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ABSTRACT 
 
 In a multi-channel analysis of surface waves (MASW) experiment, inversion of Rayleigh wave 

dispersion and attenuation curves is used to determine the shear wave velocity and material 

damping ratio of shallow soil layers. Peak picking and the half-power bandwidth method can be 

used to determine the dispersion and attenuation curves, respectively. In this paper, the circle fit 

method is proposed to improve the determination of multi-modal dispersion and attenuationn 

curves. A numerical MASW experiment is simulated for a layered halfspace, corresponding to a 

site in Lincent (Belgium). It is shown that the circle fit method results in more accurate 

estimations of multi-modal dispersion curves than peak picking. Both the circle fit and half-power 

bandwidth method result in reliable attenuation curves of dominant modes. For other modes an 

alternative more robust measure of attenuation, based on the circle fit method, is proposed which 

would enable inversion of these modes. 

 

Introduction 

 

Surface wave analysis is frequently used to determine shear wave velocity and damping of 

shallow soil layers. These dynamic soil properties are important for seismic site characterization, 

the prediction of ground borne vibrations, determination of soil structure interaction etc. and can 

be determined by inversion of Rayleigh wave dispersion and attenuation curves.  Multi-channel 

analysis of surface waves (MASW) can be used to obtain these experimental curves (Park et al., 

1999; Foti et al., 2011). The solution of the inversion problem, however, is non-unique due to the 

limited identified frequency range. In order to reduce non-uniqueness, multi-modal inversion of 

dispersion curves is frequently performed.  Multi-modal determination of attenuation curves 

remains difficult, since most techniques only allow to extract the attenuation of a dominant 

Rayleigh wave from spatial data (Xia et al., 2002; Foti, 2004; Lai et al., 2002). Recently, a 

method for estimating the complex wavenumbers of multiple modes has been proposed by 

Misbah and Strobbia (2014).  The half-power bandwith method proposed by Badsar et al. (2010), 

theoretically, allows the determination of the attenuation of different Rayleigh wave modes, but 

is only accurate in the case of dominant modes. 

 

In this paper, the circle fit method (Ewins 1984) is applied to improve the determination of 

multi-modal dispersion and attenuation. This method has originally been developed to determine 

the eigenfrequencies and modal damping ratio of a structure from the phase information in the 

frequency response function (FRF) and is considered an improvement to the traditional peak 

picking and half-power bandwidth method. 
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To test the method, wave propagation in a multi-layered halfspace with dynamic soil 

characteristics corresponding to a site in Lincent (Belgium) is studied. In the frequency-

wavenumber (fk) domain, closed form expressions of the soil's Green's functions can be 

formulated. Rayleigh wave dispersion and attenuation curves are defined. The peak picking and 

half-power bandwidth method for the determination of dispersion and attenuation curves, 

respectively, are briefly reviewed and the circle fit method is elaborated. In a next step a 

numerical MASW experiment is performed in order to compare the circle fit method with the 

peak picking and half-power bandwidth method.  

 

Wave propagation in layered media 

 

Wave propagation in layered media can be studied with the direct stiffness method (Kausel and 

Roësset, 1981) in the fk-domain, as implemented in the ElastoDynamics Toolbox (EDT) 

(Schevenels et al., 2009). The displacements 𝑼𝑼�(𝑘𝑘𝑟𝑟 ,𝜔𝜔) relate to the applied loads 𝑷𝑷�(𝑘𝑘𝑟𝑟 ,𝜔𝜔) by:   

 𝑲𝑲�(𝑘𝑘𝑟𝑟 ,𝜔𝜔)𝑼𝑼�(𝑘𝑘𝑟𝑟 ,𝜔𝜔) = 𝑷𝑷�(𝑘𝑘𝑟𝑟 ,𝜔𝜔).           (1) 

 

