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ABSTRACT: The soil-water characteristic curve (SWCC) plays a crucial role in modeling unsaturated soil phenomena. However, 
obtaining SWCC measurements is often a labor-intensive and costly undertaking. To provide preliminary estimations, various models 
have been devised to predict SWCC through simpler parameters like the grain-size distribution and the Atterberg limits. Within this 
context, this study introduces a novel SWCC prediction model for bimodal tropical soils based on data from soils from the central-
western region of Brazil. The model employs the gradient-boosting machine-learning technique. The input parameters encompass the 
percentages of sand, silt, and clay for the soil in the aggregated and disaggregated states, alongside Atterberg limits. As output, the 
model provides the degree of saturation corresponding to any user-defined suction value. The model's training dataset comprises 696 
records, with 174 data points being used for model testing. The model yielded an R² value of 0.95 for training data and 0.90 for test 
data, surpassing the performance of widely employed literature models for SWCC prediction. However, it presented limitations in the 
predictions of high degrees of saturation. 
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1 INTRODUCTION 

The soil-water characteristic curve (SWCC) plays a crucial role in 
flow, stress, and strain analyses of unsaturated soils (Fredlund et 
al. 2012). The permeability, shear strength, and deformation 
parameters of unsaturated soils are commonly analyzed using the 
SWCC (Fredlund et al. 1994, Fredlund et al. 1996, Vanapalli et al. 
1996, Fredlund 2000, Zhai et al. 2020, Amadi et al. 2023). In 
addition, various models for predicting unsaturated soil parameters 
using the SWCC have been developed. 

The SWCC can be obtained through laboratory tests such as 
filter paper and pressure plate. These tests tend to be costly, time-
consuming and are not always accessible in geotechnical 
laboratories, making them unfeasible for small projects or during 
preliminary feasibility studies. On the other hand, numerous 
SWCC prediction models using more accessible parameters, 
commonly known as pedotransfer functions (PTF), have been 
developed. The particle size distribution (PSD) has been widely 
used in SWCC prediction models since the SWCC is directly 
related to the pore-size distribution, which is affected by the PSD 
(Arya & Paris 1981, Alves et al. 2020, Silva et al. 2020, Campos-
Guereta et al. 2021, Satyanaga et al. 2023, Zhai et al. 2023). Other 
parameters are also often incorporated into prediction models, such 
as liquid limit, plasticity index, and bulk density. 

SWCC prediction methods can be divided into two categories: 

theoretical and empirical models. Theoretical models assume that 
the pore-size distribution is directly related to the soil's water 
retention capacity. Different forms of modeling are used in 
theoretical models, such as fractals or pore-scale analyses (Arya & 
Paris 1981, Aubertin et al. 2003, Likos & Jaafar 2013, Wang et al. 
2017, Alves et al. 2020). Theoretical models are, therefore, models 
whose parameters have a clearly defined physical relationship with 
the SWCC. Empirical models, on the other hand, use statistical 
techniques to correlate more accessible geotechnical parameters 
with the SWCC. These statistical techniques can range from 
standard non-linear regression models to machine learning models 
(Minasny et al. 1999, Botula et al 2012, Achieng 2019, Wang et al. 
2019, Chai & Khaimook 2020, Li & Vanapalli 2021, Albuquerque 
et al. 2022). 

Machine learning techniques are robust tools that can establish 
more complex relationships, even when there is little correlation 
between the input and output parameters. Various machine 
learning models have been used to predict SWCC, such as artificial 
neural networks, ANN (Haghverdi et al. 2012, Pham et al. 2019, 
Rudiyanto et al. 2021, dos Santos Pereira et al. 2023), support 
vector machine, SVM (Achieng 2019), and gradient boosting, GB 
(Bakhshi et al. 2023, Pham et al. 2023). 

The study of SWCC prediction models using machine learning 
methods has evolved rapidly, and several models with adequate 
performance have been presented in the literature. However, there 
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are several gaps in the studies of SWCC prediction models. Few 
models have been dedicated to predicting the SWCC of special 
soils, other than those soils from temperate climate regions. Only 
a few models have been presented based on machine learning for 
the prediction of multimodal and tropical soils.  

Dos Santos Pereira et al. (2023) presented a model using ANNs 
specifically developed for tropical bimodal soils and using a 
database of soils from the central-western region of Brazil. That 
model presented good results, offering predictions with R2 values 
of 0.690 on average. This paper presents a new SWCC prediction 
model that uses the same modeling framework and soil database 
from dos Santos Pereira et al. (2023). However, this paper replaces 
ANNs, using the Gradient Boosting machine learning method. 

2 MATERIAL AND METHODS 

The database used in this paper comes from the work carried out 
by dos Santos Pereira et al. (2023). A data collection study of 
tropical bimodal soils in the central-western region of Brazil was 
carried out based on papers, dissertations, and theses developed at 
the Universidade Federal de Goiás (UFG) and the Universidade de 
Brasília (UnB). Table 1 summarizes the data collected in statistical 
terms.  

