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Abstract: The paper examines the behaviour of unsaturated soil as air and water progres-
sively penetrate or exit pores during all water saturation regimes and transitions. Since the
physics underlies the collective interactions of water, air and solid particles in the pore space,
a numerical framework is adopted where many-body interactions are considered using discrete
element modelling for solid grains coupled with air and water dynamics described by the Lat-
tice Boltzmann method. Such a computational approach provides a viable route to model the
complex formation, coalescence or rupture of liquid bridges in the pore network. Computing
the dynamics of water or air invasion ultimately unravels the role of capillary-induced stresses
during wetting, including retention characteristics of an unsaturated soil. With this picture of a
system dominated by elementary pore and grain physics, we anticipate that these aspects can be
homogenized to the continuum scale for a detailed stress-deformation analysis of geostructures
subjected to wetting and drying cycles.

Introduction

Today, the behaviour of saturated soils is undeniably very well understood ever since the early
days of Karl Terzaghi who brought soil mechanics—especially the principle of effective stress—
to geotechnical engineering. However, extending our understanding to the behaviour of un-
saturated soils becomes more complicated since water, air and other gases coexist in the void
space. These additional fluids bring intricate interactions between the various constituents and
the soil grains, which raises thorny issues such as the characterization of the various partial
stresses, interfacial tension, and the stresses controlling strength in the diverse regimes of water
saturation [1, 2]. In this day and age of climate change where unsaturated soils in geotechnical
engineering are being more appreciated, principles of mechanics and hydraulics must be prop-
erly extended to include fundamental interfacial physics and thermodynamics. In this regard,
the stress-strain-hydrologic behaviour of natural or engineered soils is strongly dependent on



interfacial interactions in the form of a contractile skin in between the phases that creates
surface tension effects.

Although the literature on unsaturated soils is richly well-developed nowadays [3, 4, 5],
several basic questions of continuing importance still have to be answered such as describing
the crossing of all water saturation regimes as a soil is cyclically wetted and dried. This is
in obvious connection with the role of climate on geostructures such as slopes, embankments
and dams which consist of compacted engineered soils, hence unsaturated. Water in various
proportions in the soil’s interstices vastly modifies its mechanical properties—its state may
transition from that of a bulk solid to a fluid that flows spontaneously, producing a wetting
collapse. When dried, soils lose moisture and shrink, eventually causing cracking

To motivate the discussion further, let’s recall the four water saturation (capillary) regimes
that exist in a soil starting from the dry state: (1) pendular, where particles are cohesively
held by isolated liquid bridges; (2) funicular, where the liquid bridges coalesce, engulfing a
few particles; (3) capillary, where liquid with some air occlusions invades the entire void space
under capillary action; and (4) the fully saturated condition with exclusively liquid in the void
space such that particles could be fully immersed as in a mud slurry.

It turns out that many geostructures undergo swings in the above-mentioned capillary
regimes during exposure to climatic fluctuations that will invariably change their mechani-
cal characteristics to eventually induce disastrous structural failure, putting capillary regime
changes in the spotlight. Transitions between the various capillary regimes are directly linked
to structural failures observed in the field which can only be analyzed at the microscale
(grain/pore). This means that we must formally—instead of phenomenologically—describe
the different capillary regimes and transitions in a unified mathematical framework to precisely
model failure in unsaturated geostructures.

In the literature, the transition from dry to pendular regime has been amply studied [1, 6],
whereas in this work the more challenging transition from pendular to funicular regime is
investigated. Such a transition certainly causes a sudden drop in effective stress followed by
irreversible deformations and a suction change-induced plasticity. It also triggers material
instabilities such as internal erosion and liquefaction. While many studies have focused on
the failure aspects, existence of an effective stress |7, 8], retention properties, and drying or
wetting, a proper modelling of capillary forces during wetting/drying cycles through distinct
transitions in capillary regimes remains elusive today. Moreover, failure in unsaturated soils
manifests itself through many more subtle modes besides wetting collapse, mandating a robust
framework such as the second-order work for analysis [9].