The stiffness matrix 𝑲𝑲�(𝑘𝑘𝑟𝑟 ,𝜔𝜔) depends on the Lamé coefficients  𝜇𝜇 and 𝜆𝜆, or the shear wave 

velocity 𝐶𝐶s  and dilatational wave velocity 𝐶𝐶p, the material damping ratios 𝛽𝛽s and 𝛽𝛽p of the shear 

and dilatational waves, the density 𝜌𝜌 and the thickness 𝑑𝑑 of each soil layer.  Material damping is  

assumed to be rate independent in the low frequency range and small, allowing the application of 

the correspondence principle (Rizzo and Shippy, 1971), valid for small damping ratio’s. This 

principle results in the use of complex Lamé coefficients  𝜇𝜇(1 + 2𝛽𝛽si) and (𝜆𝜆 + 2𝜇𝜇)(1 + 2𝛽𝛽𝑝𝑝i). 

 

Table 1. Dynamic soil characteristics of the site in Lincent. 

 

layer 𝑑𝑑 𝐶𝐶s 𝐶𝐶p 𝛽𝛽s 𝛽𝛽p 𝜌𝜌 

 [m] [m/s] [m/s] [-] [-] [kg/m3] 

1 1.4 128 286 0.044 0.044 1800 

2 2.7 176 286 0.038 0.038 1800 

3 ∞ 355 1667 0.037 0.037 1800 

 

A multi-layered halfspace with dynamic soil characteristics retrieved from an MASW 

experiment at a site in Lincent (Belgium) (Table 1), is subsequently considered. It was assumed 

that 𝛽𝛽s = 𝛽𝛽𝑝𝑝 and 𝐶𝐶p was determined from first arrival times of the body waves.  A load vector 𝑷𝑷�(𝑘𝑘𝑟𝑟 ,𝜔𝜔) corresponding to a Dirac impulse in space and time is applied at the surface, resulting 

in a displacement field 𝑢𝑢�𝑖𝑖𝑖𝑖𝐺𝐺 (𝑘𝑘𝑟𝑟 , 𝑧𝑧,𝜔𝜔), denoted as a Green's function or fundamental solution. 

Figure 1a shows the modulus of the vertical displacement 𝑢𝑢�𝑖𝑖𝑖𝑖𝐺𝐺 (𝑘𝑘𝑟𝑟,𝜔𝜔),  along the surface 𝑧𝑧 = 0,  

normalized for each frequency, as a function of frequency 𝜔𝜔 and phase velocity 𝐶𝐶𝑟𝑟 = 𝜔𝜔/𝑘𝑘𝑟𝑟. The 

peaks in the spectrum correspond to the Rayleigh wave modes. Rayleigh waves are free surface 

waves with complex wavenumbers 𝑘𝑘R, which are solutions of the eigenvalue problem: 

 

det  𝑲𝑲�(𝑘𝑘𝑟𝑟 ,𝜔𝜔) = 0.           (2) 

 

The roots 𝑘𝑘R can be determined by a search algorithm which minimizes  



det  𝑲𝑲�(𝑘𝑘𝑟𝑟 ,𝜔𝜔) in terms of the complex wavenumber 𝑘𝑘𝑟𝑟. The theoretical Rayleigh wave phase 

velocity of the 𝑗𝑗th mode is obtained as 𝐶𝐶R𝑗𝑗T = 𝜔𝜔/Re(𝑘𝑘R𝑗𝑗T ). Figure 1b shows 𝐶𝐶R𝑗𝑗T  (𝑗𝑗 =  1, 2). 𝐶𝐶R1T  

varies from the Rayleigh wave velocity of the underlying half space at limiting low frequencies, 

to the Rayleigh wave velocity of the surface layer at limiting high frequencies. 𝐶𝐶R2T  only exists 

for frequencies above 14 Hz and varies from the shear wave velocity of the underlying half space 

at limiting low frequencies, to the shear wave velocity of the surface layer at limiting high 

frequencies. For high frequencies this mode is less dominant. 
 

