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ABSTRACT 
 
 The seismic analysis of bridge structures is often performed using the substructure method in 

which the foundation is replaced by an equivalent "spring" representing foundation impedance. 

Ground motions from seismic hazard analyses correspond to a free-field condition, and therefore 

should be modified to account for kinematic soil-structure interaction effects before being used as 

input to the springs. This paper presents closed-form analytical solutions for the response of an 

elastic pile subjected to harmonic seismic excitation in uniform elastic soil. We use these solutions 

to compute transfer functions relating foundation input motion to free-field ground motion and use 

the results to verify predictions from a beam-on-Winkler-foundation numerical model. The two 

approaches show good agreement, indicating that the numerical modeling method is appropriate 

for investigating more complex effects such as soil and pile nonlinearity. Ground motion 

deamplification due to kinematic SSI is demonstrated to be significant for stiff foundations in soft 

ground conditions. Numerical simulations using recorded ground motions demonstrates that 

transfer functions can be computed only from frequency bands for which the motions contain 

adequate energy. 

 

Introduction 

 

Seismic design of bridges and other structures supported on bored or driven piles often utilize a 

substructure method in which the foundation elements are not explicitly modeled, but rather are 

replaced by "springs" representing the foundation impedance. The ground motion appropriate for 

input to the free-end of the springs (i.e., the foundation input motion, FIM) differs from the free-

field motion (FFM) due to kinematic soil-structure interaction (SSI). Ground motions from a 

seismic hazard analysis represent shaking in the free field. For example, pseudo-spectral 

accelerations (PSa) on seismic hazard maps and site amplification factors used in building codes 

and seismic design guidelines (e.g., ASCE-7, 2010) do not include the influence of SSI. 

Similarly, the PEER ground motions database (Ancheta et al., 2014), a commonly used source 

for accelerograms used in response history analyses, excludes records influenced by SSI.  

 

Past studies of kinematic SSI for pile foundations used analytical and numerical solutions. 

Flores-Berrones and Whitman (1982), Fan et al. (1991), and Nikolaou et al. (2001) quantify the 

kinematic response of vertical piles and pile groups for vertically propagating shear waves in 

elastic soil. Similar solutions for inclined waves have been presented by Barghouthi (1984), 

Mamoon and Banerjee (1990), and Kaynia and Novak (1992). Taking the FIM as the pile head 

motion, the ratio FIM/FFM can be expressed as a frequency-dependent transfer function. These 
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studies have found that at low frequencies, the transfer function ordinate (Hu) is approximately 

unity, indicating that the soil and pile move in unison. At higher frequencies, a relatively stiff 

pile will not conform to the short-wavelength ground motion, so Hu decreases. Whether or not 

Hu descends below unity within the frequency range of engineering interest for a bridge depends 

on factors such as the relative stiffness contrast between the pile and soil, the length of the pile, 

and whether or not restraint against rotation is provided at the pile head. Examinations of data 

from pile-supported buildings, where base-slab averaging (and in some cases, embedment) 

effects act in combination with the kinematics of soil-pile interaction to produce observations of 

Hu have suggested both an apparently negligible effect of piles (Kim and Stewart 2003) and 

potentially significant effects (Givens et al. 2012). These discrepancies have yet to be 

satisfactorily resolved.  

 

A comprehensive study of kinematic SSI effects including nonlinear site response, soil and pile 

nonlinearity, frequency content, group interaction, and ground motion incoherence is currently 

underway by the authors. The analyses utilize a beam-on-nonlinear-Winkler-foundation (BNWF) 

model attached through p-y springs to soil nodes. The soil nodes are excited by displacement 

records which represent the free-field ground response at each depth along the length of the pile, 

and the model is analyzed using the finite element program OpenSees (Mazzoni et al. 2007). No 

mass is assigned in the model; the absence of inertial forces allows kinematic soil-structure 

interaction (KSSI) effects to be isolated. 

 

This paper focuses on validation of the BNWF modeling approach for a vertical elastic pile in 

uniform, undamped elastic soil using closed-form solutions. We derive a closed-form analytical 

solution for the transfer function and subsequently compare it to the results of a linear-elastic 

Winkler foundation model analyzed in OpenSees. Input ground motions include harmonic sweep 

functions that are rich in frequency content across a wide bandwidth and recorded ground 

motions having variable mean periods. Depth-dependent ground motions are computed from the 

surface motions based on linear elastic wave propagation theory. Comparisons between the 

analytical and numerical solutions are presented in this paper. Nonlinear soil and pile effects, 

ground motion incoherence, and comparison to field data are reserved for future studies. 