In addressing the central issue of modelling the full physics and transitions entirely across all
capillary regimes, the present paper starts off with a brief introduction of the Lattice-Boltzmann
Method (LBM) [10] to examine the multiphase flow at the pore scale in complex geometries,
while the motion of the solid particles is being described by the Discrete Element Method
(DEM) [11] based on solving Newton’s second law of motion. Then, the detailed formation,
merging and rupture of liquid bridges between particles are numerically modelled, revealing
the underlying micro-physics of water retention, capillary forces and hysteresis in wetting and
drying cycles.



Multiphase Lattice-Boltzmann

The study of multiphase flow within soil’s void space at the microscale requires us to abandon
the treatment of fluids as continua, but rather represent their discrete molecular nature as well
as their collective behaviours, especially interactions with the solid grains. Modelling the details
of the micro scale where molecules move under various forces would be very complicated as
could be done using a molecular dynamics approach. Instead, to reduce the high dimensionality
of the problem, the Lattice Boltzmann Method (LBM) is used.

There is an abundant literature on the Lattice Boltzmann method [10] which has emerged
as a powerful tool in computational fluid dynamics and material science. There are, however,
limitations and challenges in the application of the method, particularly in compressible fluids
and multiphase physics, e.g. [12]. Herein, our contribution is to include capillary forces and an
algorithm for phase change to address evorporation and condensation in liquid bridge dynamics
inside a granular soil [13].

To put things into perspective, we give a succinct description of the method as background
material to support the numerical simulations that will be described later. The Lattice Boltz-
mann Method essentially looks at an intermediate scale where ensembles of fluid molecules
occupy a small volume element compared with the size of the problem, but large enough to
capture very many molecules. The objective is to have a sufficient description of the average
properties of the molecules in this element. A statistical description introduces a probability
distribution function f(&,r,t) that is defined as a function of microscopic velocity &, position
vector 7 and time ¢ by considering an element in the velocity space d&* = d§,.d¢,.d¢, with
sides d§ located at velocity & Thus, the PDF is the density of molecules in the six-dimensional
“phase-space” combining velocity and space. To describe the dynamics of two fluids, i.e. wa-
ter and air, including interfaces, an additional PDF ¢(&,r,t) is introduced. In particular, by
writing the first moment of g gives the phase field ¢ to determine the partitioning of the phase
densities, i.e.

o(r,t) = /g(g, r, 1) de® where ¢ = % (1)

Basically, the phase field ¢ = 0 refers to gas and 1 to liquid and anything in between is
the interface. At thermodynamic equilibrium, the phase field distribution is mathematically
described by a smooth Heaviside function (sigmoid function) which controls the width of the
interface, hence its sharpness. Calculating the phase field ¢ over the domain of interest, the
density can be determined from respective liquid and gas densities to uncover the spatial dis-
tribution of the phases and the topology of the interfaces.

Furthermore, the second moment of the probability distribution function f coincides with
the momentum, and hence the macroscopic velocity w can be retrieved:

p(r,t)u = /ff(ﬁ,r,t) d&® where w = {u,, u,, u,} (2)

Writing the conservation of mesoscopic particles in both space and the phase-space gives
way to two Boltzmann equations which consist of a streaming part where particles move over a



lattice and a second part (§2) describing interactions with other particles through collision, i.e.

of _ o 99 _
S TEVI=A(f) 5 +EVg=0(g) (3)

Proper choices of collision operators {2 make the equations converge to the Navier-Stokes
and Allen-Cahn equations respectively, i.e.
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In the Navier-Stokes equation, we have added a surface tension term to represent capillary
effects. Essentially, a potential form is postulated based on previous works in the literature
where the surface tension term Fj is related to the gradient of the phase field function ¢ through
a chemical potential y, defined as the minimum of the mixing energy. The second equation is
the Allen-Cahn equation which describes the evolution of the interface. For more details about
the formulation, our numerical contributions, and implementation in a GPU based code, see

13].