 
 

Figure 1. (a) Theoretical fk-spectrum of the Green's function at the site in Lincent. Rayleigh 

wave (b) phase velocity 𝐶𝐶R𝑗𝑗T  and (c) attenuation 𝐴𝐴R𝑗𝑗T  curves, (𝑗𝑗 =  1, 2). 

 

The attenuation coefficient is calculated as 𝐴𝐴R𝑗𝑗T = −Im(𝑘𝑘R𝑗𝑗). Figure 1c shows the attenuation 

curves of the first two modes. At low frequencies, 𝐴𝐴R1T  is mainly determined by the material 

damping of the underlying halfspace. At higher frequencies, when the penetration depth of the 

waves is smaller, 𝐴𝐴R1T  is more influenced by the top layers.  
 

Figure 2a shows the modulus of the Green's function 𝑢𝑢�𝑖𝑖𝑖𝑖𝐺𝐺 (𝑘𝑘𝑟𝑟,𝜔𝜔) at 50 Hz. The peaks can be 

picked (at 𝑘𝑘R𝑗𝑗Tp) to estimate the Rayleigh wave phase velocity 𝐶𝐶R𝑗𝑗Tp = 𝜔𝜔/𝑘𝑘R𝑗𝑗Tp. The maximum 

modulus is obtained at 𝑘𝑘R1Tp, marked red. Figure 3a shows 𝐶𝐶R𝑗𝑗Tp (𝑗𝑗 =  1, 2) up to 100 Hz. A good 

correspondence is found with 𝐶𝐶R𝑗𝑗T . 

 
 

Figure 2. (a) Modulus and (b) Nyquist plot of the Green's function 𝑢𝑢�𝑖𝑖𝑖𝑖𝐺𝐺 (𝑘𝑘𝑟𝑟 ,𝜔𝜔) at 50 Hz. 

 

The width of the peak is influenced by the attenuation of the Rayleigh wave mode. Badsar et al. 

(2010) assume that the Green’s function in the neighbourhood of the peak is similar to the FRF 

of a single degree of freedom (SDOF) system. In the case of hysteretic damping, the 

dimensionless FRF of a SDOF system can be written as: 

 



𝐻𝐻�(𝜔𝜔) =
11−(𝜔𝜔 𝜔𝜔n⁄ )2+2𝜉𝜉i,           (3) 

 

where 𝜔𝜔n is the natural frequency of the undamped system and 𝜉𝜉 is the damping ratio. The pole 𝜔𝜔f of this equation, which corresponds to the free vibration frequency is calculated as: 

 𝜔𝜔f = 𝜔𝜔n�1 + 2𝜉𝜉i ≈ 𝜔𝜔n(1 + 𝜉𝜉i) ,              (4) 

 

where the last approximation holds for small 𝜉𝜉. At the natural frequency the FRF reaches a 

maximum. The location of the maximum can thus be used to identify the real part of the free 

vibration frequency of the system. The damping of lightly damped structures can be obtained by 

a generalized form of the half-power bandwidth method: 
 
  𝜉𝜉 =

Δ𝜔𝜔2𝜔𝜔𝑛𝑛 �𝛾𝛾−2−1.           (5) 

 Δ𝜔𝜔 is defined as the width of the peak where the magnitude of the FRF is 𝛾𝛾 times the peak value. 

Badsar et al. (2010) recommend a value of 𝛾𝛾 = 0.99 to avoid mixing of neighbouring peaks in 

the case of multiple Rayleigh wave modes. Under the assumption that the Green's function at the 

surface is dominated by the presence of clearly separated Rayleigh wave modes, without 

significant influence of other wave types, a good approximation of the Green's function in the 

neighbourhood of the 𝑗𝑗th
 Rayleigh wave mode is: 

 𝑢𝑢�𝑖𝑖𝑖𝑖𝐺𝐺 (𝑘𝑘𝑟𝑟,𝜔𝜔) ≃ 𝐶𝐶1(𝜔𝜔)

