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Abstract: The hydro-mechanical behaviour of �ine-grained compacted soils is signi�icantly in�luenced by matric suction. However, reliable measurements and continuous monitoring of 
matric suction are both costly and time-consuming. Due to this reason, there are limitations in 
implementing the state-of-the-art understanding of the mechanics of unsaturated soils into 
practice. To address this challenge, in this study, multi-gene genetic programming (MGGP), a 
powerful machine learning (ML) technique, is employed to develop a model for estimating 
matric suction in compacted �ine-grained soils using an extensive database. The proposed 
model is capable of reliably estimating matric suction using simple soil properties as inputs, 
accounting for variations in soil structure induced by initial compaction conditions and changes in water content caused by seasonal or environmental �luctuations. Additionally, a simple 
equation is derived based on the MGGP model that provides a programming-free method for 
manual or spreadsheet-based calculation of matric suction using the information of basic soil 
properties. The proposed approach is valuable for practicing engineers for rationally 
interpreting and predicting the performance of geotechnical infrastructures constructed with 
or within �ine-grained unsaturated soils.  

Introduction 

Compacted �ine-grained soils are widely used because they offer favorable hydraulic and 
mechanical properties for the construction of geotechnical infrastructure. Fig. 1 shows several 
geo-infrastructures that include the embankments, foundations and subgrades of roadways and 
railways that are constructed with or within compacted soils. In most scenarios, these geo-
infrastructures are above the natural groundwater table (GWT), a zone in which soils are 
typically in an unsaturated state. The hydro-mechanical behavior of unsaturated compacted 
soils is sensitive to variations in matric suction associated with water content changes [1-4]. 
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Figure 1: Typical geo-infrastructures constructed with or within compacted soils. 

Matric suction, (ua – uw) and net normal stress, (σn – ua) are two key stress state variables that 
are required for rational interpretation of the hydro-mechanical behavior of unsaturated soils 
[5]. While net normal stress can be readily calculated using information on the density and thickness of soils in the �ield, matric suction determination remains a complex task. To 
accomplish this task, expensive equipment is often required, which involves time-consuming 
procedures using the expertise of highly skilled professionals [6-8]. 

Recent advancements extending highly ef�icient and reliable ML techniques are revolutionizing 
applications in unsaturated soils [9-13], offering reduced costs and enhanced ef�iciency 
compared to traditional methods. Although some studies have estimated matric suction using 
ML techniques [14-17], to the best of the author's knowledge, there are no studies that have focused speci�ically on estimating suction in compacted �ine-grained soils. The distinct behavior 
of compacted �ine-grained soils has a strong link to microstructure and aggregates [18-20]. 
Investigating these characteristics typically necessitates costly and complex methods, such as 
mercury intrusion porosimetry (MIP) and environmental scanning electron microscopy (ESEM) 
[21]. Ef�icient methods are needed to re�lect soil structure in suction estimation without adding 
complexity to engineering practice. 
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To achieve this objective, a simple equation is derived in this study based on the MGGP model, 
offering a programming-free method for estimating the matric suction of compacted �ine-
grained soils using basic soil properties. The proposed equation can be applied either manually 
or with a spreadsheet tool. 

Methodology 

Multi-Gene Genetic Programming (MGGP) 

Multi-Gene Genetic Programming (MGGP) is an explainable ML technique rooted in the 
principles of Genetic Programming (GP) inspired by Darwin's theory of evolution [22]. As a non-
deterministic algorithm, MGGP does not require prior domain expertise or assumptions about 
the functional style of the model. This capability, coupled with its exceptional ability to capture 
non-linear relationships, has made MGGP a valuable tool for estimating the hydro-mechanical 
properties of unsaturated soils [23-26]. 

MGGP generates mathematical expressions that elucidate the relationship between inputs and 
output, as shown in Eq. 1. 𝑤𝑤0 +𝑤𝑤1(0.5 𝑥𝑥1 + 10) +𝑤𝑤2(3𝑥𝑥2 − cos (𝑥𝑥3)) +⋯+𝑤𝑤𝑛𝑛(Equation (n)) (1) 

where wi, i ∈[0, n] is the weight; xi is the input. 

As shown in Fig. 2, the MGGP model has a tree-based structure with varying depths.  

 

Figure 2: Illustration of a tree structure of the MGGP algorithm. 
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In the GP model's tree structure, functional nodes represent operations, such as arithmetic or 
Boolean functions, while terminal nodes, typically at the leaves, consist of independent 
variables and problem-speci�ic constants. Unlike traditional GP models with a single tree or 
gene expression, the MGGP algorithm introduces multiple genes, integrating the structural �lexibility of GP with the parameter estimation accuracy of classical regression.  

Modelling procedure 

The AI modeling process undertaken is divided into four stages, as shown in Fig. 3.  