Validation of model

As a validation exercise for the model, let’s explore the capillary force exerted on three solid
gains at the coalescence of two initial menisci. This microscale force is representative of macro-
scopic strength of unsaturated media. The problem of coalescence of menisci was approached
in the literature using an energy minimization technique [14] which will be herein compared
with our LBM results.

The triplet configuration consists of two bottom particles separated by a distance of 8.3
mm with the upper particle at a distance of 8.7 mm from the centers of the bottom particles.
All particles have the same radius of 4.4 mm. Two spherical water drops are initialized in
the mid-segment one between the top and right particle, and the other between the top and
right particle. If the seeded water volume is initially large, each capillary bridge will evolve on
its own until at some point, coalescence of both bridges will occur to form one single merged
capillary bridge at equilibrium when the imposed contact angle 6 is satisfied.

Figure 1a shows the evolution of the two initial water menisci until equilibrium is reached,
where a single merged liquid bridge is formed. A parametric study is performed by varying the
initial water volume V' from 1 to 33 uL, and contact angle 6 for values of 20°,40°, 50°. The
vertical capillary force F? exerted onto the upper particle is thus calculated to understand
how capillary effects vary with water saturation.

Figure 1b shows a rather good agreement between LBM results and those based on energy
minimization. However, what is most important here is the advantage of the LBM in computing
forces such as those caused by adhesion, pressure and viscosity at every time step, while in the
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energy minimization method, total forces are only calculated at equilibrium. Further what is
most compelling is our capability of handling the dynamics of capillary bridges, which makes
it extremely powerful for treating unsaturated granular assemblies, regardless of the capillary
regime, whether with isolated or coalesced bridges.
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Figure 1: Liquid bridge dynamics in a triplet of particles: (a) merging of two initial menisci
to form a large liquid bridge, (b) capillary force on upper particle as a function of the initial
volume of the menisci and contact angle with comparisons with Surface Evolver used in [14]

Physics of Wetting and Drying

The physics of wetting and drying is next investigated in another case triplet of particles forming
a equilateral triangle, but with the initial water menisci placed at all three contacts with a gap
of 0.1 mm. To simulate evaporation and condensation during wetting and drying processes, the
proposed algorithm is to perturb the phase field parameter ¢ at equilibrium by an infinitesimal
amount so as to shift the position of the interface accordingly [15].

Figure 2a depicts the capillary forces evolution when the granular system is subjected to
condensation followed by evaporation. As the volume of water increases, when the triple (three-
phase contact) lines of the isolated capillary bridges touch each other, coalescence takes place,
resulting into a transition from the pendular to the funicular regime. The merging occurs for
a volume of V' & 10uL as seen Fig. 2a from state (a) to (b). It is important to note that at
coalescence, a discontinuity in capillary forces is observed with a relatively sharp increase of
30% in capillary forces, which is completely in agreement with the theoretical value reported
[16] for the same contact angle § = 50°.

To better understand the physics behind this sharp increase in capillary forces at coalescence,
the evolution of the suction (difference between air and water pressures) force component and
that due to surface tension are plotted in Fig. 2b. In the pendular regime and as the water



volume increases, it can be observed that suction force decreases continuously. By contrast, the
surface tension force component increases because the wetting surface (solid-water interface)
expands gradually around the particles. At coalescence, it is observed that the suction force
suffers a significant jump (a—b) whereby it increases, whereas the surface tension force shows
a slight decrease also through a jump (c—d).
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Figure 2: Force evolution as a function of water volume as the system is being wetted and dried
using the condensation and evaporation algorithm: (a) total capillary force, and (b) surface
tension and suction components