1 − (𝑘𝑘𝑟𝑟 Re(𝑘𝑘R𝑗𝑗(𝜔𝜔))) ⁄ 2
+ 2𝜉𝜉R𝑗𝑗(𝜔𝜔)i

+ 𝐶𝐶2(𝜔𝜔),  
          (6) 

 

where 𝜉𝜉R𝑗𝑗(𝜔𝜔) = 𝐴𝐴R𝑗𝑗/𝑘𝑘R𝑗𝑗 is the damping ratio of the 𝑗𝑗th
 Rayleigh wave and 𝐶𝐶1(𝜔𝜔) and 𝐶𝐶2(𝜔𝜔) are 

(complex) constants, which depend on the damping and other wave modes. In the remainder of 

the paper, the frequency dependence will be implicitly assumed. If 𝐶𝐶2 is sufficiently small, the 

Rayleigh wave modes can accurately be picked as the peaks of the modulus of the Green’s 

function (at 𝑘𝑘R𝑗𝑗Tp) and the attenuation 𝐴𝐴R𝑗𝑗Th can be determined with the half power bandwidth 

method. Figure 4a shows 𝐴𝐴R𝑗𝑗Tp (𝑗𝑗 =  1, 2) up to 100 Hz. A good correspondence is found between 𝐴𝐴R1Tp and 𝐴𝐴R1T . For the second mode, a good correspondence between 𝐴𝐴R2Tp and 𝐴𝐴R2T  is only found 

for frequencies below 50 Hz. 

 

To account for 𝐶𝐶2 in the calculation of the Rayleigh wave phase velocity and attenuation, the 

circle fit method is proposed (Ewins, 1984). Figure 2b shows the Nyquist plot of 𝑢𝑢�𝑖𝑖𝑖𝑖𝐺𝐺 (𝑘𝑘𝑟𝑟 ,𝜔𝜔) at 

50 Hz, mapping the real part against the imaginary part for each wavenumber. In this 

representation Equation 6 corresponds to a circle. A circle is fitted through 𝑢𝑢�𝑖𝑖𝑖𝑖𝐺𝐺 (𝑘𝑘𝑟𝑟 ,𝜔𝜔) at 50 Hz 

for wavenumbers close to 𝑘𝑘R1T . |𝐶𝐶1 (2𝜉𝜉R1)⁄ | is the diameter of the circle. 𝐶𝐶2 causes a shift of the 

circle in the complex plane, thereby altering the location and shape of the peak of the modulus of 

the Green’s function. If for example the centre of the circle would be shifted to the origin of the 

complex plane, there would be no peak and all points would have the same modulus.  

 
 



 
 

Figure 3. 𝐶𝐶R𝑗𝑗T  , (𝑗𝑗 =  1, 2) (black) and (a) 𝐶𝐶R𝑗𝑗Tp (green) and 𝐶𝐶R𝑗𝑗Ep (red) determined by peak picking, 

and (b) 𝐶𝐶R𝑗𝑗Tc (green) and 𝐶𝐶R𝑗𝑗Ec (red) determined by the circle fit method. 

 

 
 

Figure 4. 𝐴𝐴R𝑗𝑗T  (black),  (𝑗𝑗 =  1, 2) and (a) 𝐴𝐴R𝑗𝑗Th (green) and 𝐴𝐴R𝑗𝑗Eh (red) determined by the half-

power bandwidth method, and (b) 𝐴𝐴R𝑗𝑗Tc  (green) and 𝐴𝐴R𝑗𝑗Ec  (red) determined by the circle fit method. 

