frameworks are proposed decision thresholds corresponding to different levels of 
expected hazard. For example, Iwasaki (1986) proposed that liquefaction hazard is “low” at sites 
where LPI ≤ 5, “high” where 5 < LPI ≤ 15, and “very high” where LPI > 15. Similarly, Tonkin 
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and Taylor (2013) proposed that little to no manifestation of liquefaction is expected at sites 
where LSN < 20; moderate to severe manifestation of liquefaction is expected where 20 < LSN < 
40; and major manifestation of liquefaction is expected where LSN > 40. Thus, an LPI of 5 and 
an LSN of 20 correspond to similar levels of expected hazard. Importantly, it is often 
unappreciated that these proposed thresholds are inherently linked to: (1) the procedure used to 
compute FSliq within the hazard framework; (2) the assessed dataset; and (3) the technique used 
to select thresholds, and the assumed misprediction consequences implicit to any such selection.  
 

First, several liquefaction evaluation procedures are commonly used in today’s practice to 
compute FSliq, an input to the aforementioned hazard frameworks (e.g., Boulanger and Idriss 
(2014) vs. Idriss and Boulanger (2008) vs. Moss et al. (2006) vs. Robertson and Wride (1998) 
and so forth). It has been shown that these procedures can yield different FSliq values for the 
same soil profile and earthquake scenario (e.g., Green et al., 2014), and thus different hazard 
values (Lee et al., 2003; Maurer et al., 2015b). For example, using data from the CES, Maurer et 
al. (2015b) compared the efficacy of the Robertson and Wride (1998), Moss et al. (2006), and 
Idriss and Boulanger (2008) procedures, operating within the LPI framework, for predicting the 
severity of liquefaction manifestation. The relationship between manifestation severity and 
computed LPI values was found to be specific to the procedure used to compute FSliq (e.g., the 
hazard corresponding to LPI = 5 varied amongst the procedures). Thus, threshold hazard values 
proposed using one procedure to compute FSliq may be less than optimum when using another.   
 

Second, proposed threshold values are inherently linked to the properties of the assessed dataset, 
to include the stratigraphy and soil characteristics of site-profiles, as well as the amplitude and 
duration of ground shaking (Juang et al., 2008; Kang et al., 2014; Maurer et al., 2015b,c). For 
example, in analyzing data from the CES, Maurer et al. (2015c) compared threshold LPI values 
for sites inferred to have predominantly clean sand or silty sand with sites inferred to have 
predominantly silty and clayey soil mixtures. Sites in the latter group had a significantly higher 
optimum threshold LPI for predicting liquefaction manifestation (LPI = 13.0) than those in the 
former group (LPI = 4.9), irrespective of which procedure was used to compute FSliq. Similar 
discrepancies can be found among other LPI studies (Maurer et al., 2015c). Thus, threshold 
hazard values proposed using one dataset may be less than optimum when applied to another.   
 

Third, authors have used different methods and justifications to select optimum decision 
thresholds. For example, Iwasaki et al. (1982) found that of 55 sites evaluated, 80% of sites with 
liquefaction manifestation had LPI > 5, and 70% of sites without manifestation had LPI < 5; this 
led Iwasaki et al. (1982) to propose LPI = 5 as an optimum threshold. While some studies have 
used similar methodologies, others have used unstated justifications. Further, implicit to all 
proposed thresholds are assumed economies of misprediction. For example, Iwasaki et al. (1978) 
implicitly treated the costs of false positives (i.e., liquefaction manifestation is predicted but is 
not observed) and false negatives (i.e., liquefaction manifestation is observed when it is not 
predicted) to be similar. Had Iwasaki et al. (1982) instead assumed that false negatives were 
significantly more costly (a reasonable assumption for many engineering projects), the proposed 
LPI threshold would presumably have been less than LPI = 5. Authors assuming different 
misprediction economies will invariably propose different decision thresholds. Thus, the lack of 
a standardized approach to selecting threshold values complicates comparisons amongst studies. 
 

