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ABSTRACT

The studies on the dynamic analysis of saturated soils led to various numerical approaches that
involve different assumptions, different governing equations and also different sets of free
variables. The relatively complex mathematical structure of the problem does not permit a
straightforward evaluation of the consequences of these assumptions and, hence, makes the choice
of the most appropriate numerical approach somewhat controversial. Here the complete
formulation of dynamic two-phase problems is first summarized, under assumptions which seem
acceptable in the geotechnical engineering context. Then, two finite element approaches are
derived on this basis, the latter of which permits reducing the number of free nodal variables with
respect to the first one. Finally, the results obtained in the solution of two benchmark problems are
presented and commented upon.

Introduction

The solution of geotechnical problems involving saturated two phase-soils requires the
simultaneous analyses of the seepage flow and of the effective stress distribution within the soil
skeleton. In quasi static conditions, under an acceleration field constant with time (i.e. the gravity
field), the literature provides exhaustive theoretical bases and broadly accepted methods for the
numerical analysis of seepage and of the coupled effective stress-flow problem, e.g. Desai
(1976), Sandhu & Wilson (1969), Zaman et al. (2000).

In dynamic conditions however, e.g. during earthquakes, the analysis of seepage becomes less
straightforward since recourse cannot be made to the usual concept of hydraulic head (Bear,
1988; Bird et al., 2007). This led to various numerical approaches for dynamic coupled problems
that involve different assumptions, different governing equations and different sets of free
variables (Zienkiewicz & Shiomi 1984; Cividini & Pergalani, 1994; Zienkiewicz et al., 1999).

The relatively complex mathematical structure of the problem does not permit a straightforward
evaluation of the consequences of these assumptions and, hence, makes the choice of the most
appropriate numerical approach somewhat controversial. This suggested undertaking a study on
the coupled dynamic analysis of saturated granular deposits.
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Its initial part, limited to dynamic seepage flows, was presented in Stucchi et al. (2010) and in
Cividini & Gioda (2014). Here the complete formulation of dynamic two-phase problems is
summarized, observing some difference in the final finite element equations with respect to those
of other formulations presented in the literature. Then a simplified formulation, worked out in
order to reduce the number of the free nodal variables, is recalled. The details of derivations are
rather lengthy and are omitted here for sake of briefness. They will be presented in a parallel
paper (Cividini & Gioda, 2015).

Two test problems are considered. The first one concerns the dynamic effects on a vertical rigid
wall confining a water reservoir. The results obtained with the first formulation are compared
with the closed form solution proposed by Westergaard (1933). The example was also solved
with the “reduced mixed formulation” proposed by Zienkiewicz & Shiomi (1984). Then, the two
formulations considered here are applied to the solution of a second illustrative problem
concerning the dynamic behaviour of a flexible retaining wall. The comparison of their results
permits drawing some preliminary conclusions on the accuracy of the simplified approach with
respect to the “complete” one.

Governing Equations

The equations necessary to describe the behavior of the liquid phase (which is denoted by
subscript index L) are recalled first. They hold under the following assumptions that seem
acceptable in the geotechnical context: a Newtonian pore liquid (water) is considered with
constant deviatoric viscosity and no volumetric viscosity; the liquid has a constant density and its
volumetric deformation linearly depends on the pore pressure; the influence of temperature is
neglected; the fluid flow is laminar. They are:

1) Equation of compatibility, relating the strain rate vector &, to the relative (with respect to the
skeleton) discharge velocity w and to the skeleton velocity.

2) Constitutive relationship, expressing the stresses o, acting on the liquid phase having pore
pressure p and accounting for its shear viscosity g, .

3) Equation of continuity, enforcing the conservation of the liquid mass, and considering that the
bulk modulus B, depends on the compressibility of water and grains.

4) Equation of motion of the fluid phase, enforcing the momentum balance of the mass of water
contained within a fixed unit volume of the porous medium. The terms depend on vectors w,
ii, g collecting, respectively, the components of the relative discharge acceleration; of the
skeleton acceleration and of the acceleration of gravity and on the intrinsic permeability
matrix K'. Note that the quadratic discharge velocity term is neglected because its
contribution is marginal in seepage problems.

5) Equation of motion of the two-phase medium written introducing the constitutive matrix of
the solid phase Dg and the global constitutive viscosity matrix V;, of the coupled solid and
liquid phases.

The dynamic two-phase problem is governed by the system of three differential equations
recalled at points 3), 4) and 5), which involves as unknown functions the relative discharge
velocity w, the skeleton displacements # and the pore pressure p.