  𝑘𝑘R1Tc is the wavenumber which maximizes the angular sweep d𝜃𝜃/𝑘𝑘𝑟𝑟, where 𝜃𝜃 is the phase of the 

Green’s function with respect to the circle centre and a reference (horizontal) line, marked green 

in figure 2. For comparison, 𝑢𝑢�𝑖𝑖𝑖𝑖𝐺𝐺 �𝑘𝑘R1T ,𝜔𝜔� at 50 Hz is marked in black. This procedure is used to 

determine 𝐶𝐶R𝑗𝑗Tc (𝑗𝑗 =  1, 2) for frequencies up to 100 Hz, shown in figure 3b. A comparison with 

figure 3a shows that 𝐶𝐶R𝑗𝑗Tc are more accurate than 𝐶𝐶R𝑗𝑗Tp.  

 

The attenuation can be determined as: 
 𝐴𝐴R𝑗𝑗Tc =

𝑘𝑘𝑎𝑎2 − 𝑘𝑘𝑏𝑏2
2𝑘𝑘R𝑗𝑗Tc[tan(𝛼𝛼𝑎𝑎 2⁄ ) + tan(𝛼𝛼𝑏𝑏 2⁄ )]

, 
(7) 

 

where 𝑘𝑘𝑎𝑎 and 𝑘𝑘𝑏𝑏 are wavenumbers larger and smaller than 𝑘𝑘R𝑗𝑗Tc, respectively, and 𝛼𝛼𝑎𝑎 and 𝛼𝛼𝑏𝑏 are 

the corresponding angles on both sides of 𝑘𝑘R𝑗𝑗Tc with respect to the centre of the circle. Different 

pairs 𝑘𝑘𝑎𝑎 and 𝑘𝑘𝑏𝑏 can be used to obtain an averaged 𝐴𝐴R𝑗𝑗Tc . The Rayleigh wave phase velocity and 

attenuation obtained with the circle fit method are independent of the value of 𝐶𝐶2. Figure 4b 

shows 𝐴𝐴R𝑗𝑗Tc   (𝑗𝑗 =  1, 2) for frequencies up to 100 Hz. A good correspondence is found between 𝐴𝐴R1Tc  and 𝐴𝐴R1T . A good correspondence  between 𝐴𝐴R2Tc  and 𝐴𝐴R2T  is only found for frequencies below 

30 Hz. A comparison with figure 4a shows that, for this site, 𝐴𝐴R𝑗𝑗Th are more accurate than 𝐴𝐴R𝑗𝑗Tc . 



Simulation of a field experiment 

 

In an active MASW experiment, the soil is often excited by a hammer impact or a drop weight 

on a foundation. From the vibration response at different receiver locations, an experimental fk-

spectrum can be obtained. Instead of performing  a real experiment, a vertical displacement field 

resulting from a spatial and temporal Dirac impulse load is simulated. Based on the analytical fk-

spectrum of 𝑢𝑢�𝑖𝑖𝑖𝑖𝐺𝐺 (𝑘𝑘𝑟𝑟 ,𝜔𝜔) shown in Figure 1a, the response 𝑢𝑢�𝑖𝑖𝑖𝑖𝐺𝐺 (𝑟𝑟,𝜔𝜔) in the frequency-space 

domain is obtained by an inverse Hankel transform, to account for the cylinder symmetry of the 

wavefronts. This transformation is partially performed analytically and numerically (Schevenels, 

2007), with 5000 wavenumbers logarithmically sampled between 𝜔𝜔 × 10−8 and 𝜔𝜔 × 104 

[rad/m] for each frequency. Next, 𝑢𝑢�𝑖𝑖𝑖𝑖𝐺𝐺 (𝑟𝑟,𝜔𝜔) is discretized according to a realistic receiver array 

with a length of 100 m and a receiver distance of 1 m. These samples are not shown here, but are 

used in a  truncated  forward Hankel transform, to obtain the experimental fk-spectrum of 𝑢𝑢�𝑖𝑖𝑖𝑖𝐺𝐺 (𝑘𝑘𝑟𝑟,𝜔𝜔). Following Forbriger (2003), the Bessel function 𝐽𝐽0(𝑘𝑘𝑟𝑟𝑟𝑟) is replaced by the zeroth 

order Hankel function 𝐻𝐻0(1)
(𝑘𝑘𝑟𝑟𝑟𝑟)/2 of the first kind to reduce aliasing by accounting for the fact 

that the wave field consists of outgoing waves only. The following transformation is obtained: 
 𝑢𝑢�𝑖𝑖𝑖𝑖𝐺𝐺 (𝑘𝑘𝑟𝑟,𝜔𝜔) =

