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ABSTRACT 
 
 The studies on the dynamic analysis of saturated soils led to various numerical approaches that 

involve different assumptions, different governing equations and also different sets of free 

variables. The relatively complex mathematical structure of the problem does not permit a 

straightforward evaluation of the consequences of these assumptions and, hence, makes the choice 

of the most appropriate numerical approach somewhat controversial. Here the complete 

formulation of dynamic two-phase problems is first summarized, under assumptions which seem 

acceptable in the geotechnical engineering context. Then, two finite element approaches are 

derived on this basis, the latter of which permits reducing the number of free nodal variables with 

respect to the first one. Finally, the results obtained in the solution of two benchmark problems are 

presented and commented upon. 

 

Introduction 

 

The solution of geotechnical problems involving saturated two phase-soils requires the 

simultaneous analyses of the seepage flow and of the effective stress distribution within the soil 

skeleton. In quasi static conditions, under an acceleration field constant with time (i.e. the gravity 

field), the literature provides exhaustive theoretical bases and broadly accepted methods for the 

numerical analysis of seepage and of the coupled effective stress-flow problem, e.g. Desai 

(1976), Sandhu & Wilson (1969), Zaman et al. (2000). 

 

In dynamic conditions however, e.g. during earthquakes, the analysis of seepage becomes less 

straightforward since recourse cannot be made to the usual concept of hydraulic head (Bear, 

1988; Bird et al., 2007). This led to various numerical approaches for dynamic coupled problems 

that involve different assumptions, different governing equations and different sets of free 

variables (Zienkiewicz & Shiomi 1984; Cividini & Pergalani, 1994; Zienkiewicz et al., 1999). 

 

The relatively complex mathematical structure of the problem does not permit a straightforward 

evaluation of the consequences of these assumptions and, hence, makes the choice of the most 

appropriate numerical approach somewhat controversial. This suggested undertaking a study on 

the coupled dynamic analysis of saturated granular deposits.  
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Its initial part, limited to dynamic seepage flows, was presented in Stucchi et al. (2010) and in 

Cividini & Gioda (2014). Here the complete formulation of dynamic two-phase problems is 

summarized, observing some difference in the final finite element equations with respect to those 

of other formulations presented in the literature. Then a simplified formulation, worked out in 

order to reduce the number of the free nodal variables, is recalled. The details of derivations are 

rather lengthy and are omitted here for sake of briefness. They will be presented in a parallel 

paper (Cividini & Gioda, 2015).  
 

Two test problems are considered. The first one concerns the dynamic effects on a vertical rigid 

wall confining a water reservoir. The results obtained with the first formulation are compared 

with the closed form solution proposed by Westergaard (1933). The example was also solved 

with the “reduced mixed formulation” proposed by Zienkiewicz & Shiomi (1984). Then, the two 

formulations considered here are applied to the solution of a second illustrative problem 

concerning the dynamic behaviour of a flexible retaining wall. The comparison of their results 

permits drawing some preliminary conclusions on the accuracy of the simplified approach with 

respect to the “complete” one. 
 

Governing Equations 
 

The equations necessary to describe the behavior of the liquid phase (which is denoted by 

subscript index L) are recalled first. They hold under the following assumptions that seem 

acceptable in the geotechnical context: a Newtonian pore liquid (water) is considered with 

constant deviatoric viscosity and no volumetric viscosity; the liquid has a constant density and its 

volumetric deformation linearly depends on the pore pressure; the influence of temperature is 

neglected; the fluid flow is laminar. They are: 

1) Equation of compatibility, relating the strain rate vector 
Lε to the relative (with respect to the 

skeleton) discharge velocity w  and to the skeleton velocity. 

2) Constitutive relationship, expressing the stresses 
Lσ  acting on the liquid phase having pore 

pressure p and accounting for its shear viscosity 
Lµ . 

3) Equation of continuity, enforcing the conservation of the liquid mass, and considering that the 

bulk modulus UB depends on the compressibility of water and grains. 

4) Equation of motion of the fluid phase, enforcing the momentum balance of the mass of water 

contained within a fixed unit volume of the porous medium. The terms depend on vectors w , 

u , g  collecting, respectively, the components of the relative discharge acceleration; of the 

skeleton acceleration and of the acceleration of gravity and on the intrinsic permeability 

matrix 'K . Note that the quadratic discharge velocity term is neglected because its 

contribution is marginal in seepage problems. 