At the end of wetting when the water volume is V' = 30uL, the evaporation process, i.e.,
drying, is thus initiated. The merged capillary bridge shrinks as evaporation proceeds until
the water volume reaches V = 6uL at step (c) in Fig. 2a. At this point, the capillary bridge
spontaneously splits up into three smaller capillary bridges of equal size as seen in Fig. 2b at
step (d). This rupture event causes a sharp decrease of 30.9% in the capillary force. Also,
note that the volume at which bridges merge or split are different for the wetting and drying
path, almost like representing a break in symmetry. Essentially, the jump in capillary force
(sum of suction and surface tension components), seen in Fig. 2a for a wetting path, is purely
of geometric origin. Hence, we may anticipate that the hysteresis of capillary forces during a
wetting and drying cycle is strongly linked to pore scale mechanisms. These are in the form
of a jump in force accompanying a sudden reconfiguration of the menisci during fluid filling
or flushing of a pore throat, which will affect the strength of unsaturated soil during capillary
transitions. One may surmise that these are instabilities germane to the well-known Haines
jump observed in immiscible flow in porous media [17], but these need be further confirmed.



Coupled LB-DEM Simulations

To compute the formation of liquid bridges and their coalescence within a complex pore topol-
ogy, the previously presented multi-component LBM equations in Eq. 4 are coupled with particle
motions in DEM using the opensource code YADE [11]. As such, the fluid will evolve according
to the discrete Boltzmann equations (Eq. 3) that will account for surface tension forces at fluid
interfaces, the dynamics of which will be governed by the Allen-Cahn equation for an air/water
composition based on density. From pendular to funicular and thereafter to full saturation,
the evolution of distribution functions in LBM will translate into pressure, viscous and surface
tension forces on the solid particles in a coupled manner [15]. In the end, stresses in an assembly
of solid particles, water and air will be readily connected to deformations that ensue due to
changes in capillary regimes during wetting, as will be illustrated next.

Sample setup

The granular assembly to be investigated consists of 3,750 spherical grains following a uniform
grain size distribution such that D,uue/Dmin = 1.35 with Dyep = 108um and D,y = 80um.
This ensures computational and capillary physics consistency, assuming a representative ele-
mentary volume in unsaturated media. As for the fluid phase, a total number of 10,877 spherical
droplets are initialized between particles at a cutoff distance of 5um, which corresponds to ap-
proximately 10% of the maximum particle radius in the assembly. By growing or shrinking the
size of the initialized spherical droplet radius, we thereby control the increase or decrease of the
water saturation in the granular assembly as needed to explore the micro-physics of capillarity.
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Figure 3: (a) Initial configuration of a wet cubical sample confined within six walls. (b) Stable
wet sample even after removing the lateral walls. The degree of saturation in this example is
S, ~ 54%.

Figure 3a illustrates the initialization of a wet sample by sparsely spreading water droplets
of a known total volume between the particles. After reaching both mechanical and thermo-
dynamic equilibrium, the final distribution of liquid bridges is obtained. The liquid bridge
topology corresponds to a specific homogenized suction field operating throughout the sample
that allows it to stand freely, unconfined, as seen in Fig. 3b. Thus, the total stress on the
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boundaries is zero with the granular (contact) stresses being in compression by virtue of the
capillary stresses that have contributions from both suction and surface tension, see Figs. 1
and 2. Mathematically, the total stress o can be decomposed into a contact stress o™ and a
capillary stress 0“? as: o = g™ + g,

The explicit form of the above stress equation has been worked out in [1, 6] in terms of
microstructural information such as particle contact and liquid bridge topologies, contact forces,
capillary forces, skin membrane surface tension, suction and interfaces. Stress contributions
other than the contact stress are all lumped into the capillary stress. The contact stress which
derives from particle contact forces and particle connectivity is calculated using the Love-Weber
formula [18]. An important question that has been discussed in [8] is whether this stress is an
effective stress in Terzaghi’s sense for unsaturated soils which provides the basis of constitutive
models.