12∫ 𝑢𝑢�𝑖𝑖𝑖𝑖𝐺𝐺 (𝑟𝑟,𝜔𝜔)
𝑟𝑟max0 𝐻𝐻01(𝑘𝑘𝑟𝑟𝑟𝑟)d𝑟𝑟.             (8) 

 

The integral is evaluated using a generalized Filon quadrature (Frazer and Gettrust, 1984), using 

linear interpolation. Figure 5a shows the experimental fk-spectrum of the Green’s function at the 

site in Lincent, normalized for each frequency, as a function of frequency 𝜔𝜔 and phase velocity 𝐶𝐶𝑟𝑟 = 𝜔𝜔/𝑘𝑘𝑟𝑟.  It can be seen that the truncation of the integral in Equation 8 results in a widening 

of the Rayleigh peak, called leakage, at low frequencies in the fk-spectrum and consequently an 

overestimation of the attenuation coefficient. In order to mitigate this effect, a window 𝑤𝑤�(𝑟𝑟,𝜔𝜔) = 𝑒𝑒−𝐴𝐴art(𝜔𝜔)𝑟𝑟 that decays exponentially with the distance 𝑟𝑟 is applied to the data in the 

frequency-space domain, when calculating the attenuation. A similar windowing technique is 

commonly used in mechanical and structural dynamics to determine the damping ratio of weakly 

damped systems from a free vibration signal with a limited length in time (Fladung and Rost, 

1997). The application of an exponential window can be considered as the introduction of 

artificial damping, resulting in a stronger spatial decay of the surface waves. This needs to be 

compensated for when calculating the attenuation.  The decay rate is determined by 𝐴𝐴art(𝜔𝜔). For 

each frequency 𝐴𝐴art(𝜔𝜔) is chosen as the smallest positive value that satisfies the following 

inequality: 
 𝐴𝐴art(𝜔𝜔) =

𝑤𝑤�(𝑟𝑟max,𝜔𝜔)𝑢𝑢�𝑧𝑧𝑧𝑧𝐺𝐺 (𝑟𝑟max,𝜔𝜔)𝑤𝑤�(𝑟𝑟min,𝜔𝜔)𝑢𝑢�𝑧𝑧𝑧𝑧𝐺𝐺 (𝑟𝑟min,𝜔𝜔)
 ≤ 𝑞𝑞, 

            (9) 

 

where 𝑟𝑟min and 𝑟𝑟max denote the positions of the nearest and the farthest receiver, respectively. 

The application of the window ensures that the amplitude ratio of the response at the farthest and 

the nearest receiver does not exceed a value 𝑞𝑞. The optimal value of 𝑞𝑞 depends on the receiver 

setup. Badsar et al. (2010) recommend a value of 𝑞𝑞 = 10−4 for the setup used here. The 

attenuation coefficient obtained for the different modes is affected by the exponential window 𝑤𝑤�(𝑟𝑟,𝜔𝜔). The values of 𝐴𝐴R𝑗𝑗Eh(𝜔𝜔) or 𝐴𝐴R𝑗𝑗Ec(𝜔𝜔) are retrieved by subtracting the artificial attenuation 

coefficient 𝐴𝐴art(𝜔𝜔).  
 



 
 

Figure 5. Experimental (a) fk-spectrum of the Green's function at the site in Lincent, (b) modulus 

and (c) Nyquist plot of the Green's function 𝑢𝑢�𝑖𝑖𝑖𝑖𝐺𝐺 (𝑘𝑘𝑟𝑟 ,𝜔𝜔) at 50 Hz. 
 

