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ABSTRACT: The soil-specific weight is a property of fundamental importance for the determination of stresses in Geotechnical
Engineering designs and for the interpretation of in situ test results. In many cases obtaining it directly through undisturbed samples is
not feasible. Therefore, empirical equations are often used to obtain this property. Several correlations in the literature allow estimations
of the specific weight of natural soils. However, concerns arise regarding materials whose soil-specific gravity (G) is outside the range
of natural soils for which the correlations were developed, as is the case of mining tailings designs. Therefore, the present paper aims
to evaluate machine learning techniques for estimating specific weights in mining tailings. To this end, this work relies on a database
with results of field and laboratory tests carried out in different Brazilian mining tailings deposits to estimate the soil specific-weight
with an increased precision. A multiple linear regression and an artificial neural network model were proposed, with the latter
demonstrating greater similarity between the estimated and measured specific weight values (R>=0.91 considering global dataset).
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1 INTRODUCTION

Geotechnical investigation is a mandatory practice for the
development of any geotechnical design. The results obtained from
the geotechnical investigation allow the definition of the design
parameters and the prediction of the soil's behavior in the most
diverse conditions imposed by engineering works (Schnaid &
Odebrecht 2012).

Lunne ez al. (1997) state that although field and laboratory tests
complement each other, the vast majority of geotechnical designs
are supported by field tests. Field tests provide information
regarding the entire soil stratigraphy more quickly and
economically. Based on field test results, specific profile layers can
be selected to collect samples for laboratory tests. Laboratory tests,
in turn, are only carried out at specific depths, and the information
they provide often becomes extrapolated to thick adjacent layers.

A field test widely used in geotechnical campaigns, mainly for
the characterization of soil deposits of lower resistance and in
saturated conditions, is the Cone Penetration Test (CPTu) (ASTM
D5778:20). This test provides records of three soil properties
simultaneously (cone tip resistance - g, sleeve friction - fs and pore
pressure - u), obtained every 2 cm, from electrical sensors installed
in a metallic conical tip, which is driven into the ground at a
constant speed. Despite being quite robust, the CPTu test does not
allow the collection of soil samples and, therefore, some soil
properties need to be estimated, based on the measured parameters,
to interpret the test results, or there is dependence on test results
laboratory tests carried out on samples collected promptly at the
study site.

The natural specific weight of the soil (y/) is a fundamental
parameter for accurately interpreting field tests (such as CPTu),
comprehending soil behavior, and formulating geotechnical
designs. For example, the geotechnical engineer must define the

soil's natural specific weight value to assess the geostatic stresses
and evaluate material strength parameters. In current practice, the
specific weight is defined through empirical correlations based on
field test results or obtained through the characterization of
samples used in special laboratory tests (e.g., direct shear, triaxial
tests, consolidation tests). For tests carried out in the laboratory to
have reliable results, it is necessary to collect an undisturbed
sample, that is, one that preserves the characteristics of the material
in the field (Coile 1936, Stewart 1943). However, the procedures
to obtain an undisturbed sample require time and costs for correct
execution and provide specific parameters, which will be
extrapolated to the entire area when the project is developed.

Additionally, in some types of soils, like mining tailings, that
are cohesionless, the standard methods to collect undisturbed
samples need to be revised, and it is crucial to possess modern and
advanced technological equipment and a well-trained staff.
However, in South America, particularly in Brazil, there is a
scarcity of resources necessary for geotechnical research and a
need for more emphasis on comprehensive geotechnical-
geological studies. As a result, accurately measuring specific
weight becomes challenging, leading many designs to rely on
standard values found in the literature for these parameters.

Using the CPTu test results it is possible to apply empirical or
statistical formulas to estimate the natural soil-specific weight
(Mayne 2014). However, most of these techniques encompass
empirical formulas derived from natural soil datasets, with a
specific gravity of solids (G) ranging typically from 2.5 to 2.7
(Mayne 2007). However, particular characteristics in specific type
of soils hinder the adoption of such formulation with reliability.
For instance, organic soils (Lengkeek et al. 2018, Straz and
Borowiec 2020) and mining tailings (Menegaz et al. 2022), have
non-usual properties that the formulation cannot achieve.
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In the last years, some researchers introduced statistical
regressions and machine learning techniques to estimate the soil
specific weight. Considering soil characteristics and employing
statistical regressions, Mayne (2014) has developed an equation
that incorporates variations in g, fs and, my (cone resistance-depth
ratio) to estimate the y. The research demonstrates a satisfactory
fit, with an R? value varying around 0.62. Similarly, Robertson and
Cabal (2010) have employed cone dimensionless parameters of
resistance (q/oam), sleeve friction (Rf = f/oum), and the average
specific gravity (G). They have proposed two different equations;
however, the original study did not provide an R? value for
estimation. Nevertheless, Menegaz er al. (2022) applied the
formulations to various soils and found R? values ranging from 0.2
to 0.79.

