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As shown in Table 1, the cycloned tailings sands particles contain a high percentage of quartz and a low 

content of clays, which implies that the major mineral constituents the particles are relatively hard. In 

addition, the shape of the particles is angular due to the crushing and grinding processes used to produce 

the tailing grain size distribution. 

 

Index Properties 
According to the U.S.C.S. all the tested sands classify as silty sands (SM) and the fines present a low 

Plasticity Index, lower than 7. The index properties of the samples tested are shown in Table 2. 

 

Table 2. Index Properties of Tailings Sands Tested 

USCS 
Clasif. 

% 
Fines 

Gs emax emin Cc Cu 
PM PE 

Notation MDD 
(kN/m3)

wopt(%)
MDD 

(kN/m3) 
wopt(%) 

S1 -  Las Tórtolas Fines: particles< 0,074mm

Gs: Specific weight 

emax: Maximum void ratio 

emin: Minimum void ratio 

Cu: Coefficient of 

Uniformity 

Cc: Coefficient of 

Curvature 

PM: Modified Proctor 

PE: Standard Proctor 

wopt: Optimum moisture 

MDS: Maximum Dry 

Density 

USCS: Unified Soil 

Classification System 

SM 15 2,73 1,100 0,460  1,4 3,3 16,78 14,0 15,89 18,0 

SM 18 2,73 1,068 0,444  1,5 3,6 16,97 14,0 16,38 16,0 

SM 21 2,73 1,084 0,414  1,0 4,0 17,36 12,5 16,38 16,0 

S2 

SM 15 2,75 1,310 0,647 1,2 1,7 16,68 10,0 15,30 14,0 

SM 21 2,75 1,331 0,571 1,2 1,8 16,87 11,0 15,99 18,0 

S3 

SM 12 2,70 0,942 0,525 1,2 4,2 17,46 13,5 16,48 15,5 

SM 18 2,70 0,956 0,484 3,1 12,9 18,25 11,0 16,77 14,5 

S4 

SM 24 2,70 0,915 0,406 2,7 165 18,84 8,0 17,36 12,5 

SM 20 2,69 1,280 0,601 1,2 4,2 16,48 15,0 15,40 18,0 

SM 30 2,69 1,280 0,592 3,1 12,9 17,85 11,5  16,87 14,0 

 

According to the results of monotonic triaxial test under high confining pressures, the cohesion is lower 

than 10 kPa for the Tórtolas sand and null in the other three samples. The effective internal friction angle 

ranges between φ=33°-35° for Las Tórtolas sand (Campaña et. al, 2007), φ=33° for S2 sand, φ=35 to 36° 

for S3 sand and φ=33° for S4 sand (Campaña, 2010). For all samples, high confining pressures up to 

3 MPa do not induce an important change in the effective internal friction angle neither in the initial grain 

size distribution of the different sands (Campaña, 2010). 

 

Preparation of samples 
The different sand samples were prepared considering the following steps: 1) drying of the entire sample; 

2) full screening of the dried sample; 3) separation of the sample in two fractions: a fine fraction 

(< 0.074 mm) and coarse fraction (> 0.074 mm); 4) preparation of the sample with the desired fines 

content by adding the required proportion of fine material into the coarse fraction.The specimens were 

then compacted by layers to the desired initial density using the moist tamping method, with moisture 

content close to optimum (+- 2%), determined using the Standard Proctor test. 
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Cyclic triaxial tests 
The cyclic triaxial tests were carried out on reconstituted samples with a nominal diameter of 5 cm (S1, S2 

and S4) and 7 cm (S3) and nominal heights of 10 cm and 15 cm, respectively. In all cases, parameter B at 

the end of the saturation stage was greater than 0.95. Backpressure was applied according to the 

magnitude of isotropic confining pressure: 0.3 MPa for sands S1, S2 and S4 and up to 0.9 MPa for sand 

S3. A uniform sinusoidal cyclic load was applied with a frequency of 0.1 Hz for sand S4 and of 0.05 Hz 

for sands S1, S2 and S3. 

 

Cyclic Test Results – CSR vs Number of cycles 
Test results are synthesized in several graphs, differentiated by the fines content, confining pressure (σ’3) 

and density achieved at the end of the consolidation stage. Figures 6 to 11 present the cyclic stress ratio 

(CSR) variation with regard to the number of cycles (N) required to reach liquefaction, defined as 

Δu/σ’3≈1. 