Boundary Conditions

With reference to confined seepage flows, the saturated porous domain has surface /"and volume
. The surface 7 is subdivided into its impervious part, /,, where the relative discharge velocity
component normal to it w, vanishes, and its pervious part /, where the pore pressure p is
known.

The surface 7/ can be also subdivided into 7, where the displacements u are known, and 7/
where the three components of the total surface tractions ¢ are imposed.

Finite Element Formulation

Relative discharge velocities w® and displacements u® are defined at nodes of the e-th element,
while the pore pressure p® is seen here as an element variable and is defined at the element
integration points.

The distributions of relative discharge velocities w and displacements # within the element
depend on the interpolation function matrices S, S, and the matrices B;, B, contain the
space derivatives of the interpolation functions.

The first finite element formulation does not introduce further simplifying assumptions with
respect to those already adopted for deriving the governing equations above recalled at points 3),
4) and 5). The finite element form is obtained by writing them and the corresponding boundary
conditions in weak form; multiplying them, respectively, by a virtual variation ow of the relative
discharge velocities and of the displacements du and integrating over the volume (2 and over

the relevant part of the surface /” of an element of the porous medium. This leads to the
following set of matrix equations:
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Note that vectors f and f, depend on the unknown pore pressure distribution within the

element. Consequently, also the following equation that represents the finite element form of the
continuity equation referred at point 3) is necessary for solution

p=B,(m"Biu +m" BSw°)

(2)
This “complete” formulation is referred to in the following as u-w approach.

A simplified formulation (referred to as u approach) is obtained taking into account that some
terms, in the governing equations cited at points 4) and 5), could be disregarded since their
contribution is likely to be marginal (Zienkiewicz et al., 1999). These are the terms that contain
the relative discharge acceleration and the second space derivatives of the discharge velocity and
of the velocity of the solid phase. Based on these additional assumptions, the governing equation
reduces to the following form that does not involve the discharge velocity as a free variable
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Also in this case Equation 2 is necessary for evaluating the pore pressure.
Time Integration Scheme

Let me write Equations 1 and 3 in the compact form expressed by Equation 4, with obvious

meanings of symbols. Note that vector b depends on the pore pressure, while & is known and
depends solely on time .

Z x(1) + Z,%(t) + Z,%(t) = b(p,1) + b(z) @
In order to integrate Equation 4 in time, it is assumed that the variation of X(¢) within a time
increment At; is governed by an a priory chosen interpolation function (Newmark, 1959; Katona
& Zienkiewicz, 1985). This leads to the following recursive forms, where AX, represents the

increment of the second derivative at the end of the step and the coefficients 3¢ and B; depend on
the interpolation function adopted for x(7) :
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Substitution of Equations 5 into Equation 4 leads to
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Knowing the free variables x;.;, their derivatives and the pore pressure at time #;;, an iterative
process is necessary to evaluate them at time ¢;:

- Vector b(p,,t,) is approximated adopting the values of the pore pressure at time #; obtained by
the previous iteration.

- Vector Ax, is determined by Equation 6, then x;, x;, X, are updated through Equations 5.

- The pore pressure rate p, is evaluated at the integration points of each element by means of

Equation 2 and p, is determined through Equation 5.
- Vector b(p,,t,) is updated and the next iteration is carried out.

- The process ends when vector x(¢,) and the pore pressure p, stabilize.

Considering the small value of the time steps adopted in most dynamic analyses, the iterative
process could be avoided in linear analyses by adopting a time marching scheme in which vector
b at time #; is calculated on the basis of the element pore pressure at time ¢;_;.

Ilustrative Examples

Two test examples have been solved through the previously described u-w “complete” approach.
To validate the numerical results, the first example was also solved with the “reduced mixed
formulation”, or u-U approach, proposed by Zienkiewicz & Shiomi (1984). The second example
is used for investigating the accuracy of the simplified u approach the results of which are
compared with those of the u-w formulation.

The first example concerns the evaluation of the water pressure distribution on a vertical rigid
wall due to a dynamic excitation in the horizontal direction. This problem was first investigated
by Westergaard (1933) who provided solutions frequently employed for estimating the effects of
earthquakes on dams and on retaining structures in saturated granular soils. Considering that the
period of free vibrations 7 of most dams is appreciably lower than the period of earthquakes 7,
it can be reasonably assumed that during time all points of the dam have the same horizontal
acceleration, which coincides with the one of its base. Westergaard worked out two closed form
solutions in plane. The first one neglects the vertical displacement of water, while the second
solution takes it into account. The latter one is here adopted for evaluating the dynamic excess
water pressure against the wall, i.e. the dynamic water pressure increment with respect to the
hydrostatic condition.