The experimental fk-spectrum is now used to obtain 𝐶𝐶R𝑗𝑗Ep with peak picking, 𝐴𝐴R𝑗𝑗Eh with the half-

power bandwidth method and 𝐶𝐶R𝑗𝑗Ec and 𝐴𝐴R𝑗𝑗Ec  with the circle fit method,  for the first two modes for 

frequencies up to 100 Hz. Figure 5b and 5c show the modulus and Nyquist plot of the 

experimental Green's function 𝑢𝑢�𝑖𝑖𝑖𝑖𝐺𝐺 (𝑘𝑘𝑟𝑟 ,𝜔𝜔) at 50 Hz, respectively. A comparison with the 

theoretical Green’s function in figure 2, shows that the experimental function is affected by the 

spatial sampling of the MASW experiment. The black markers correspond to 𝑘𝑘Rj,T  the red to 𝑘𝑘R𝑗𝑗Ep 

and the green to 𝑘𝑘Rj1Ec . The circle of the second mode is shifted towards the origin of the complex 

plane, which results in a shift and a widening of the peak, explaining the less accurate estimates 

of phase velocity and attenuation obtained by the peak picking and half-power bandwidth 

method for the second mode. The circle fit method is not influenced by the shift of the circle. 
 

Figure 3a shows a comparison between 𝐶𝐶R𝑗𝑗T , 𝐶𝐶R𝑗𝑗Tp and 𝐶𝐶R𝑗𝑗Ep obtained with peak picking. A good fit 

is found between the experimental dispersion curve 𝐶𝐶R1Ep and both theoretical dispersion curves 𝐶𝐶R1T  and 𝐶𝐶R1Tp for frequencies above 15 Hz, even for frequencies where aliasing occurs. For 𝐶𝐶R2Ep, a 

deviation up to 5 m/s is found with 𝐶𝐶R2T  or 𝐶𝐶R2Tp. Figure 3b shows a similar comparison between 𝐶𝐶R𝑗𝑗T , 𝐶𝐶R𝑗𝑗Tc and 𝐶𝐶R𝑗𝑗Ec obtained with the circle fit method. For both modes the circle fit method is 

more accurate than the peak picking method. 
 

Figure 4a shows a comparison between 𝐴𝐴R𝑗𝑗T , 𝐴𝐴R𝑗𝑗Th and 𝐴𝐴R𝑗𝑗Eh obtained with the half-power 

bandwidth method. There is a good correspondence between the experimental curve 𝐴𝐴R1Eh and the 

theoretical curves 𝐴𝐴R1T  and 𝐴𝐴R1Th for frequencies between 15 and 80 Hz. For the second mode, the 

half-power bandwidth method performed on the experimental fk-spectrum is affected by the 

discretization and truncation of the Hankel transform and, although there is a reasonable fit 

between 𝐴𝐴R2Th and 𝐴𝐴R2T , there is no good fit between 𝐴𝐴R2Eh  and any of the two theoretical curves. 

Figure 4b shows a comparison between 𝐴𝐴R𝑗𝑗T , 𝐴𝐴R𝑗𝑗Tc  and 𝐴𝐴R𝑗𝑗Ec  obtained with the circle fit method. 

There is a good correspondence between the experimental curve 𝐴𝐴R1Ec  and the theoretical curves 𝐴𝐴R1T  and 𝐴𝐴R1Tc  for frequencies between 15 and 80 Hz. For the higher frequencies, the estimate 𝐴𝐴R1Eh  

is slightly better. For the second mode, neither 𝐴𝐴R2Tc  or 𝐴𝐴R2Ec  have a good match with 𝐴𝐴R𝑗𝑗T  for 

frequencies above 30 Hz. There is, however, a good fit between 𝐴𝐴R2Ec  and 𝐴𝐴R2Tc . This means that, 

although the circle fit method does not result in the exact attenuation curve, the results are less 

affected by the discretization and truncation of the Hankel transform. 𝐴𝐴RTc could thus be used as a 

new, robust measure of Rayleigh wave attenuation during an inversion procedure. 



