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ABSTRACT: The available theoretical predictions for the pipe behaviour due to tunnelling-induced 
ground movements are usually based on the assumptions that the ground is homogeneous. Actually, 
effects of soil stratification should be taken into account. This paper presents displacement controlled 
method to analyze the pipe behaviour due to tunnelling-induced ground movements by the means of 
layered half  space model, which can solve the problem subjected to homogeneous soil as well as multi-
layered non-homogeneous soils. The accuracy of the proposed solutions is verified by the centrifuge test 
data and the results from displacement controlled finite element numerical analysis. In addition, the dif-
ference between homogeneous and non-homogeneous layered soils is also studied to estimate the pipe 
behaviour. The results discussed in this paper indicate that the soil non-homogeneity, neglected in previ-
ous solutions, has a significant influence on the existing pipe behavior induced by adjacent tunnelling in 
multi-layered soils.

as the force controlled method (i.e., FCM), has the 
advantage of being able to take full account of the 
nonlinear interaction between the existing pipes 
and its surrounding soil, and to consider the com-
plicated process of tunnelling. However, the FCM 
will lead to long CPU times since the simulation 
of the process may be slow. And it is difficult to 
reflect visually the arbitrary ground loss, which is 
the main cause for the deformation behavior of 
existing pipes induced by tunnelling. In order to 
overcome those disadvantages, the displacement 
controlled method (i.e., DCM) is applied in this 
study. In the DCM, the effect of tunnelling is sim-
ulated by prescribing displacements up to nodes 
around the tunnel rather than by adding forces.

Recently some attempts have been made to 
develop displacement controlled methods to ana-
lyze the pipe deformation behaviour due to adjacent 
tunnelling, all of which are based on the Winkler 
model or the homogeneous half  space model. The 
conventional approach for obtaining a solution for 

1 INTRODUCTION

Underground construction, including tunnelling, 
causes both vertical and lateral ground move-
ments. For existing buried structures, such as 
pipes, the ground movements induced by tunnel-
ling may cause reduction in bearing capacity of the 
structures as well as the development of additional 
settlements, and lateral movements. Accurate pre-
diction of tunnelling effects on existing buried 
pipes poses a major challenge during design and 
practice in the urban geotechnical environments.

The conventional approach for solving the above 
mentioned problem utilizes the numerical simula-
tion method, such as the finite element method 
(e.g., Yamaguchi et al., 1998; Addenbrooke and 
Potts, 2001; Chehade and Shahrour, 2008). Tun-
nelling in the finite element models is usually 
simulated by applying forces corresponding to a 
fraction of the initial stress-state, to the nodes on 
the tunnel boundary. This method, designated here 
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this problem utilizes the Winkler model such as 
that proposed by Attewell et al. (1986). The Win-
kler model has the advantage of simplicity for the 
complex tunnel-soil-pipe interaction through a sin-
gle degree of freedom load-displacement relation. 
However, the Winkler model can not take account 
of the soil continuum. Klar et al. (2005) obtained 
a closed form solution for the Winkler model, 
and suggested a more rigorous solution based on 
the homogeneous half  space model. In this study, 
the green-field soil settlements are described by a 
Gaussian curve. Vorster et al. (2005) utilized the 
boundary integral method to formulate a design 
method for estimating the effect of tunnelling on 
buried pipes. They took advantage of the explic-
itly defined green-field settlements and intro-
duced a modified Gaussian curve which allows the 
practitioner more freedom in fitting green-field 
settlement data relatively to the commonly used 
Gaussian curve. It is worth noting that all of the 
above solutions are based on the assumption that 
the ground is homogeneous and the effects of soil 
stratification should be taken into account.

In the current research, the displacement control-
led method is presented to evaluate the effects of soil 
stratification on pipe behaviour due to tunnelling-in-
duced ground movements. The fundamental solution 
for the layered soils is obtained by applying the double 
Laplace transform and transfer matrix method based 
on the layered half space model. In order to simulate 
the real non-uniform soil deformation behaviour at 
the tunnel opening, the displacement controlled pat-
tern proposed by Loganathan and Poulos (1998) is 
applied to describe green-field soil settlements.