5) Equation of motion of the two-phase medium written introducing the constitutive matrix of 

the solid phase SD  and the global constitutive viscosity matrix SLV  of the coupled solid and 

liquid phases.  
 

The dynamic two-phase problem is governed by the system of three differential equations 

recalled at points 3), 4) and 5), which involves as unknown functions the relative discharge 

velocity w , the skeleton displacements u  and the pore pressure p. 



Boundary Conditions 

 

With reference to confined seepage flows, the saturated porous domain has surface Γ and volume 

Ω. The surface Γ is subdivided into its impervious part, Γw where the relative discharge velocity 

component normal to it nw  vanishes, and its pervious part Γp where the pore pressure p  is 

known.  

 

The surface Γ can be also subdivided into Γu, where the displacements u  are known, and Γσ 

where the three components of the total surface tractions t  are imposed. 

 

Finite Element Formulation 

 

Relative discharge velocities w
e
 and displacements u

e
 are defined at nodes of the e-th element, 

while the pore pressure p
e
 is seen here as an element variable and is defined at the element 

integration points. 

 

The distributions of relative discharge velocities w and displacements u within the element 

depend on the interpolation function matrices e

wS , e

uS  and the matrices e

wB , e

uB  contain the 

space derivatives of the interpolation functions. 

 

The first finite element formulation does not introduce further simplifying assumptions with 

respect to those already adopted for deriving the governing equations above recalled at points 3), 

4) and 5). The finite element form is obtained by writing them and the corresponding boundary 

conditions in weak form; multiplying them, respectively, by a virtual variation δw of the relative 

discharge velocities and of the displacements uδ  and integrating over the volume Ω  and over 

the relevant part of the surface Γ of an element of the porous medium. This leads to the 

following set of matrix equations: 
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Note that vectors e

Lpf  and e

upf  depend on the unknown pore pressure distribution within the 

element. Consequently, also the following equation that represents the finite element form of the 

continuity equation referred at point 3) is necessary for solution 
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This “complete” formulation is referred to in the following as u-w approach.  

 

A simplified formulation (referred to as u approach) is obtained taking into account that some 

terms, in the governing equations cited at points 4) and 5), could be disregarded since their 

contribution is likely to be marginal (Zienkiewicz et al., 1999). These are the terms that contain 

the relative discharge acceleration and the second space derivatives of the discharge velocity and 

of the velocity of the solid phase. Based on these additional assumptions, the governing equation 

reduces to the following form that does not involve the discharge velocity as a free variable 
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Also in this case Equation 2 is necessary for evaluating the pore pressure. 

 

Time Integration Scheme 

 

Let me write Equations 1 and 3 in the compact form expressed by Equation 4, with obvious 

meanings of symbols. Note that vector b depends on the pore pressure, while b  is known and 

depends solely on time t. 
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In order to integrate Equation 4 in time, it is assumed that the variation of )(tx  within a time 

increment ∆ti is governed by an a priory chosen interpolation function (Newmark, 1959; Katona 

& Zienkiewicz, 1985). This leads to the following recursive forms, where ix∆  represents the 

increment of the second derivative at the end of the step and the coefficients β0 and β1 depend on 

the interpolation function adopted for )(tx : 
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Substitution of Equations 5 into Equation 4 leads to   
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Knowing the free variables xi-1, their derivatives and the pore pressure at time ti-1, an iterative 

process is necessary to evaluate them at time ti:  

- Vector ),( ii tpb is approximated adopting the values of the pore pressure at time ti obtained by 

the previous iteration. 

- Vector ix∆  is determined by Equation 6, then ix , ix , ix  are updated through Equations 5. 

- The pore pressure rate ip  is evaluated at the integration points of each element by means of 

Equation 2 and ip  is determined through Equation 5. 

- Vector ),( ii tpb  is updated and the next iteration is carried out. 

- The process ends when vector )( itx  and the pore pressure ip  stabilize. 

 

Considering the small value of the time steps adopted in most dynamic analyses, the iterative 

process could be avoided in linear analyses by adopting a time marching scheme in which vector 

b at time ti is calculated on the basis of the element pore pressure at time ti-1. 

 

Illustrative Examples 

 

Two test examples have been solved through the previously described u-w “complete” approach. 

To validate the numerical results, the first example was also solved with the “reduced mixed 

formulation”, or u-U approach, proposed by Zienkiewicz & Shiomi (1984). The second example 

is used for investigating the accuracy of the simplified u approach the results of which are 

compared with those of the u-w formulation. 