Soil Water Characterisitic Curve—SWCC

A variety of interesting results concerning both retention and mechanical characteristics of
unsaturated soils is herein explored to establish how matric suction and the capillary stress
tensor evolve as a function of the degree of saturation.
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Figure 4: LBM-DEM computed SWCC showing snapshots of water and air distributions (2-D
slices) at various transitions across the capillary regimes.

The computational procedure is as follows. Referring back to Fig. 3, the initial degree of
saturation S, as well as the volumetric water content #,, can be computed knowing the porosity
of the sample. In response to this water saturation, a matric suction s field develops from a



complex spatial distribution of clusters of menisci and air voids. These are homogenized into
a single-valued s as the average of all local suctions s’ at capillary menici weighted by their
respective volumes as in [19].

With a focus to microstructural details, Fig. 4 shows the computed SWCC with evolving air
and water phases during a wetting process in the middle 2-D section of the cubical sample for
clarity of illustration. At the beginning when S, = 11.4%, the wet granular assembly contains
an extensive network of air clusters together with an invading large number of liquid bridges.
As the degree of saturation increases to S, = 67.5%, isolated liquid bridges develop into one big
cluster with a continuous air phase. This particular instance coincides approximately with the
maximum curvature of the SWCC where suction starts to decreases appreciably. Upon further
saturation, the originally continuous air phase dwindles to be reduced to ubiquitous trapped
air bubbles as water will ultimately completely invades the pore space.
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Figure 5: LBM-DEM computed SWCC showing snapshots of water and air distributions at
various transitions across the capillary regimes.



We next explore the evolution of the mean capillary stress p®® (one third of the first invariant
of o°?) superimposed onto that of suction s as a function of degree of saturation S, and
volumetric water content 6,,, see Fig. ba. The air bubble and capillary bridge topologies are
also plotted in Figs. 5b,c to help elucidate the evolution of p®? and s, especially complement
the previous 2-D interpretations in Fig. 4.

The post-processing of the numerical results involves using the flood-fill algorithm to detect
capillary bridges and air bubbles, every one of which is labelled and given an ID. In Figs. 5b,c,
since there is a myriad of entities to identify, only the first 6 ID’s are shown so that anything
above this cut-off value is represented by the same ‘orange’ colour. Against this backdrop,
we find the general trend whereby the sample starts off with a low saturation of 11.4% at (1)
with one predominately large cluster of air void living together with a large number of liquid
bridges. With increasing saturation till (4), the air voids gradually decrease into smaller and
smaller connected air during the ingress of water. The turning point is given by (2) where water
begins to invade the pore space to expel the air as shown in Figs. 5b,c, focusing at point (2)
with S, = 67.5%. It is interesting to note that this point coincides with the peak of the mean
capillary stress and also the maximum curvature of the SWCC. In other words, the instant
at which the capillary effects are the most intense is when water just enters the pore throats.
Since we are concerned here with an unconfined sample, the contact stress tensor as a measure
of effective stress is wholly compressive in opposition to the capillary stress tensor. Hence, the
distinctive form of the p“? vs. S, curve shows the optimum saturation at which the soil is the
strongest, which is familiar in the Proctor compaction test of soils.

Bishop’s Equation

The description of stress conditions in unsaturated soil by Bishop’s equation [20] has been a
contentious issue connected to the existence of a Terzaghi-like effective stress that would control
both the deformation and failure of unsaturated soils. There is a rich literature on this debate,
starting with its origins in the 1960’s [7] to more recent studies situated in micromechanical
[1, 8] and thermodynamics frameworks to provide sufficiently general stress expressions, but
yet no clearcut conclusions on the existence of an effective stress [21, 22]. Hence, in the light of
our LBM-DEM simulations, it is tempting to examine the above-mentioned issues. To set the
stage, we translate the familiar Bishop’s effective stress equation, o — u, = ¢’ — xs, to identify
the capillary stress in tensorial form as:

oP?=ysI =5,sI; I =Identity tensor

In the above, we note two simplifying assumptions made originally by Bishop, namely:
(1) the isotropic (spherical) nature of the capillary stress, and (2) the assumption that the y
parameter is the degree of saturation S,. In reality, the capillary stress tensor is bound to be
non-spherical in nature, considering the anisotropy of contacts and liquid bridge distribution,
which will be demonstrated next.