2 LAYERED HALF SPACE MODEL

As shown in Figure 1, the layered half space model 
is built in a Cartesian coordinate system, and the 
arbitrary load is concentrated at a point (x0,y0,hm1) 

in the m th layer (assuming the load surface is con-
sidered as an artificial interface). The arbitrary 
load can be decomposed into the three components 
P(x,y0,hm1), R(x0,y0,hm1), and Q(x0,y0,hm1) along the 
x, y, z direction, respectively. The key assumptions 
involved in the derivation are: (1) The layered soils 
consist of n parallel, elastic isotropic layers lying 
on a homogeneous elastic half space, where n is an 
integer and satisfies n > 1; (2) The i th layer occupies 
a layer region hi−1 < z < hi of thickness Δhi, (Δhi = 
hi − hi−1 ), Young's modulus Ei and Poisson’s ratio 
µi, where i = 1, 2, ..., or n, and h0 is defined by the 
value of zero; (3) the stresses and the displacements 
located at the each interface between two connected 
layers are completely continuous; (4) The boundary 
surface z = 0 is considered as traction free.

Considering a traction free condition at the 
ground surface of the layered system, it can be 
expressed as follows:

τ τ σzxττ zyτ zσy y y( , , )y ( , , )y( ) ( , , )x yτ zyτ) ( , ,x y(x y 0)=)τ (x y
 

(1)

On the other hand, for a fixed boundary 
condition at the bottom of the layered system
(hn approaches ∞), it can be expressed as follows:

u y h v y h w y hn nv y h n( ,x )hnh ,xx(x )hnh )h ( ,x )hnh=y= v x )h = 0
 (2)

According to assumption 3, the continuity con-
ditions at the interfaces of the n-layered system 
(including the load surface) can be obtained:

u y h u y hi iu y h( ,x )hihh (xx )hihh+ = 1  
(3a)

v y h v y hi iv y h( ,x )hihh (xx )hihh+ = 1  
(3b)

w y h w y hi iw y h( ,x )hihh (xx )hihh+ = 1  
(3c)

τ zxττ i zτ x i my xτ zτ x iy h p y h( , , ih x i )iih (x y ) ( )g z+ ττ −yx )ihi 1 1mp y hmm) ( ,x y)
 

(3d)

τ zyττ i zτ y iz my xτ zτ yz iy h r y h( , , ih x i )iih (x y ) ( )g z+ ττ −yx )ihi 1 1mr y hmm) ( ,x y)
 

(3e)

σ σz iσσ z i mxσ z y hi q y h( , )ih x iii )h (x y ) ( )g z+ yσ −x )ihi 1 1mq y hmm) ( ,x y)
 

(3f)

where hi is the distance from the bottom of the i th 
layer to the surface of the first layer (i = 2, 3, ..., or n); 
the superscripts “+” and “−” denote the values of 
the functions just on upper and lower interface 
boundary of the i th layer; p(x,y,hm1), r(x,y,hm1), 
and q(x,y,hm1) denotes the surface density distribu-
tion of the point load P(x0,y0,hm1), R(x0,y0,hm1), and 
Q(x0,y0,hm1), respectively, i.e.,

p y h P y h y ym y( ,x )hmh ( ,x )h ( ,x x )PP) xx 0 1mhhmh 0 0y y,(x= P yx )hP x h δ (δ (((
 (4a)

r y h R y h y ym y( ,x )hmh ( ,x )h ( ,x x )RR) xx 0 1mhhmhh 0 0y y,(x= R yx )hR x h δ (δ (((
 (4b)

q y h Q y h y ym y( ,x )hmh ( ,x )h ( ,x x )QQ) xx 0 1mhhmhh 0 0y y,(x= Q yx )hQ x h δ (δ (((
 (4c)

Figure 1. Layered half  space model.
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with δ(x − x0, y − y0) is the Dirac singularity function; 
and g(z) is a term to judge whether the arbitrary load 
existed at the artificial interface or not, i.e.,

g
z h

z h

mh

mh
( )z =

≠

⎧
⎨
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⎩
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1

0

1

1  

(5)

In order to reduce the partial differential equa-
tion into the algebraic equation, the double 
Laplace integral transform will be applied to the 
state variables:

f f e dxddd ydξ )( yξ ηyy( )zξ η = ( )x y z ee, y

∞∞
(ξxx∫∫

00  

(6)

where ξ, η are the integration parameters for the 
Laplace transform.