 

Analytical Solution 

 

Derivation of the closed-form solution for a vertical elastic pile in elastic soil begins with the 

following fourth-order differential equation for a laterally-loaded pile in the absence of free-field 

ground motion (after Hetenyi 1946): 
 

4 2

4 2
0+ − =p p

y p

d u d u
EI P k u

dz dz
                  (1) 

 

in which up is horizontal pile displacement, z is depth measured downwards from the pile head, 

EI is the pile flexural rigidity, P is axial load, and ky is the soil-pile interaction stiffness intensity, 

all defined in a consistent set of units. For our purposes, axial load is taken as zero and the 

displacement term is replaced with the relative displacement between the pile and free field soil 

undergoing horizontal displacement consistent with harmonic seismic excitation by vertically 

propagating shear waves: 



 
4

04
[ cos( )] 0+ − =p

y p g

d u
EI k u u kz

dz
   (2) 

 

where ug0 is the ground displacement at the surface due to the harmonic seismic excitation and k 

is the wave number defined as the ratio of excitation angular frequency (ω) to soil shear wave 

velocity (Vs). The solution to Equation 2 in terms of pile horizontal displacement at depth z as a 

function of the previously defined variables is: 
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where χ1 through χ4 are constants and R is a dimensionless variable combining terms as follows: 
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Successive derivatives of Equation 3 provide expressions for slope, curvature, moment, shear, 

and soil reaction. The expressions for slope (S), moment (M), and shear (V) are: 
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The following substitutions were used to abbreviate Equations 5, 6 and 7: 
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To solve for the constants χ1 through χ4, a set of four permissible boundary conditions must be 

imposed. Typically the boundary conditions are prescribed at the pile head and tip since these 

can be determined on the basis of details such as embedment into a pile cap or a stiff bearing 

stratum. For example, in the absence of superstructure force or moment demands (required for a 

KSSI analysis) the boundary conditions for a fixed-head, free-tip pile of length L are:  
 

(z 0) 0 ;     ( 0) 0 ;     ( ) 0 ;     ( ) 0V S z V z L M z L= = = == = = =   (9) 

 



The appropriate expressions for displacement, slope, shear, and moment provided by Equations 

3, 5, 6, and 7 can be equated to the specified boundary conditions at the pile head and tip to form 

a system of four equations which can be solved to evaluate χ1 through χ4. 
 

Pile head displacement is evaluated using Equation 3 at depth z = 0. To produce an analytical 

transfer function, the pile head displacement normalized by the amplitude of the harmonic 

ground motion, ug0, is evaluated as a function of frequency.  

 

Numerical Solution 

 

The numerical modeling approach consists of an elastic pile discretized into 0.1-m segments and 

attached to linear-elastic soil springs at each node. We modeled the pile and soil using elastic 

beam-column and elastic zero-length uniaxial materials, respectively, in OpenSees.  

 

We considered two categories of input excitation, sine-sweep motions consisting of uniform-

displacement amplitude broadband frequency content from 0.1 to 50 Hz, and recorded ground 

motions with variable bandwidth. The free-field input motions were specified at the ground 

surface and motions at the depth of each soil spring were computed by convolving the input 

motion (Equation 10) based on assumptions of uniform, elastic undamped soil and zero shear 

strain at the ground surface (after Kramer 1996): 

 

0( ) cos( )g gu z u k z= ⋅ ⋅    (10) 

 

Note that this transfer function is distinct from the transfer functions relating pile head motion to 

ug0 and is only used to compute free-field soil displacement at each depth increment. By 

specifying the input motion at the ground surface rather than the base of the soil profile, the 

problem of infinite amplification at resonant site frequencies is avoided. The amplitude of the 

input excitation does not affect the computed transfer functions since the model is linear-elastic. 

 

Soil and pile properties for the numerical analyses match the properties used in the analytical 

solution so that a direct comparison of the computed transfer functions can be made. We defined 

the soil-pile interaction stiffness (ky) at depth z as (Gazetas and Dobry 1984): 
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where Ep is the pile elastic modulus, taken as 2.7E7 kPa for reinforced concrete, and Es is depth-

dependent elastic soil modulus computed from Vs based on classical elasticity theory with 

assumed soil density ρ=1.6 Mg/m
3
 and Poisson’s ratio ν=0.3. The uniaxial spring stiffness is 

defined as ky divided by the tributary length of the pile element to which it is attached. The soil 

springs connected to the pile head and tip are assigned a tributary length equal to half of the pile 

segment discretization length. 
 

 

 

 



 

Results 

 

Transfer functions for the analytical solution are compared to the numerical solution results for a 

sine-sweep input motion in Figure 1 and for recorded earthquake ground motions in Figure 2. 

Two sizes of circular concrete piles are considered for the analytical solutions, 0.5-m and 2.0-m 

diameter (d), for a site with Vs=150m/s. Both fixed-head and free-head restraint conditions are 

considered. For the numerical solution, only the 2.0-m diameter fixed-head pile is considered.  

 
 

Figure 1: Analytical and numerical solution transfer functions for sine-sweep input motion. 

 

 
 

Figure 2: Fourier amplitude spectra for free-field and foundation-input motions (top) and 

corresponding transfer functions (bottom). 
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The sine-sweep input motion transfer functions show near-perfect agreement with the analytical 

solution over the entire frequency range considered for both pile sizes. Free-head piles are seen 

to exhibit amplification of the input motion (Hu > 1) of about 20% at a dimensionless frequency 

(a0
p
) of about 0.3. This contradicts the frequently held notion that the FIM is always less than the 

FFM and thus can always safely be ignored for a “conservative” design. The right side of Figure 

1 shows that solutions for different pile sizes converge when frequency is normalized to a0
p
   

 

For the comparisons using real earthquake ground motions as input, we characterized the 

frequency content of the motions based on mean period, Tm (Rathje et al. 1998). The inverse of 

Tm, which is the mean frequency (although Rathje et al. do not use this terminology), represents 

the motion’s central frequency (approximate centroid of Fourier amplitude spectrum). We use 

ground motions from a set of 40 records with broad frequency content and statistical variability 

compiled by Baker et al. (2011). For the current comparison, we selected from the set of 40 the 

motions with the minimum, median, and maximum Tm as shown in Table 1. 
 