 

The first example concerns the evaluation of the water pressure distribution on a vertical rigid 

wall due to a dynamic excitation in the horizontal direction. This problem was first investigated 

by Westergaard (1933) who provided solutions frequently employed for estimating the effects of 

earthquakes on dams and on retaining structures in saturated granular soils. Considering that the 

period of free vibrations T0 of most dams is appreciably lower than the period of earthquakes T, 

it can be reasonably assumed that during time all points of the dam have the same horizontal 

acceleration, which coincides with the one of its base. Westergaard worked out two closed form 

solutions in plane. The first one neglects the vertical displacement of water, while the second 

solution takes it into account. The latter one is here adopted for evaluating the dynamic excess 

water pressure against the wall, i.e. the dynamic water pressure increment with respect to the 

hydrostatic condition.  

 

The numerical analysis was based on a mesh consisting of 50 four node, quadrilateral 

isoparametric elements and of 66 nodes (6 of which belong to the vertical wall). The numerical 

results are compared in Figure 1 with Westergaard solution. Figures 1a and 1b show, 

respectively, the maximum dynamic excess pressure distribution along the vertical coordinate 

and the variation with time of the excess pressure at the wall base. In these figures H is the height 

of the wall, pmax is the maximum excess pressure at the base from the closed form solution and T 

is the period of the sinusoidal excitation. 

 



The u-w results are also compared with those obtained using the u-U formulation (Zienkiewicz 

& Shiomi, 1984). It can be observed that the u-w approach provides an acceptable approximation 

of the closed form solution, with an accuracy slightly higher than that of the u-U formulation. 

 

 

 

 

 

Figure 1. Maximum dynamic excess pressure distribution along the vertical wall (a) and 

variations with time of the dynamic excess pressure at the wall base (b): comparison of the u-w 

results with Westergaard solution and the results of the u-U approach. 

 

The second example concerns a shallow excavation into saturated granular soil, supported by 

two flexible retaining walls (Figure 2a). The analyses were carried out by modelling the 

excavation and the lowering of the water table in five steps (Cividini & Gioda, 2015). 

Subsequently, a dynamic excitation in the horizontal direction is imposed to the bedrock which 

derives from the north-south component of the Tolmezzo main shock 1976 earthquake (available 

from the database ITACA). The excitation, lasting 15 seconds, is corrected so that at the end of it 

the velocity at the mesh bottom vanishes. Since the main frequency content of the considered 

earthquake is below 3 Hz the adopted mesh is adequate to propagate a reasonable portion of the 

energy input even in terms of shear waves. 

 

Zienkiewicz & Bettess (1982) showed that, depending on the geometrical and material 

characteristics of the problem at hand, a fully coupled Biot dynamic analysis can be mandatory. 

The problem under examination falls in this category.  

 

Figures 2 and 3 show the evolution in time of nodal displacements and of the average pore 

pressures obtained adopting the 'complete' u-w approach and the simplified u analysis. The 

displacements refer to point A located on the retaining wall (cf. Figure 2a). In Figures 2b and 2c 

ux exc and uy exc are, respectively, the absolute value of the horizontal and vertical displacements 

evaluated at the end of the excavation steps. 

 

The diagrams in Figure 3 report the variation with time of the average pore pressure within two 

elements B and C. The first one is located in the deposit at the same level of the excavation 

bottom, while the second one is below the excavation area, close to the tip of the left wall. It can 

be observed that in this illustrative example the difference between the quantities evaluated with 

the two formulations is appreciable on the horizontal displacements and on the pore pressures 

while it is limited on the vertical displacements. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Scheme of the excavation supported by two flexible walls (a). Variation in time, at 

point A, of the horizontal displacement ux (b) and of the vertical displacement uy (c), calculated 

with the 'complete' u-w and the simplified u approaches.   

 

 

 

 

 

Figure 3. Average pore pressure p versus time in elements B and C: comparison between the 

results of 'complete' u-w (solid lines) and of simplified u (dashed lines) approaches (pa is the 

atmospheric pressure value). 

 

It is worthwhile to note that, in general, the differences between the quantities evaluated with the 

two formulations are appreciable not only during the earthquake motion, but also during the 

early stage of the post-earthquake consolidation process as shown in Cividini & Gioda (2013). 