The numerical analysis was based on a mesh consisting of 50 four node, quadrilateral
isoparametric elements and of 66 nodes (6 of which belong to the vertical wall). The numerical
results are compared in Figure 1 with Westergaard solution. Figures la and 1b show,
respectively, the maximum dynamic excess pressure distribution along the vertical coordinate
and the variation with time of the excess pressure at the wall base. In these figures H is the height
of the wall, p,,., 1s the maximum excess pressure at the base from the closed form solution and 7
is the period of the sinusoidal excitation.



The u-w results are also compared with those obtained using the u-U formulation (Zienkiewicz
& Shiomi, 1984). It can be observed that the u-w approach provides an acceptable approximation
of the closed form solution, with an accuracy slightly higher than that of the u-U formulation.
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Figure 1. Maximum dynamic excess pressure distribution along the vertical wall (a) and
variations with time of the dynamic excess pressure at the wall base (b): comparison of the u-w
results with Westergaard solution and the results of the u-U approach.

The second example concerns a shallow excavation into saturated granular soil, supported by
two flexible retaining walls (Figure 2a). The analyses were carried out by modelling the
excavation and the lowering of the water table in five steps (Cividini & Gioda, 2015).
Subsequently, a dynamic excitation in the horizontal direction is imposed to the bedrock which
derives from the north-south component of the Tolmezzo main shock 1976 earthquake (available
from the database ITACA). The excitation, lasting 15 seconds, is corrected so that at the end of it
the velocity at the mesh bottom vanishes. Since the main frequency content of the considered
earthquake is below 3 Hz the adopted mesh is adequate to propagate a reasonable portion of the
energy input even in terms of shear waves.

Zienkiewicz & Bettess (1982) showed that, depending on the geometrical and material
characteristics of the problem at hand, a fully coupled Biot dynamic analysis can be mandatory.
The problem under examination falls in this category.

Figures 2 and 3 show the evolution in time of nodal displacements and of the average pore
pressures obtained adopting the 'complete' u-w approach and the simplified # analysis. The
displacements refer to point A located on the retaining wall (cf. Figure 2a). In Figures 2b and 2¢
Uy exe and u, o, are, respectively, the absolute value of the horizontal and vertical displacements
evaluated at the end of the excavation steps.

The diagrams in Figure 3 report the variation with time of the average pore pressure within two
elements B and C. The first one is located in the deposit at the same level of the excavation
bottom, while the second one is below the excavation area, close to the tip of the left wall. It can
be observed that in this illustrative example the difference between the quantities evaluated with
the two formulations is appreciable on the horizontal displacements and on the pore pressures
while it is limited on the vertical displacements.
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Figure 2. Scheme of the excavation supported by two flexible walls (a). Variation in time, at
point A, of the horizontal displacement u, (b) and of the vertical displacement u, (c), calculated
with the 'complete' u-w and the simplified u approaches.
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Figure 3. Average pore pressure p versus time in elements B and C: comparison between the
results of 'complete' u-w (solid lines) and of simplified # (dashed lines) approaches (p, is the
atmospheric pressure value).

It is worthwhile to note that, in general, the differences between the quantities evaluated with the
two formulations are appreciable not only during the earthquake motion, but also during the
early stage of the post-earthquake consolidation process as shown in Cividini & Gioda (2013).



Concluding Remarks

The complete formulation of dynamic two-phase problems has been summarized introducing
assumptions which seem acceptable in the geotechnical engineering context. Two finite element
approaches were derived on this basis. They are referred to as the “complete” u-w and the
“simplified” u formulations. The latter of them, in fact, permits reducing the number of nodal
variables with respect to the first one with a consequent reduction of the computational burden.

The results obtained in the solution of a first bench mark problem, involving solely the liquid
phase, showed an acceptable agreement with the corresponding analytical solution. A second text
example was then solved which concerns a shallow excavation, supported by flexible retaining
walls, into saturated granular soil. A discrepancy was observed in this case between the results of
the two approaches. In particular, the simplified u approach provides soil displacement and pore
pressure values which are somewhat greater than those obtained with the complete w-w
formulation. The analysis of the causes of the possible discrepancy, and of its relevance in
engineering terms, requires some further investigation, considering more severe shaking
conditions and that will be part of the a subsequent study.
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