Due to the combined effects of the above, proposed thresholds vary significantly for the same 



hazard framework and equivalent hazard levels. For example, Iwasaki et al. (1982), Toprak and 
Holzer (2003), Lee et al. (2003), Papathanassiou (2008), Kang et al. (2014), Papathanassiou et al. 
(2015), and Maurer et al. (2015b), each using data from different earthquakes, proposed LPI 
thresholds for predicting liquefaction manifestation of 5, 5, 13, 14, 14, ~13.5, and 5, respectively. 
While recent studies have investigated factors responsible for such discrepancies, the 
significance of assumed misprediction economies has not been assessed. Clearly, the 
conservatism desired in any hazard assessment must consider the consequences of misprediction, 
which vary amongst engineering projects. It follows then that decision thresholds should be 
applied on a project-specific basis, since the threshold hazard value that is “optimum” for one 
project, or one category of infrastructure, may be inappropriate for others.  
 

Accordingly, this study proposes a simple and standardized approach by which the economies 
(i.e., consequences) of misprediction can be used to make rational decisions with respect to 
hazard assessment. The proposed approach is an extension of the receiver-operating-
characteristic (ROC) methodology used by Maurer et al. (2015b,c) to standardize the selection of 
threshold hazard values. Using this approach, optimum LSN decision thresholds are proposed for 
varying misprediction economies via an analysis of 7,000 liquefaction case studies from the 
2010-2011 Canterbury earthquakes. This analysis is performed using the Idriss and Boulanger 
(2008) liquefaction evaluation procedure to compute FSliq. While the proposed approach is 
herein applied to LSN, now widely used in New Zealand, it is applicable to any hazard 
framework. In the following, the proposed ROC methodology is first developed, followed by a 
summary of the CES dataset and proposal of LSN decision thresholds. 
 

Receiver Operating Characteristic (ROC) Framework 
 

ROC analyses are a simple but powerful method for evaluating the relative efficacy of competing 
diagnostic tests, independent of the thresholds used, and for selecting an optimal threshold for a 
given diagnostic test. In using LSN to predict liquefaction manifestation, the distributions of 
“positives” (i.e., liquefaction manifestation is observed) and “negatives” (i.e., no liquefaction 
manifestation is observed) overlap when the frequencies of the distributions are expressed in 
terms of computed LSN values. Ideally, LSN decision thresholds should then be selected 
considering both the rate and consequence of mispredictions (i.e., false positives and false 
negatives). Setting the decision threshold too low or too high will result in a greater number of 
mispredictions; the degree to which these mispredictions are acceptable is a function of their 
consequences, or costs. The cost of a false positive might be the superfluous spending on 
engineering design and construction (e.g., ground improvement costs), while the cost of a false 
negative might be the costs of liquefaction-induced damage (e.g., lost productivity, property 
damage, and reconstruction costs, among others).  
 

ROC curves plot the rates of true positives (RTP) versus false positives (RFP) for varying 
threshold values. Figures 1a and 1b illustrate the relationship among the positive and negative 
distributions, the threshold value, and the ROC curve. Figure 1b also illustrates how a ROC 
curve is used to assess the efficiency of a diagnostic test and select an optimum threshold. In 
ROC space, random guessing is indicated by a 1:1 line through the origin (i.e., equivalent correct 
and incorrect predictions), while a perfect model plots as a point at (0,1), indicating the existence 
of a threshold value which perfectly segregates the dataset (i.e., all cases with manifestation have 
LSN above the threshold; all cases without manifestation have LSN below the threshold).  



 
 

Figure 1: ROC analyses: (a) frequency distributions of liquefaction manifestation and no 
liquefaction manifestation as a function of LSN; (b) corresponding ROC curve, and illustration 
of how a ROC curve is used to assess the efficiency of a diagnostic test.  
 