The inverse double Laplace transform can be 
expressed as follows:

f x y f z e d
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(7)

Using the double Laplace integral transform for 
the continuity conditions in Eqs.(3a)–(3f) and the 
transfer matrix method, the equations governing the 
relations between the six variables at two boundary 
surfaces z = 0 and z = hn can be expressed as follows:

G F G F Qn( , )hnh [F ( ) [ ]F { }Qξ η, ξ η= G[F ( −)ξ η1 2G]FF ( , ) [FFξ η, )GFF (ξ η
 

(8)

where G (ξ,η,0) is the state variable vector located 
at the surface z = 0 in the transform domain, i.e.,

G( , ) [ (u ( , ) (v , ) ( , )ξ η,, ξ η,ξ ξ η, ξ η,0,) [ (u ξ η, 0 0) (w ,ξ η,

τ ξ η τ ξ η σ ξ ηzxττ zyτ zσσ,ξ , )ηη (ξξ , ) ,ξξ , )η ]Tτ ξ ηzyτ) (ξξ ,η

and the elements of  G (ξ, η, hn) are the analogous 
with the ones of  G (ξ, η, 0); [F1] is the global trans-
fer matrix from the first layer to the n th layer; [F2] 
is the local transfer matrix from the m th layer to 
the n th layer; {Q} is the load vector in the trans-
form domain, i.e.,

[ ) ( , ) ( , )F ] ( ) ( ,n n 11] ( , )] ( , n n) ( , 1,(( ,,Φ((( ,(,,ξ, ,ξ,, ξ η,,ξ,,
 (9a)

[ ) ( , ) ( , )F ] ( ) ( ,n n m2 1] ( , )] ( , n n) ( , 2,(( Φ( ,,(( ,(,,ξ, ξ,,, ξ η,,ξ,,
 (9b)

{ } [ ( , ) ( ) ( , )]TQ p} [ x y, h ) x y h q) x y, hm mh mh1,() x y, hm) ( ,) x y, hh 1

in which Δhi, is the thickness of the i th layer with 
Δh1 = h1, Δhi = hi − hi-1(i = 2, 3, ..., or n), and Δhm2 

= hm − hm1; Φ (ξ,η,z)  is called the transfer matrix, 
and Φ (ξ,η,z) = exp [zA (ξ,η)], i.e.,
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By applying the two boundary conditions of 
Eqs.(1) and (2), the G (ξ,η,0) and G (ξ,η,hn) in 
Eq. (8) can be determined analytically.

For a given depth z in the i th layer above the 
horizontal plane on which the load acts (includ-
ing just on the plane, i.e., z < hm1), the stresses and 
displacements in the transform domain can be 
expressed as follows:

G S G( , )z [ ]S ( , )ξ η,, ξ η,,=  
(10)

where

[ ] ( , ) , ) ( , )S ] ( , ) (i i( ,( )( Φ)ξ η,,,,, ξ ξ η,,1( i) ( ,) ( ,) ( ,)) ,,, 1  (11)

For a given depth z in the i th layer below the hori-
zontal plane on which the load acts (i.e., z > hm1), the 
stresses and displacements in the transform domain 
can be expressed as follows:

G S G n( , )z [ ]S ( , )hnhhξ η,, ξ η,,= 1SS
 

(12)

where

[ ( ) , ) ( , )S ] ( ) (i i n11] ( ,] ( , (i i) ( ,) ( , (), ))(((( Φ)),,ξ, ξ,, ξ η,,
 (13)

Applying the inverse double Laplace transform of 
Eq. (7) into the solution G (ξ,η,z) in Eqs.(10) and (12), 
the elastic solution for stresses and displacements in 
the multi-layered soils subjected to the vertical load 
can be obtained. For the special case P(x0,y0,hm1) = 1, 
R(x0,y0,hm1) = 1, and Q(x0,y0,hm1) = 1, the solution is 
the fundamental solution for the multi-layered soils 
subjected to the arbitrary unit point load.