Table 1: Ground motions for numerical analyses; numbering follows Baker et al. (2011) 

 

Motion # Earthquake Recording Station M Tm (s) PGA (s) 

25 1989 Loma Prieta UCSC 6.9 0.19 0.34 

4 1994 Northridge LA – Wonderland Ave. 6.7 0.45 0.13 

24 1989 Loma Prieta Golden Gate Bridge 6.9 0.97 0.16 
 

Figure 2(a) shows acceleration Fourier amplitude spectra (FAS) for the pile head motion (FIM) 

and ground surface motion (FFM) for each of the three input earthquakes we considered. Note 

that each ground motion FAS is only plotted over the useable frequency range of the ground 

motion, which depends on the processing applied to the original recording (Ancheta et al. 2014). 

The ratio of the displacement FAS is the unsmoothed transfer function shown in Figure 2(b). 

 

Transfer functions generated using the earthquake input motions highlight an important issue in 

the proposed numerical modeling approach. Because the motions we considered have near-zero 

Fourier amplitude in the frequency range greater than about 10 Hz (notice for example in Figure 

2(a) that the Fourier amplitude at a frequency of 20 Hz is about 3 to 4 orders of magnitude less 

than at 1 Hz), small errors in the computed pile displacements at these higher frequencies result 

in large amplification, with Hu approaching 2.0 in some cases. Mathematically, this arises 

because the very small pile head motion is being divided by an even smaller ground 

displacement that is essentially zero. The pile head motions are in fact so small that they may be 

attributable to numerical oscillations in the finite element solution. 
 

Kim and Stewart (2003) address this issue by utilizing an alternative transfer function definition: 
 

( ) ( ) / ( )u xx yyH S Sω ω ω=    (12) 

 

where Sxx and Syy are the smoothed auto power spectral density functions of the FIM and FFM, 

respectively. The smoothing operation is accomplished by replacing each ordinate of the 

unsmoothed power spectrum with a weighted average value of the unsmoothed ordinates over a 



frequency band centered on the point of interest. We used an 11-point Hamming window to 

perform the smoothing in the frequency domain. In addition, we considered the coherence 

between the FFM and FIM as a means of discerning which transfer function ordinates represent 

meaningful frequency content in the ground motion. Details of the smoothing operation and 

coherence computation are omitted for brevity and can be found in Kim and Stewart (2003) and 

Mikami et al. (2008). Figure 2(b) shows the smoothed transfer functions plotted only at ordinates 

with coherence greater than or equal to 0.8, which eliminates much of the noise seen in the 

unsmoothed transfer functions and provides a closer match to the analytical transfer functions. 

 

Finally, we computed ratio-of-response-spectra (RRS) for the three ground motions, defined as 

the ratio of pseudo response spectrum ordinates (PSa) for a damped single-degree-of-freedom 

(SDOF) oscillator subjected in turn to the FIM and FFM (Figure 3). Since the high frequency 

portion of a response spectrum is controlled by the amplitude of the largest spike in the ground 

motion rather than the high frequency content of the ground motion, the SDOF oscillator 

effectively acts like a high frequency (low pass) filter (NIST 2012). As a result, the short period 

region of the RRS does not contain the high frequency spikes seen in the unsmoothed numerical 

transfer functions. Figure 3 clearly demonstrates that the RRS depends strongly on the frequency 

content and resulting spectral shape of the free-field motion, since motions with a higher mean 

frequency will be more effectively attenuated by the pile.     
 

  
 

Figure 3: Ratio-of-Response-Spectra for 2.0-m diameter fixed-head pile. 

 

Conclusion 

 

We have presented closed-form analytical solutions for the response of a vertical pile subjected 

to harmonic excitation from vertically propagating shear waves. The results are expressed as 

transfer functions between the pile head motion and free-field motion. We compared the 

analytical results to transfer functions generated using a linear-elastic beam-on-Winkler-

foundation model and demonstrated that foundation input motions computed using the numerical 

approach are in excellent agreement with the analytical solution for a sine-sweep input motion 

that is rich in frequency content. For the recorded motions, we showed that the numerical 

transfer functions are in good agreement with the analytical solutions over frequency bands with 

high coherence between the ground motion and the foundation motion.  

 

We find the free-field ground motion amplitude to be reduced substantially for frequencies above 

about 2 to 20 Hz (a0
p
=0.2-0.3). We expect that the introduction of soil nonlinearity to the 
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numerical model will shift the affected frequencies further into the range of engineering interest 

for large bridges (roughly 0.2 to 2 Hz).  
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