Figure 1 shows the histogram of the soil suction and degree of 
saturation variables and Figure 3 shows all 870 experimental points 
present in the database. More information on the database can be 
found in the original paper (dos Santos Pereira et al. 2023). The 
histograms shown in Figure 1 indicate the importance of adopting 
a natural logarithm for the suction variable. With the logarithm, the 
data tends to show two bell-shaped distributions, with two peaks, 
characteristic of bimodal soil. 
 
Table 1. Statistical summary of the database developed by dos Santos 
Pereira et al. (2023). 

Variables Min Max Mean 
Std. 

Dev. 
COV (%) 

% of gravel 0 35 2 7 232 

% of sand CD 0 77 49 20 41 

% of silt CD 7 64 26 14 54 

% of clay CD 0 91 22 25 113 

% of sand SD 31 95 61 14 24 

% of silt SD 0 68 31 14 46 

% of clay SD 0 37 6 11 188 

 wL, % 24 54 39 6 15 

 PI, % 5 36 14 4 33 

, kPa 0.10 248476 6734 18153 270 

ln() -2.30 12.4 5.6 3.3 59 

S, % 2 100 46 26 55 

where: CD is with disaggregation; SD is without disaggregation; 
wL is the liquid limit; PI is the plastic index;  is soil suction; and 
S is the degree of saturation.  

 
Table 1 also shows a reduction in the coefficient of variation 

when the natural log is used. Consistent with what was presented 
by Gitirana Jr. and Fredlund (2016) and dos Santos Pereira et al. 

(2023), in this work the suction variable was analyzed on a 
logarithmic scale. Regarding the degree of saturation data, the 
values are well distributed over the range of 0 and 1. This is an 
interesting fact, as the model was trained with data covering a large 
part of the SWCC, as shown in Figure 2.  
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Figure 1. Histogram of: a) soil suction; b) ln(soil suction); and c) degree of 
saturation. 
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Figure 2. 870 experimental points from the database of dos Santos Pereira 
et al. (2023). 

 
The input parameters for the model are identical to those used 

in dos Santos Pereira et al. (2023): percentage of sand, silt, and clay 
(both in the aggregated and disaggregated states), liquid limit (wL), 
and plastic index (PI).  

A pseudo-continuous approach was used, as presented by 
Haghverdi et al. (2012). In this approach, suction is also an input 
parameter and the selected water content variable is the model 
output. In the case of the present mode, the degree of saturation 
was selected as the variable describing the amount of water stored 
in the soil.  

CatBoost, also known as Categorical Gradient Boosting, was 
adopted as the prediction model. In CatBoost, models are trained 
sequentially, and each model tries to correct the previous model. 
CatBoost is a highly predictive model that uses a decision tree 
structure and was developed by engineers and researchers at 
Yandex. More details about the model can be found at: 
https://catboost.ai/.  

Table 2 shows the main variables that control the model and the 
values adopted. All the variables were established by trial and 
error. The data was partitioned into training and test data. The total 
number of records is 870, with 80% of the data used as training 
(696 records) data and 20% as test data (174 records). 

3 RESULTS 

Figure 3 shows the behavior of the RMSE during model training, 
indicating that it was a stable phase, despite having shown small 
gains in prediction. Since no overfitting was identified in the 
model, as shown later, the number of 800 epochs was considered 
an optimal value. 

Figure 4 shows the relationship between the experimental 
values and the predicted values, considering the training and test 
data. For both training and testing, the gradient boosting model was 
superior to the ANN developed by dos Santos Pereira et al. (2023). 
While dos Santos Pereira et al. (2023) obtained R2 values of 0.70 
and 0.68 for training and testing, respectively, the gradient 
boosting model was able to reach R2 values of 0.95 and 0.89 for 
training and testing, respectively. The results observed in this paper 

corroborate the performance increase caused by gradient boosting 
observed by Bakhshi et al. (2023) and Pham et al. (2023). 

To test the quality of the prediction, a soil was selected from 
outside the database that had similar characteristics to the soils in 
the training dataset. The work selected was that of Calle (2013), 
who studied soils from Taguatinga Park Road (EPTG), in the city 
of Brasília, Brazil. The bimodal SWCC was obtained from 
undisturbed samples and using the axis translation method, an 
osmotic cell, a suction plate, and the filter paper technique. Table 
3 shows the input parameters of the Calle’s soil profile. 

Figure 5 shows in black the results obtained experimentally and 
in red those obtained using gradient boosting. The data points are 
also represented by the best-fit curve based on the equation 
proposed by Gitirana Jr. and Fredlund (2004). The curve shown in 
blue was obtained using the ANN developed by dos Santos Pereira 
et al. (2023). Other models present in the literature were not 
employed for comparison since dos Santos Pereira et al. (2023) has 
presented analyses showing that models that were not developed 
for tropical bimodal soils offer poor predictions.  