3 DISPLACEMENT CONTROLLED 
METHOD

Figure 2 shows a schematic diagram of the prob-
lem, in which an existing pipe is buried in layered 
elastic soils. The key assumptions of the computing 
model are: (1) The existing pipe remains in contact 
with the surrounding soils; (2) The existing pipe 
is elastic, homogeneous, and continuous; (3) The 
presence of the existing pipe does not affect the 
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tunnel; (4) The soil response to loads, at the pipe 
level, is not aware of the tunnel; (5) The green-field 
soil settlements are calculated by analytical solu-
tions proposed by Loganathan and Poulos (1998).

Assumption 3 simply means that the tunnel 
exhibits the same behavior as it would if  there was 
no pipe. This is an essential assumption in the for-
mulation allowing for decoupling of tunnel behav-
ior in the solution of the pipe response, through the 
use of a green-field settlement trough. Assumption 
4 means that the soils exhibit the same resistance 
(stiffness) to movement at the pipe level, whether 
the tunnel exists or not. This assumption allows 
the use of the fundamental solution for a vertical 
load in the layered half  space model. Assumption 
5 shows how to describe the green-field settlement 
profile at the level of the existing pipe.

Following the above-mentioned assumptions, 
the pipe behavior is represented by:

[ ]{ } { }]{b b]{]{ b=
 (14)

where [Kb] is the stiffness matrix of the tunnel 
composed of standard beam elements, {ub} is the 
displacement vector, {Fb} is the force vector repre-
senting soil loads acting on the beam elements.

The soil continuous displacement at the arbi-
trary point i can be represented:

u Rsi j iR ji

j

n

=
∑ δ ii

1
 

(15)

where Rj is the tunnel force acting on the point j of  
the soil medium; δij is the soil continuous displace-
ment at point i due to the unit load at point j, and 
it is calculated by the fundamental solution for the 
layered half  space system.

The summation in Eq. (15) can also be written 
as follows:

u Rsi i ii j ij

j j i

n

RiRR
≠j

∑ δR jR ijδ ii +ii ∑
1

 

(16)

where the first term of the right side is defined herein 
as the local displacement due to its own load. The 
second term is additional continuous displacement 
at that point due to forces acting at different points. 
δii  is the displacement of the singularity point. Such 
displacement is taken as the average displacement 
around the circumference of the pipe.

In order to consider the adjacent tunnelling, 
Eq. (16) can further be decomposed as follows:

u R usi i iR i j ij
j firstff pipe node

j i

last pipe node

si
fRiRR ∑ δR jR iδ ii +ii ∑

 

(17)

where the second term of the right side is additional 
displacement of the point i due to forces resulting 
from soil-pipe interaction. The third term is addi-
tional displacement due to the existence of tunnel. 
By assumptions 5, uf

si is defined as the green-field set-
tlement profile at pipe level, and is calculated by the 
method proposed by Loganathan and Poulos (1998).

The static equilibrium condition and the dis-
placement compatibility relation are required. 
They can be expressed as follows:

F RbiFF iRR
 (18)

u u R usi bi i iRR i j ij
j firstff pipe node

j i

last pipe node

si
f=ubi +ij∑ δj iδ ii δRR jR iji∑

 

(19)

By introducing Eqs.(18) and (19) in to Eq. (14), 
the deformation behavior of the existing pipe due 
to tunnelling can be obtained:

([ ] [ ] [ ][ ][ ]){ } [ ]{ }K K] [ K K][ ][ } [b s] [K ] s s][K ][ b b]){K s s]{ f]K[ sK[ λ
 

(20)

where [Ks] is the local soil stiffness matrix, which 
only takes consideration of the effect of the singu-
larity point, i.e.,

i j

i j
ij ii[ ]KsK =

⎧

⎨
⎪
⎧⎧

⎨⎨

⎩
⎪
⎨⎨

⎩⎩

1

0

δ i

 

(21)

and [λs] is the soil flexibility matrix, which doesn’t 
take consideration of the effect of the singularity 
point, i.e.,

δ
ij

ijδδ i j

i j
[ ]λsλ =

⎧
⎨
⎧⎧
⎨⎨
⎧⎧⎧⎧

⎩
⎨⎨
⎩⎩
⎨⎨⎨⎨

0
 

(22)

in which δii and δij  can be calculated by the inverse 
transform of Eqs. (10) and (12).