Conclusions 

 

The circle fit method for determination of dispersion and attenuation curves of Rayleigh wave 

modes of layered halfspaces is presented. Based on the example shown, it is found that this 

method allows for a better determination of multi-modal dispersion curves than traditional peak 

picking in the fk-domain. Regarding the determination of attenuation curves, it is found that for 

higher order, non-dominant Rayleigh wave modes, it is possible to obtain an experimental 

measure of attenuation, allowing a multi-modal inversion process to determine material 

damping, which was previously not possible. 
 

Acknowledgments  

 

The first author is a doctoral fellow of the Research Foundation Flanders (FWO). The financial 

support is gratefully acknowledged. 

References 
 
Badsar SA, Schevenels M, Haegeman W, and Degrande G. Determination of the damping ratio in the soil from 

SASW tests using the half-power bandwidth method. Geophysical Journal International 2010; 182(3): 1493–1508. 

Ewins DJ. Modal testing: theory and practice. Research Studies Press Ltd., Letchworth, UK, 1984. 

Fladung W and Rost R. Application and correction of the exponential window for frequency response functions. 

Mechanical Systems and Signal Processing 1997; 11(1): 23–36. 

Forbriger T. Inversion of shallow-seismic wavefields: I. Wavefield transformation. Geophysical Journal 

International 2003; 153(3): 719–734. 

Foti S. Using transfer function for estimating dissipative properties of soils from surface-wave data. Near Surface 

Geophysics 2004; 2(4): 231–240. 

Foti S, Parolai S, Albarello D, and Picozzi M. Application of surface-wave methods for seismic site characterization. 

Surveys in Geophysics 2011; 32(6): 777–825. 

Frazer LN and Gettrust JF. On a generalization of Filon’s method and the computation of the oscillatory integrals of 

seismology. Geophysical Journal of the Royal Astronomical Society 1984; 76: 461–481. 

Kausel E and Roësset JM. Stiffness matrices for layered soils. Bulletin of the Seismological Society of America 

1981; 71(6): 1743–1761. 

Lai GC, Rix GJ, Foti S, and Roma V. Simultaneous measurement and inversion of surface wave dispersion and 

attenuation curves. Soil Dynamics and Earthquake Engineering 2002; 22(9-12): 923–930. 

Misbah AS and Strobbia CL. Joint estimation of modal attenuation and velocity from multichannel surface wave 

data. Geophysics 2014; 79(3): 25-38. 

Park CB, Miller RD, and Xia J. Multichannel analysis of surface waves. Geophysics 1999; 64(3): 800–808. 

Rizzo FJ and Shippy DJ. An application of the correspondence principle of linear viscoelasticity theory. SIAM 

Journal on Applied Mathematics 1971, 21(2): 321–330. 

Schevenels M, The impact of uncertain dynamic soil characteristics on the prediction of ground vibrations. Ph.D. 

thesis, Department of Civil Engineering, KU Leuven, 2007 

Schevenels M, François S, and Degrande G. EDT: An ElastoDynamics Toolbox for MATLAB. Computers & 

Geosciences 2009; 35(8): 1752–1754. 

Xia J, Miller RD, Park CB, and Tian G. Determining Q of near-surface materials from Rayleigh waves. Journal of 

Applied Geophysics 2002, 51(2-4):121–129. 


	Main Menu
	Conference Programme
	Author Index
	Multi-modal determination of Rayleigh wave dispersion and attenuation curves using the circle fit method
	ABSTRACT
	Introduction
	Wave propagation in layered media
	Simulation of a field experiment
	Conclusions
	Acknowledgments
	References