Analyzing Figure 5, it can be observed that the SWCC indirect 
prediction using the newly developed model, based on CatBoost, 
was able to predict the air-entry values of the macropores but failed 
to predict the corresponding degrees of saturation. This indicates 
that the input data available was unable to allow the prediction of 
the maximum water storage capacity of the soil. 
 
 
Table 2. CatBoost model input variables. 

Iterations 800 

Learning rate 0.01 

Depth 10 

Loss function RMSE 

L2 leaf regularization 0.1 

Bootstrap type Bayesian 

 
 

 
Figure 3. RMSE during CatBoost model training. 
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Figure 4. Relationship between experimental and predicted values: a) experimental versus predicted (CatBoost test); b) experimental versus predicted 
(CatBoost training). 

 
Figure 5. SWCC prediction exercise using the soil studied by Calle (2023). 

 
Table 3. Input parameters of the Calle’s soil profile. 

with disaggregation 

(%) 

without disaggregation 

(%) 
  

sand silt clay sand silt clay 
wL 

(%) 

PI 

(%) 

48 16 35 81 12 1 40 12 

where wL is the liquid limit and PI is the plastic index. 
 
Both models (CatBoost and ANN) underestimated the 

maximum degree of saturation of the micropores. This is shown by 
degree of saturation values at the air-entry value of micropores of 
0.63 that are predicted by the CatBoost and ANN models as 0.46 
and 0.39, respectively. The suction value corresponding to the air-
entry value, however, was predicted with greater accuracy, with 

values of 4.7, 3.0, and 2.7 kPa obtained from direct testing, 
CatBoost, and ANN model, respectively. 

The observed limitations of the model may be because the water 
present in lateritic aggregations of tropical soil, in its natural state, 
is not quantifiable using the particle size data. In addition, even 
adding the input data PI and wL to the gradient boosting and ANN 
prediction models, the errors are still considerable, that is, around 
30% on average (Table 4).  

The result obtained by ANN was consistent in the regions up to 
the first residual zone and in the second residual zone. On the other 
hand, the gradient boosting model limited the maximum degree of 
saturation of the SWCC to 75%. The 75% limitation was only 
overcome by fitting the SWCC to the predicted points, which is an 
advantage of using a pseudo-continuous approach. For the soil in 
question, ANN proved to be better in terms of prediction. 
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Table 4. Comparison between the main curve fit parameters for the SWCC 
studied by Calle (2023). 

 b1 res1 Sres1 b2 Sb res2 Sres2 

Experimental 

(Exp) 
4.7 6.60 0.69 10,000.00 0.63 35,000.00 0.02 

Gradient 

Boosting (GB) 
3.0 4.50 0.60 5,000.00 0.46 15,000.00 0.20 

ANN 2.7 25.2 0.50 5,991.08 0.39 25,075.12 0.04 

Error % (Exp-
GB) 

-36 -32 -13 -50 -27 -57 900 

Error % (Exp-
ANN) 

-43 282 -28 -40 -38 -28 100 

where b1 is the first air-entry suction, res1 is the first residual suction; Sres1 
is the first residual degree of saturation; b2 is the second air-entry suction; 
Sb is the air-entry degree of saturation; res2 is the second residual suction; 
Sres2 is the second residual degree of saturation. 

4 CONCLUSIONS 

This paper presented a new prediction model for bimodal tropical 
soils of the central-western region of Brazil, based on gradient 
boosting. The model presented an R2 of 0.90 for the test data and 
0.95 for the training data. In the prediction exercise using a soil that 
is not part of the database, but which has similar characteristics to 
those in the database, the gradient boost model has difficulty in 
predicting certain features of the SWCC. The model managed to 
predict the air-entry value, but the results were limited to a degree 
of saturation of 75%, unlike the 100% obtained using the 
previously developed ANN. Furthermore, the model was unable to 
reproduce accurately the SWCC in the first residual zone region. 
For the soil in question, the ANN model proved to be superior. 
However, the test was only carried out on one soil, and it should be 
noted that to be more certain about the limitations and capabilities 
of the gradient boosting model, it is necessary to apply the model 
to other soils. 

Despite the R2 of the model presented in this paper being higher 
than that of the ANN model, its use should be cautious, and 
whenever possible, tests should be carried out. Given the results 
obtained from the test data, the model may be superior to the ANN 
model, but it would need to be tested on different soils. A 
preliminary conclusion that the previously developed ANN model 
is superior to the gradient boosting model requires further 
verification. 

The model developed here can be practically applied by using a 
source file containing the saved model, which can be accessed in 
Python via the CatBoost library. The practical application of the 
SWCC prediction model is crucial for feasibility analyses, less 
robust engineering projects, and short-term decision-making. 
Currently, using the model requires knowledge of Python, but in 
the future, an accessible and intuitive platform will be developed 
to enable any user to easily utilize the models. 

For future research, it is necessary to create a larger database for 
Brazilian tropical bimodal soils to develop more accurate SWCC 
prediction models using machine learning. Additionally, we 
recommend exploring different machine-learning algorithms and 
output forms. Developing new models is essential for producing 
higher quality and more precise predictions. 
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