The optimum operating point (OOP) indicates the LSN decision threshold for which the 
misprediction cost is minimized. The optimum decision threshold, or optimum operating point 
(OOP), is defined herein as the threshold LSN value which minimizes the cost of misprediction, 
where cost is computed as: 

 

Cost = CFP x RFP + CFN x RFN                             (1) 
 

where CFP and RFP are the cost and rate of false positive predictions, respectively, and CFN and 
RFN are the cost and rate of false negative predictions, respectively. Normalizing with respect to 
CFN, Equation (1) may alternatively be expressed as: 
 

Cost’ = Cost/CFN = RFP x CR + RFN                                                                                                           (2) 
 

where CR is the cost ratio defined by CR = CFP / CFN. In Equations (1) and (2), the rates of false 
negatives (RFN) and false positives (RFP) are respectively defined by: 
 

RFN = QFN / (QFN + QTP)                                                                                                              (3a) 
 

RFP = QFP / (QFP + QTN)                                                                           (3b) 
 

where QTP, QFP, QTN, and QFN are respectively the quantities of true positives, false positives, 
true negatives, and false negatives. Thus, the denominators of Equations (3a) and (3b) equal the 
total number of sites with and without observed surficial liquefaction manifestations, 
respectively. Accordingly, the rate of true positives (RTP) is equal to 1-RFN and the rate of true 
negatives (RTN) is equal to 1-RFP. Since cost-contours represent points of equivalent performance 
(i.e., equal Cost’) in ROC space, it follows from Equations (1-3) that two points in ROC space, 
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(RFP1, RTP1) and (RFP2, RTP2) have equivalent performance if: RTP1− RTP2RFP1− RFP2 =  
CFPCFN = CR = 𝑚𝑚                                                                                                         (4) 

 

Equation (4) defines the slope, m, of an iso-performance line, such that all points defining the 
line have the same expected Cost’ (Provost and Fawcett, 2001). Thus, each unique CR 
corresponds to a different iso-performance line in ROC space. One such iso-performance line is 
shown in Fig. 1b. With 1:1 slope, this line corresponds to the case where false positives and false 
negatives have equivalent Cost’ (i.e., CR = 1). Iso-performance points tangential to the ROC 
curve correspond to optimum threshold values for the classifier (i.e., OOPs). Thus, the OOP 
identified in Figure 1b accounts for both the rates and consequences of misprediction. Repeating 
for different values of CR, varying misprediction economies can be used to select optimum LSN 
decision thresholds. 
 

Data and Methodology 
 

CPT soundings 
 

This study utilizes 3,500 CPT soundings performed at sites where the severity of liquefaction 
manifestation was well-documented following both the Darfield and Christchurch earthquakes, 
resulting in 7,000 liquefaction case studies. In the process of compiling these case studies, CPT 
soundings were first rejected from the study: (1) if performed at sites where the predominant 
manifestation of liquefaction was lateral spreading; (2) if the depth of “pre-drill” significantly 
exceeded the estimated depth of the ground water table, a condition arising at sites where buried 
utilities needed to be safely bypassed before testing could begin; and (3) if believed to have 
prematurely terminated on shallow gravels, as inferred from an Anselin (1995) Local Morans I 
analysis. For further discussion of CPTs and this geostatistical analysis, see Maurer et al. (2014).  
 

Liquefaction severity 
 

Observations of liquefaction and the severity of manifestation were made by the authors for each 
of the CPT sounding locations following both the Darfield and Christchurch earthquakes. CPT 
sites were assigned one of six damage classifications, as described in Green et al. (2014). Of the 
7,000 cases compiled, 49% are cases of “no manifestation,” and 51% are cases where 
manifestations were observed and classified in accordance with Green et al. (2014). It should be 
noted that free-field surface manifestation is a simplifying proxy for damage potential. While it 
has been shown that factors controlling damage are structure-, soil-, and earthquake-specific 
(e.g., Dashti and Bray, 2014), no practical method yet exists for incorporating all these factors.  
 

Estimation of peak ground acceleration (PGA) 
 

To evaluate FSliq for use in computing LSN values, the Peak Ground Accelerations (PGAs) at the 
ground surface were computed using the procedure discussed in detail by Bradley (2013a) and 
used by Green et al. (2014) and Maurer et al. (2014, 2015b,c). The Bradley (2013a) procedure 
combines unconditional PGA distributions estimated by the Bradley (2013b) ground motion 
prediction equation, recorded PGAs from strong motion stations, and the spatial correlation of 
intra-event residuals to compute the conditional PGA distribution at sites of interest. 
 