 

 
 

Figure 6. Sands S1, CSR as a function of the number of cycles, Kc=1 

 

 
 

Figure 7. Sands S2, CSR as a function of the number of cycles, Kc=1 

 

 
 

Figure 8. Sands S2, CSR as a function of the number of cycles, Kc=1, 0.5 and 0.67 
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Figure 9. Sands S3, CSR as a function of the number of cycles, Kc=1 

 

 
Figure 10. Sands S3, CSR as a function of the number of cycles, Kc=0.5. 

 

 
Figure 11. Sands S4, CSR as a function of the number of cycles, Kc=1 and 0.5 

   

Cyclic Test Results – CSR vs σ´3 
Using empirical data, Seed et al (1975) proposed by means of curves equivalence between a number of 

uniform stress cycles and the irregular time history of an earthquake magnitude (Figure 16). Extrapolating 

these curves, a number of cycles (N) between N=20 and N=40 could be equivalent to the shear stress 

history induced by earthquakes with magnitudes M=8 and M=8½, respectively (is important to point out 

that Figure 16 do not show information of earthquakes magnitude greater than M=8). The design of large 

tailings dams in Chile usually considers earthquakes magnitudes M=8 to M=8½. Therefore, in the tests 

performed the CSR variation with the confining pressure (σ’3) was determined for N=20 and N=30 cycles. 
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Figure 15. Sands S3, variation CSR with σ’3, Kc=0.5 and 1. 

 

 

Figure 16. Sands S4, variation CSR with σ’3, Kc=0.5 and 1.0 

 
RESULTS ANALYSIS 

 
The results from tests performed verify for lower confining pressures (σ’3≤ 0.5 MPa) the tendency 

reported by Verdugo (1983), related to the decreasing of the required CSR to produce liquefaction when 

the non-plastic fines content increases. This trend is observed in Figures 6a, 9a and 11a. However, this 

tendency disappears for confining pressures greater than 0.5 MPa and practically a constant CSR is 

obtained for greater confining pressures. To reinforce this important finding, all the results obtained have 

been plotted separately in Figure 17a for low confining pressures (under σ’3 ≤ 0.5 MPa), and in Figure 

17b, for σ’3 ≥ 1 MPa. In Figure 17a, a great scattering in the CSR values can be observed for the four 

sands tested, while a general decreasing trend of CSR values with the increasing number of cycles can be 

perceived. It also can be observed that results corresponding to sand S3 contribute significantly to the 

wide of the resulting band. Contrary, in Figure 17b where tests results carried out with confining pressures 

σ’3≥1 MPa have been reported, no significant variations in the CSR value for the different fines contents 

considered were appreciated, even when the differences in these fines content were greater than 10%. In 

fact, the CSR values obtained range in a very narrow band, without important differences due to initial 

density or fines content or the cycloned tailings sands. Complementing this conclusion, Figure 18 presents 

the variation of the CSR values with the confining pressure for N=30 cycles, for all the tests performed on 

the four sands. 
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Figure 17. Summary all test results: a) for σ’3≤ 0.5 MPa, b) for σ’3 ≥ 1MPa, Kc= 1.0 

 

 
Figure 18. Summary all test results: variation of CSR vs σ’3, for N=30 

 

The results of tests performed with anisotropic consolidation follow, in general, the trend reported by 

Hosono & Yoshimine (2008), related to the decrease in the CSR when consolidation rate Kc (σ’3/σ’1) 

decreases (Figure 8c and 10b). There are, however, a few cases where the CSR increases as this rate goes 

up (Figure 11b). Another aspect that is important to point out is that it was not possible to observe a clear 

dependency between CSR, Kc and the fines content in the four sands tested. However, it was also possible 

to observe that for confining pressures higher than 1.5 MPa, the effect of Kc is very slightly sensible on the 

CSR value. In fact, for σ’3=3 MPa, a decrease in the value of Kc does not produce a significant decrease in 

the CSR value, as it is possible to be observed in Figure 19a. On the other hand, it was found that the 

influence of the initial shear strain ratio as a function of the initial relative density (DR) tends to disappear 

for DR>70%, as shown in Figure 19b. 