Figure 2. Effects of soil stratification on pipe behaviour 
due to tunnelling.
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It is worth mentioning that omitting [Ks][λs] [Kb] 
in the above equation will result in a Winkler model. 
That means the soil reaction acting on the existing 
tunnel is not affected by the soil response at different 
locations along the tunnel. So the term [Ks][λs] [Kb] 
can thus be regarded as an additional term consid-
ering the continuous effects. However, because the 
components of [Ks] are different from those which 
are constructed by commonly used subgrade coef-
ficients, such as proposed by Vesic (1961), the solu-
tion obtained by omitting this term may not be the 
Winkler solution.

4 APPLICATION EXAMPLES

By the approach discussed above, the computer pro-
gram has been written for estimating the existing pipe 
behavior in the homogeneous soil and layered soils.

4.1 Example for homogeneous soil

Vorster (2005) carried out the centrifuge model 
tests to estimate the effects of tunnelling on exist-
ing pipe. The tests were conducted in Leighton 
Buzzard Fraction E silica sand under 75 g accel-
eration. In prototype scale, one set of the tests rep-
resented a 4.5 m diameter tunnel with a depth of 
11.25 m, and running transversely beneath a pipe 
with the outer diameter 1.2 m and wall thickness 
0.15 m (EI = 203.86 MN • m2) buried at a depth 
of 4.2 m. And the equivalent average ground loss 
ratio was set at 0.3%, 1% and 2%, respectively.

The description and analysis of centrifuge model 
tests is also with prototype scale. In the analysis, 
the soils are divided into forty layers and each has 
the same elastic parameters. The thickness of each 
layer is 1 m. Figures 3 and 4 show calculated pipe 
vertical displacements and bending moments esti-
mated from the proposed method, together with 
the observations from centrifuge tests.

From the above figures, it can be seen that the 
calculated pipe vertical displacements and bend-
ing moments are in general consistent with the 
observed shapes, though there are slightly differ-
ences between the two results. When the ground 
loss ratio is small (e.g., ε < 1%), there is a good 
agreement between the observed and calculated 
profiles of the pipe vertical displacements and 
bending moments in magnitude and shape. How-
ever, the difference between the observed and 
calculated results of the pipe vertical displace-
ment and bending moment profile increases as the 
ground loss ratio increases. In addition, the differ-
ence between the calculated values and observed 
results in the vicinity of the tunnel (e.g., the range 
of x = ±5 m) is obviously. The reason may be that 
the soil nonlinear effects induced by tunnelling are 

highly when compared with the difference in the 
field far away from the tunnel and with the differ-
ence of the less ground loss ratio.

4.2 Example for layered soils

In order to study the effects of the layered com-
plexity on the accuracy of the proposed method, 
the tunnelling-induced ground movements in five 
layered soils are analyzed. The first layer is 2.8 m, 
the Young’s modulus is 2.53 MPa, the Poisson’s 
ratio is 0.33; the second layer is 5.2 m, the Young’s 
modulus is 7.44 MPa, the Poisson’s ratio is 0.32; 
the third layer is 12 m, the Young’s modulus is 
13.16 MPa, the Poisson’s ratio is 0.3; the forth layer 
is 12.1 m, the Young’s modulus is 22.3 MPa, the 
Poisson’s ratio is 0.3; the five layer is 20.3 m, the 
Young’s modulus is 50.7 MPa, the Poisson’s ratio 
is 0.2.The outer diameter and inner diameter of an 
existing tunnel (EI  = 3.09 × 107 kN • m2) are 6.2 m 
and 5.5 m, respectively. It is buried at a depth of 
13.3 m. A newly-built tunnel with the outer diam-
eter 6.4 m and axis depth 25 m is running trans-
versely beneath the existing tunnel. The equivalent 
average ground loss ratio is 2.02%.