 
Figure 3: Modeling procedure used in this study 

The modeling process begins with the selection of inputs based on theoretical foundations and 
well-established experimental results. Data are then collected and preprocessed to ensure 
suitability for modeling, followed by splitting the dataset into training (70%) and testing (30%) 
subsets. The MGGP model is trained using the training dataset, while its performance is 
evaluated with the testing dataset. This procedure results in a model capable of estimating the 
matric suction of compacted �ine-grained soils. Furthermore, signi�icant analysis that is 
undertaken in this study provides more information about the contribution of each input, offering valuable insights into their in�luence on variations in matric suction due to the in�luence of soil structure.  

Input selection 

The key parameters that in�luence the matric suction in �ine-grained compacted soils are 
selected as inputs and grouped into three categories: basic soil properties, compaction 
characteristics, and derived parameters that capture the effects of mineralogical composition 
and plasticity, as outlined in Tables 1 to 3 

Table 1: The basic inputs and obtaining methods. 
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No. Input Symbol Unit Test method /Relationship* 

1 Sand fraction (x1) Sd % Sieve analysis test 

2 Silt fraction (x2) M % Hydrometer method 

3 Clay fraction (x3) C % Hydrometer method 

4 Liquid limit (x4) LL % 
Cone penetration test / 

Casagrande cup 

5 Plastic limit (x5) PL % 
Cone penetration test / 

Casagrande cup 
6 Plasticity index (x6) IP % IP = LL-PL 

7 Speci�ic gravity (x7) Gs - Pycnometer method 

8 Degree of saturation (x8) Sr % Sr = wGs / e0 

Note: * The testing method for the input listed above adheres to the American Society for Testing 
and Materials (ASTM) standards. 
 

Table 2: The compaction characteristics and inputs. 

No. Input Symbol Unit Test method /Relationship* 

1 Initial void ratio (x9) e0 - e0 = wGs/Sr 
2 Compaction water content (x10) wc % - 
3 Dry unit weight (x11) γd kN/m3 γd = γ/(1+w) 
4 Degree of compaction (x15) Dc % Dc = γd /γdmax 

 
Table 3: The inputs related to the effect of mineralogy and plasticity of soil. 

No. Input Symbol Unit Expressions 

1 Fine-grained fraction (x12) F % F = M +C 

2 Weighted plasticity index (x13) Iwp % Iwp = F×Ip 

3 Activity index (x14) A % A =Ip / C 

 

These selected inputs are soil properties that can be readily measured in conventional soil 
mechanics laboratories performing simple tests.  

The dataset for modelling 

The dataset consists of 61 different soil samples, as shown in Table 4. These compacted soils 
contain varying proportions of �ine-grained particles and are used to train the MGGP model. 

Table 4: Experimental data gathered from the published literature. 

ID Classi�ication* Testing method References 

1-11 CL Axis-translation technique [27] 
12-20 CL, CH Filter paper, pressure plate [28] 
21-27 CH Pressure plate [29] 
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ID Classi�ication* Testing method References 

28-33 CL, CH Pressure membrane test [1] 
34-37 ML, CL, CH Axis-translation technique [30] 

38 CL Axis-translation technique [31] 
39-52 ML, CL, CL-ML Pressure plate [32] 
53-54 MH, CL Pressure plate [33] 

55 CL Pressure plate [34] 
56-58 ML Pressure plate, �ilter paper [35] 

59 CL Filter paper [36] 
60-61 CL Axis-translation technique [37] 

Note: * The soils are classi�ied according to the Uni�ied Soil Classi�ication System (USCS)  
 

The coef�icient of determination, R2, as shown in Eq. 2, can be employed to conduct a 
preliminary evaluation of the estimation results. 

𝑅𝑅2
= ⎝⎛ ∑  𝑛𝑛𝑖𝑖=1 �𝑂𝑂𝑖𝑖−𝑂𝑂� 𝑖𝑖��𝑃𝑃𝑖𝑖−𝑃𝑃� 𝑖𝑖��∑  𝑛𝑛𝑖𝑖=1 �𝑂𝑂𝑖𝑖−𝑂𝑂� 𝑖𝑖�2∑  𝑛𝑛𝑖𝑖=1 �𝑃𝑃𝑖𝑖−𝑃𝑃� 𝑖𝑖�2⎠⎞

2

(2) 

where n is the number of data points; Oi is the observed values; Pi is the estimated values. 

Estimation result and analysis: 

 Estimation results The estimation results are presented in Fig. 4. Over�itting was mitigated through systematic hyperparameter tuning, and the optimal con�iguration obtained from this process is 
summarized in Table 5. 