 



Concluding Remarks 

 

The complete formulation of dynamic two-phase problems has been summarized introducing 

assumptions which seem acceptable in the geotechnical engineering context. Two finite element 

approaches were derived on this basis. They are referred to as the “complete” u-w and the 

“simplified” u formulations. The latter of them, in fact, permits reducing the number of nodal 

variables with respect to the first one with a consequent reduction of the computational burden. 

 

The results obtained in the solution of a first bench mark problem, involving solely the liquid 

phase, showed an acceptable agreement with the corresponding analytical solution. A second text 

example was then solved which concerns a shallow excavation, supported by flexible retaining 

walls, into saturated granular soil. A discrepancy was observed in this case between the results of 

the two approaches. In particular, the simplified u approach provides soil displacement and pore 

pressure values which are somewhat greater than those obtained with the complete u-w 

formulation. The analysis of the causes of the possible discrepancy, and of its relevance in 

engineering terms, requires some further investigation, considering more severe shaking 

conditions and that will be part of the a subsequent study. 

 

Acknowledgments  

 

The CNR2012 and PRIN2008 financial support of the Ministry of University and Research of 

the Italian Government is gratefully acknowledged.  

 

References 

 
Bear, J. (1988), Dynamics of Fluids in Porous Media, Dover Publications, NewYork, USA. 

Bird, R.B., Stewart, W.E. & Lightfoot, E.N. (2007), Transport Phenomena, John Wiley & Sons, NewYork, USA. 

Cividini, A. & Gioda, G. (2013), Approcci ad elementi finiti per l'analisi di terreni saturi. Atti del XV Convegno 

ANIDIS - L’Ingegneria Sismica in Italia; a cura di F.Braga e C.Modena con la collaborazione di M.A.Zanini e 

L.Brandolin, Tema: b. Vulnerabilità e rischio sismico, Padova, 30 Giugno - 4 Luglio, Padova University Press, 

(Italy), ISBN 978-88-97385-59-2. 

Cividini, A. & Gioda, G. (2014), Seepage flow analysis in gravity and in variable acceleration fields. Annals of the 

University of Bucharest (mathematical series), ISSN 2067-9009, 5(2):245-258. 

Cividini, A. & Gioda, G. (2015), "On the finite element formulation of dynamic two-phase coupled problems". 

(submitted for publication). 

Cividini, A. & Pergalani, F. (1994), "Alcuni aspetti della modellazione numerica di mezzi plurifase", Atti del 

Convegno CNR - Gruppo nazionale di coordinamento per gli studi di ingegneria geotecnica. Il ruolo dei fluidi nei 

problemi di ingegneria geotecnica, Mondovi'' (Cuneo), 6-7 settembre, 1, II/61-II/75. 

Desai, C.S. (1976), "Finite element residual schemes for unconfined flow". International Journal for Numerical 

Methods in Engineering, 10, 1415-1418. 

ITACA (2015), ITalian ACcelerometric Archive, version 2.0, http://itaca.mi.ingv.it/ItacaNet. 

Katona M.G. & Zienkiewicz, O.C. (1985), "A unified set of single step algorithms - Part 3: the beta-m method, a 

generalization of the Newmark scheme". International Journal for Numerical Methods in Engineering, 21, 1345-

1359. 

Newmark, N.M. (1959), “A method of computation for structural dynamics”, ASCE Journal of the Engineering 

Mechanics Division, 85(EM3), 67-94. 



Westergaard, H.M. (1933), "Water pressures on dams during earthquake". Transaction of American Society of Civil 

Engineers, 98, 418-434.  

Sandhu, R.S. &Wilson, E.L. (1969), "Finite Element Analysis of Seepage in Elastic Media". ASCE Journal of the 

Engineering Mechanics Division, 95(EM3), 641-652. 

Stucchi, R., Cividini, A. & Gioda, G. (2010), "A finite element approach for dynamic seepage flows", Proc. 7th 

European Conference on Numerical Methods in Geotechnical Engineering, June 2-4, Trondheim (Norway), ISBN 

978-0-415-59239-0, pp.411-416. 

Zaman, M., Gioda, G. & Booker, J. (eds.) (2000), Modeling in Geomechanics, John Wiley & Sons, Chichester, UK. 

Zienkiewicz, O.C. & Bettess, P. (1982), "Soil and saturated media under transient, dynamic conditions; general 

formulation and the validity of various simplifying assumption". In Soil Mechanics - Transient and Cyclic Loads: 

Constitutive Relations and Numerical Treatments (Pande, G.N., Zienkiewicz, O.C., Eds.), Wiley Series in 

Numerical Methods in Engineering. 