A comparision is proposed between p°® as calculated from Bishop’s equation and our LBM-
DEM simulations where the capillary stress tensor can certainly be deduced by simple subtrac-
tion of the contact stress tensor from the total stress tensor. In line with the previous analysis,
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mean capillary stress will increase until a certain optimum degree of saturation is reached be-
yond which the specimen starts to lose the effects of capillarity. In Fig. 6a, we can observe that
p“? based on Bishop’s equation is always less than the LBM-DEM computed values. Despite
the same tendency displayed in both curves, they do not match perfectly, especially before
the optimum is reached. The reason for this lies in the assumption that xy = S, noted earlier
in Bishop’s equation, which can be readily checked since the numerical simulations directly
provide the actual value of the parameter x [23], among others.
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Figure 6: LBM-DEM computations versus Bishop’s Equation: (a) mean capillary stress, (b)
X-parameter

Figure 6b shows the back-calculated y plotted against S, where x and S, almost never
coincide. To confirm our findings, a numerical data set [24] has also been added. The two
numerical results do not line up perfectly, especially for low levels of saturation less than 10%
where y < .S,. This small discrepancy can be attributed to the difference between particle size
distributions used in their work [24] and ours. Generally speaking, y tends to remain greater
than S, as particle sizes increases, which makes our numerical results reasonable given the range
of particle sizes we are using. Notwithstanding the above small discrepancies, the point is to
demonstrate micromechanically that the y-parameter cannot be confounded with the degree of
saturation S,, a fact that has been demonstrated experimentally on silt and clay, e.g. [23].

Conclusions

A synthesis has been presented of a numerical framework based on the coupling of particle-
dynamics computer simulations for both solid grains and fluids (DEM and LBM) to decipher
the underlying pore and grain scale physics of matric suction and surface tension during wetting
and drying processes in unsaturated soils. To date, the description of the entire range of cap-
illary regimes and transitions has mostly been phenomenological. In our work, reformulating
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multiphase LBM to account for surface tension forces allows us to examine the dynamics of
liquid bridges in complicated void space topology. As for describing wetting and drying pro-
cesses, condensation and evaporation fluctuations are applied to the phase field that delineates
the various phases.

The numerical simulations presented in the paper shed light on many longstanding issues
related to capillarity effects as to their contributions to macroscopic strength and hysteretic
behaviour during wetting and drying cycles. It is shown that there is a break in symmetry
between wetting and drying cycles with the existence of jumps in the capillary forces during the
reorganization of menisci, thus possibly representing local instability. Then, we can anticipate
that transitions during the capillary regimes are dictated by small geometrical fluctuations that
may grow depending on the pore topology which is in turn a function of mechanical stresses.
These plausibly play a role in the strength of unsaturated soils under intermittent wetting and
drying.

As for stress contributions in unsaturated soils, our numerical simulations confirm the limita-
tions of Bishop’s equation which is a widely accepted equation used in geotechnical engineering
for unsaturated soils. Otherwise, stress partitioning in such multiphasic granular systems is
tied to microstructure, suggesting that a more generalized tensorial stress expression [1] might
be more appropriate as closely verified in [15].

To conclude, the success of the presented LBM-DEM model in capturing the complicated
dynamics and hysteresis of liquid bridges over the entirety of saturation regimes makes it
a plausible starting point for further development. In essence, the upscaling of the model
via homogenization techniques will set forth rich continuum modelling of geostructures under
fluctuating climatic loading dominated by wetting and drying cycles.
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