 

Another relevant aspect to point out from the results of the tests carried outin sands S2 and S4 for 

confining pressures greater than 0.5 MPa, are the relatively constant CSR values obtained despite the 

confining pressure applied (Kσ=1), the fines content, the relative density and even the initial shear stress 

(Figure 14a and 16a). In sands S1, the reduction in CSR did not exceed 25% as the confining pressure 

increased (Figure 13a) and only in sands S3 (Figure 15a) a similar reduction as the reported by other 

authors has been observed but in a lesser proportion (Marcuson, 1990; Seed & Hard, 1990; Cetin et al., 

2000; Seed et al., 2003). Finally, a comparison of the variations recorded for Kσ in this study with recent 

evolution curves for this parameter (Seed et al; 2003) is presented in Figure 20. 

 

1 10 100
Number of Cycles (N)

0

0.1

0.2

0.3

0.4

0.5

C
yc

li
c 

S
tr

es
s 

R
at

io
 (

τ c
y/

σ o
')

σ'3<0.5 MPa, Kc=1

S1 Sand

S2 Sand

S3 Sand

S4 Sand

1 10 100
Number of Cycles (N)

0

0.1

0.2

0.3

0.4

0.5

C
yc

li
c 

S
tr

es
s 

R
at

io
 (

τ c
y/

σ o
')

σ'3≥1 MPa, Kc=1

S1 Sand

S2 Sand

S3 Sand

S4 Sand

CSR=A*N-0.17

A=0.32

A=0.23

0 5 10 15 20 25 30 35
σ'3 (kg/cm2)

0

0.1

0.2

0.3

0.4

0.5

C
yc

li
c 

S
tr

es
s 

R
at

io
 (

τ c
y/

σ o
')

N° Cycles N=30, Kc=1

S1 Sand

S2 Sand

S3 Sand

S4 Sand



5th International Conference on Earthquake Geotechnical Engineering 
January 2011, 10-13 

Santiago, Chile 

  

Figure 19. Variation of CSR with regard to Kc, σ’3 and RD. 

 

Figure 20: Variation of factor 

Kσ with regard to σ’v. 

 

CONCLUSIONS 
 

The results of cyclic triaxial tests carried out on four cycloned sands samples taken from four different 

copper tailings, one in Peru and three in Chile have been discussed. Tests were performed on samples with 

low fines plasticity and fines content ranging between 12% and 30% with different degrees of 

densification and applying confining pressures from σ’3=0.1 MPa to 3 MPa. The main conclusions 

obtained are summarized as following: 

 

• For the fines content tested and confining pressures greater than 0.1 MPa, the cyclic stress ratio 

(CSR) to produce liquefaction are practically insensible to the fines content. This results differs 

from what was observed in tests performed on tailings sands at low pressures, in which this 

content importantly affects the required CSR value (Verdugo, 1983), 

• As reported by Hosono & Yoshimine (2008), the CSR value seems to be affected by the 

magnitude of the initial shear stress for confining pressures lower than 1.5 MPa. 

Notwithstanding, for σ’3 ≥ 1.5 MPa the initial shear stress does not have a sensible effect upon 

the CSR value, 

• It was also possible to observe that, for relative densities greater than 70%, the CSR value is not 

affected by the magnitude of the initial shear stress, 

• The effect of the high pressures upon the CSR value was practically nil in three of the four 

cycloned sands tested (S1, S2 and S4), and a relative common value was obtained for all the 

range of confining pressures applied. In the S3 cycloned sand sample, the CSR value to induce 

liquefaction decrease as the confining pressure increase till 1.5 MPa. For greater confining 

pressures, the same CSR obtained with the other three samples is reached, 

• Due to these results, for cycloned tailings sands the consideration of typical factors Kσ reported 

in technical literature may conduce to an underestimation of CSR value. 

 

Finally, the difference observed in the behavior of cycloned tailings sands with respect to natural 

sand could be explained due to the following aspects: the fines of tailing sand have a low plasticity 

index and correspond mainly to a “rock flour” composed by angular and hard particles (the 

mineralogical analysis indicated that more than 40% of sand tailings tested is quartz). According to 

this, it is possible to anticipate that tailing sands could have CSR values greater than expected as a 

lesser detriment of their properties by the effect of both high confining pressures and fines content. 
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