  
Figure 4: Estimation of matric suction using MGGP models: (a) training set and (b) testing set. 
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The R² values for both the training and testing sets exceed 0.80, indicating a strong agreement 
between the MGGP-estimated and measured values. The comparable performance across datasets demonstrates good generalization capability and con�irms that the model does not 
suffer from over�itting. 

Table 5: Parameter settings con�iguration for the MGGP model. 

Setting* Values/ Names 

Size of population 2500 

Runs 20 

Tournament size 25 

MaxGenes 16 

Function nodes 
times, minus, plus, rdivide, square, tanh, exp, log, 

mult3, add3, sqrt, cube, negexp, neg, abs 
MaxDepth 6 

Note: A detailed description of the parameters can be found in [38] 
 

A generic mathematical equation for the MGGP model can be expressed as equation (3). The 
mathematical expressions for each gene in Eq. 3 are presented in Table 6. 

(𝑢𝑢𝑎𝑎 −𝑢𝑢𝑤𝑤) = �Gene(𝑖𝑖)𝑛𝑛
𝑖𝑖=0

(3) 

Table 6: Mathematical expressions of Genes in the MGGP Model. 

ID Expression ID Expression 

Gene 1 1100.0 x3 Gene 9 2200.0 (x8 + x9) 

Gene 2 -(3.23 x12 x4 x151/2)/x84.78 Gene 10 0.125 x15 

Gene 3 -1777.0 x8 Gene 11 -6888.0 x81/2 

Gene 4 
11.5 (cos(x42) - x11 - x14 - x3 - cos(x3) - 

cos(2.7 x123) - (x15)1/2) + 89.5 
Gene 12 

-246.0 cos(cos((x7 - 
x11)/log(x8))) 

Gene 5 1099.0 x2 - (1099.0 (x7 - x11))/x8 Gene 13 7799.0 log(x8) 

Gene 6 - 50.2 x11 - 50.2 log(x9 + 7.89) Gene 14 -1099.0 x12 

Gene 7 -66.4 cos(x42) Gene 15 -13.2 x8 - 13.2 abs(x5) 

Gene 8 -889.0 abs(cos((x7 - x11)/x8)) Gene 16 -7.63 x151/2 

Bias -266.0 - - 

Note: variables x1 to x15 are de�ined in Tables 1–3. 

 

Evaluating inputs importance: a statistical analysis based on model randomness 
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The stochastic nature of the MGGP model stems from random operations, including the selection of function and terminal nodes, and is further ampli�ied by the mutation operator. This 
inherent variability ensures that each execution of the MGGP model generates multiple distinct mathematical expressions, which are utilized to evaluate the signi�icance of inputs. Figure 5 
summarizes the signi�icance of the inputs derived from 20 distinct mathematical expressions 
produced in a single operation of the MGGP model. 

 

Note: variables x1 to x15 are de�ined in Tables 1–3. 

Figure 5: Statistical analysis of input importance 

As shown in Fig. 5, the inputs are classi�ied into �ive categories to facilitate the analysis. Among 
these, the degree of saturation, compaction characteristics, and plasticity-mineralogy properties are identi�ied as the three key categories for reliable estimation of matric suction in 
compacted �ine-grained soils. In contrast, the impact of PSD and speci�ic gravity on matric 
suction is relatively minor. Within the PSD, the sand fraction exerts a limited effect, as sand primarily acts as an inert �iller with minimal physicochemical interactions. For the group of factors related to soil structure variation, the compaction water content is identi�ied as the 
governing parameter, while soil consistency, which re�lects soil plasticity, represents the second most in�luential factor. These two parameters affect soil aggregation and structural 
arrangement, contributing towards the development of a �locculated or dispersed structure, 
which in turn governs the coupled soil-water interaction and in�luencing the soil suction. 
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5. Summary and discussion: 

The matric suction of compacted �ine-grained soils that is in�luenced by soil structure is 
indirectly accounted in this study using alternative information derived from compaction 
characteristics and plasticity-mineralogy properties. The proposed approach for estimating 
matric suction eliminates the need for extensive testing, thereby enhancing the model's 
practicality for engineering applications. The main conclusions drawn from the study are as 
follows: 

(1) The proposed MGGP model has been successfully used in the estimation of the matric suction of compacted �ine-grained soils, considering the in�luence of the initial compaction state.  

(2) The degree of saturation, plasticity and mineralogy inputs and the compaction 
characteristics inputs are found to be the key information that's essential for reliable estimation 
of matric suction in compacted soils. 

(3) The equation derived from the MGGP model offers a practical tool for calculating matric 
suction in a spreadsheet environment, eliminating the need for programming and making it 
accessible to a broader range of users. 

While the proposed model performs well, it has certain limitations in its implicit representation 
of soil structure. Future research should aim to explicitly incorporate structural features, with particular attention to dispersion, �locculation, and aggregation in compacted �ine-grained soils, 
to further improve prediction accuracy and interpretability. 
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