Zienkiewicz, O.C. & Shiomi, T. (1984), "Dynamic behaviour of saturated porous media; the generalized Biot 

formulation and its numerical solution". International Journal for Numerical and Analytical Methods in 

Geomechanics, 8, 71-96. 

Zienkiewicz, O.C., Chan, A.H.C., Pastor, M., Schrefler, B.A. & Shiomi, T. (1999), Computational Geomechanics, 

John Wiley & Sons, Chichester, UK. 


	Main Menu
	Conference Programme
	Author Index
	Earthquake Effects on Structures Embedded in Saturated Granular Deposits
	ABSTRACT
	Introduction
	Governing Equations
	Boundary Conditions
	Finite Element Formulation
	Time Integration Scheme
	Illustrative Examples
	Concluding Remarks
	Acknowledgments
	References
	Bear, J. (1988), Dynamics of Fluids in Porous Media, Dover Publications, NewYork, USA.
	Bird, R.B., Stewart, W.E. & Lightfoot, E.N. (2007), Transport Phenomena, John Wiley & Sons, NewYork, USA.
	Cividini, A. & Gioda, G. (2013), Approcci ad elementi finiti per l'analisi di terreni saturi. Atti del XV Convegno ANIDIS - L’Ingegneria Sismica in Italia; a cura di F.Braga e C.Modena con la collaborazione di M.A.Zanini e L.Brandolin, Tema: b. Vulner...
	Cividini, A. & Gioda, G. (2014), Seepage flow analysis in gravity and in variable acceleration fields. Annals of the University of Bucharest (mathematical series), ISSN 2067-9009, 5(2):245-258.
	Cividini, A. & Gioda, G. (2015), "On the finite element formulation of dynamic two-phase coupled problems". (submitted for publication).
	Cividini, A. & Pergalani, F. (1994), "Alcuni aspetti della modellazione numerica di mezzi plurifase", Atti del Convegno CNR - Gruppo nazionale di coordinamento per gli studi di ingegneria geotecnica. Il ruolo dei fluidi nei problemi di ingegneria geot...
	Desai, C.S. (1976), "Finite element residual schemes for unconfined flow". International Journal for Numerical Methods in Engineering, 10, 1415-1418.
	ITACA (2015), ITalian ACcelerometric Archive, version 2.0, http://itaca.mi.ingv.it/ItacaNet.
	Katona M.G. & Zienkiewicz, O.C. (1985), "A unified set of single step algorithms - Part 3: the beta-m method, a generalization of the Newmark scheme". International Journal for Numerical Methods in Engineering, 21, 1345-1359.
	Newmark, N.M. (1959), “A method of computation for structural dynamics”, ASCE Journal of the Engineering Mechanics Division, 85(EM3), 67-94.
	Westergaard, H.M. (1933), "Water pressures on dams during earthquake". Transaction of American Society of Civil Engineers, 98, 418-434.
	Sandhu, R.S. &Wilson, E.L. (1969), "Finite Element Analysis of Seepage in Elastic Media". ASCE Journal of the Engineering Mechanics Division, 95(EM3), 641-652.
	Stucchi, R., Cividini, A. & Gioda, G. (2010), "A finite element approach for dynamic seepage flows", Proc. 7th European Conference on Numerical Methods in Geotechnical Engineering, June 2-4, Trondheim (Norway), ISBN 978-0-415-59239-0, pp.411-416.
	Zaman, M., Gioda, G. & Booker, J. (eds.) (2000), Modeling in Geomechanics, John Wiley & Sons, Chichester, UK.
	Zienkiewicz, O.C. & Bettess, P. (1982), "Soil and saturated media under transient, dynamic conditions; general formulation and the validity of various simplifying assumption". In Soil Mechanics - Transient and Cyclic Loads: Constitutive Relations and ...
	Zienkiewicz, O.C. & Shiomi, T. (1984), "Dynamic behaviour of saturated porous media; the generalized Biot formulation and its numerical solution". International Journal for Numerical and Analytical Methods in Geomechanics, 8, 71-96.
	Zienkiewicz, O.C., Chan, A.H.C., Pastor, M., Schrefler, B.A. & Shiomi, T. (1999), Computational Geomechanics, John Wiley & Sons, Chichester, UK.