In order to compare with the displacement 
controlled solutions, the finite element numeri-
cal analysis is conducted based on the large-scale 

Figure 3. Comparisons of pipe vertical displacement.

Figure 4. Comparisons of pipe bending moment.
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commercial software. Figure 5 shows the 2-D 
mesh used in the analysis. There are 5120 ele-
ments and 5190 nodes. A displacement control-
led finite element model (i.e., DCFEM) proposed 
by Cheng et al. (2007) is adopted in this study. In 
this model, the effect of  tunnelling is simulated 
by prescribing displacements to nodes around the 
tunnel opening rather than by prescribing forces, 
which is similar to non-uniform oval-shaped 
ground deformation pattern by Loganathan and 
Poulos (1998).

Figure 6 show computed green-field soil set-
tlement profiles based on the DCFEM and 
closed form solutions by Loganathan and Poulos 
(1998). The numerical results are close to ana-
lytical results. Although the maximum settlement 
from numerical analysis is slightly over analytical 
results, the difference between the two calculated 
results in the far field is negligible. Figures 7 and 
8 show the existing tunnel settlement and bend-
ing moment results using the proposed solutions 
under the condition of the homogeneous soil and 
layered soils, and their comparisons with those 
presented by DCFEM. The elastic parameters of 
the homogeneous soil are calculated by the means 
of weighted average method proposed by Poulos 
and Davis (1980).

As shown in figures 7 and 8, the proposed 
results based on realistic layered soils provide a 
reasonably good match with the computed results 
by DCFEM. However, the proposed results based 
on homogeneous soil show a poor agreement with 
DCFEM. The reasons for the slightly differences 

between the proposed results for layered soils 
and DCFEM may be partially that the different 
approach for the green-field soil settlements. That 
is to say, the proposed results of the existing tun-
nel deformation will more approach the DCFEM 
analysis results as if  the green-field soil settlements 
by other method more approach those through 
DCFEM.

From the above-mentioned analysis, it is shown 
that the proposed method is a valid approach with 
higher precision in assessing the existing tunnel 
behavior in non-homogeneous layered soils. More-
over, as to the layered soils where the difference 
of elastic parameters among successive layers is 
large, the error obtained via the weighted average 
method based on homogeneous half  space model 
is not negligible.

5 CONCLUSION

An efficient and practical displacement control-
led method to predict the effects of soil stratifica-
tion on pipe behaviour due to tunnelling-induced 
ground movements has been suggested. The fun-
damental solution for layered soils is obtained by 
applying the double Laplace transform and trans-
fer matrix method based on the layered half  space 
model. Then the existing pipe is regarded as the 
Euler-Bernoulli beam. Composing green-field soil 

Figure 5. Finite element mesh for five layered soils.

Figure 6. Comparisons of green-field soil settlement.

Figure 7. Comparisons of existing tunnel settlement.

Figure 8. Comparisons of existing tunnel bending 
moment.
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settlements caused by the adjacent tunnelling to 
the existing pipe, the displacements and internal 
forces from the displacement controlled solution 
equation are obtained.

The results discussed in this paper indicate that 
the proposed method provides reliable estimates 
for the pipe behaviour due to tunnelling-induced 
ground movements in multi-layered soils. Moreo-
ver, it has been demonstrated that as for the layered 
soils where the differences of elastic parameters 
among successive layers are large, the error is not 
negligible, which is obtained employing average 
elastic parameters based on homogeneous soil con-
verted from layered soils. It should be noted that 
the major limitation of the proposed method stems 
from the simplified assumptions of linearity and 
elasticity. However, it appears to be useful for a pre-
liminary design of tunnels to predict the tunnelling-
induced pipe deformation, specially considering 
that the small ground loss can be obtained though 
the strict operation and the modern technique.
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