 

Estimation of ground-water table (GWT) depth  
 

Given the sensitivity of liquefaction hazard to GWT depth (e.g., Chung and Rogers, 2011; 
Maurer et al., 2014), accurate measurement of the GWT is critical. For this study, GWT depths 
were sourced from the robust, event-specific regional ground water models of van Ballegooy et 
al. (2014b). These models, which reflect seasonal and localized fluctuations across the region, 
were derived in part using monitoring data from a network of ~1000 piezometers and provide a 
best-estimate of GWT depths immediately prior to the Darfield and Christchurch earthquakes. 
 

Liquefaction Evaluation and LSN 
 

FSliq was computed using the deterministic procedure proposed by Idriss and Boulanger 
(2008)[I&B08], where the soil behavior type index, Ic, was used to identify non-liquefiable 
strata; soils with Ic > 2.4 were assumed non-liquefiable, per Maurer et al. (2015c). For I&B08, 
fines content (FC) is required to compute normalized tip resistances; as such, FC values were 
estimated using the Ic-FC correlation proposed by Boulanger and Idriss (2014). LSN was 
computed for each of the 7,000 case studies per Equation (5) (van Ballegooy et al., 2014a), 
where εv is the estimated post-liquefaction volumetric strain (%), as computed by the Zhang et al. 
(2002) method, and z is depth (m) below the ground surface.  
 

LSN = 10∫ ϵv
z�20 m0  dz    (5) 

 

Results and Discussion 
 

In Figure 2a, ROC curves are plotted to evaluate LSN’s performance in predicting liquefaction 
manifestations likely to damage infrastructure. In our classification scheme (Green et al., 2014), 
marginal manifestations are characterized by a trace amount of water or ejecta and are thus likely 
to be non-damaging. Conversely, moderate to severe manifestations are more likely to coincide 
with damage to infrastructure. Failure to accurately assess such hazards could result in either: (1) 
superfluous spending on engineering design and construction, in the case of a false-positive 
prediction; or (2) severe damage to infrastructure, in the case of a false-negative prediction. 
Highlighted in Figure 2a is the optimal LSN threshold for the case of CR = 1, which is 
reasonably consistent with that proposed by Tonkin and Taylor (2013) (i.e., LSN = 20). 
Repeating for a range of CR values, optimal LSN thresholds are plotted in Figure 2b as a 
function of CR, such that project-specific economies can be used to select optimal decision 
thresholds; in this way, selection of an LSN threshold is analogous to selecting an appropriate 
level of conservatism. To demonstrate, consider a structure with a 100 year design life. From 
CPT soundings at the site, LSN is computed by I&B08 to be 8.0 for a 25 year return-period 
earthquake, which, assuming a Poisson distribution, has a 98% probability of occurring in 100 
years. If the structure is modest and CR is estimated to be 0.55 (e.g., assuming: (1) moderate-to-
severe liquefaction causes $60,000 in damages; and (2) ground improvement and/or robust 
construction to mitigate the hazard costs $33,000), the optimal decision threshold is LSN = 11.3 
(Figure 2b). Since the computed LSN at the site is less than the optimum threshold, the scenario 
should be treated as “non-hazardous.” Conversely, if the structure is a critical facility with CR = 
0.15, the optimal threshold is LSN = 3.1. In this case, paying the cost of a false-negative up-front 
is advised. While this simple example does not justly represent the complexity and probabilistic 



nature of life-cycle cost analyses (e.g., consideration of earthquake motions for a range of return 
periods), it demonstrates that some consideration should be given to the relative consequences of 
misprediction when selecting a decision threshold. 
 

 

Figure 2: (a) ROC analysis of LSN performance in predicting liquefaction likely to cause 
damage, with optimal threshold LSN highlighted for CR = 1; (b) optimal LSN threshold vs. CR. 
 

Conclusions 
 

This study proposed a framework by which the consequences of misprediction can be used to 
make logical decisions with respect to liquefaction hazard assessment. Optimal LSN decision 
thresholds were proposed for varying misprediction costs using 7,000 case studies. Moreover, it 
was shown that while often unrealized, assumed costs are implicit to all proposed decision 
thresholds in the literature; as shown in Figure 2b, this assumption can significantly influence the 
optimal threshold. The findings presented in this study are based on a dataset from the CES; their 
applicability to other datasets, or to methodologies different from that used herein, is unknown. 
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