More recently, machine-learning techniques were introduced to
develop models for soil weight estimation. Straz and Borowiec
(2020) applied an artificial neural network (ANN) model to
provide estimations of y for organic soils based on laboratory-
determined leading parameters and obtained an R? value of 0.94.
Nierwinski et al. (2023) proposed a practical method for
determining the soil specific weight based on CPTu test results and
specific gravity (G) (including the G parameter allows the
differentiation between soil types, representing an intrinsic soil
characteristic). First, the authors proposed a multiple regression
model. After uncovering the hidden relationships between CPTu
parameters and y in different soil types, they also proposed an
ANN model, obtaining an R? of 0.82. The methods were available
as an internet-based software tool allowing someone to load a
dataset and automatically calculate the soil specific weight.

Acknowledging the necessity of accurately estimating soils'
specific weight and considering the favorable outcomes of machine
learning-based models highlighted in existing literature, this article
endeavors to employ machine-learning techniques to develop a
model for specific weight estimation in mining tailings. The
development of the model improved the methodology used in
Nierwinski et al. (2023) by including the soil type resulting from a
cluster analysis as input for the estimation models. Distinctly from
the general model proposed in the former work, this improvement
makes the model more specific for mining tailings, increasing the
precision of estimates in such soils. Also, the training phase relies
on a database composed of CPTu and G test results solely from
Brazilian mining tailings, encompassing bauxite, iron, zinc, and
gold mining tailings.

2 ESTIMATIONS OF SOIL ESPECIFIC WEIGHT USING
CPTU TEST RESULTS — STATE OF ART

A proposal for estimating the specific weight from data obtained
by the CPTu test was initially presented by Robertson and Cabal
(2010). These authors introduced two dimensionless equations
aimed at determining . The first equation (Eq. 1) establishes y as
dependent on the friction ratio (Rf) and corrected tip resistance (gs).
The second one (Eq. 2) incorporates the specific gravity of solids
(G) to estimate the specific weight of soils, particularly those where
G falls outside the range of 2.5 to 2.7.

V,/1,, = 0.27 [logRs| + 0.36 [log(qr0aem)] + 1.236 (1)
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where q; = corrected tip resistance and g, = atmospheric
pressure (kPa).

0.27 [log Rf|+ 0.36 [lo +1.236(G
Ve/Vw = | — z[ssg( )] | @)

In subsequent study, Mayne and Peuchen (2013) explore the
correlation between the soil specific weight and their plasticity
index, leading to the development of Equations (3) and (4). Since
cone tests lack the ability to directly measure soil plasticity, the
authors utilized a relationship between tip resistance and cone
depth (mq = g/z), where z represents the cone depth.

Ve = Y, + Mg/8 3

Y, 0.636 (q,)%72(10 + my/8) “)

Another parameter derived from CPTu tests and employed in
soil specific weight estimation is the sleeve cone friction (£).
Mayne (2014) introduces two statistical equations for estimating y
based on sleeve friction. While Equation (3) demonstrates a close
fit with a nonlinear relationship, Equation (6) is derived through
linear regression.

14
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Taking into account the limitations of regression-based models
and the promising outcomes demonstrated in estimations using
machine learning, Nierwinski er al. (2023) have proposed an
approach supported by machine learning, employing both
regression and artificial neural network (ANN) models and
utilizing data extracted from CPTu tests. The dataset analyzed by
the authors comprises 1862 entries, containing geotechnical data
from 10 distinct soil types (45% sourced from sites in Brazil). The
regression model proposed by Nierwinski ez al. (2023) is a multiple
variable model, with the values of ¢: and u being deemed
significant for the model. Furthermore, the authors of this study
found that transforming the variables to a logarithmic scale
enhanced the accuracy of the estimations. Equation 7 represents the
multilinear regression model proposed by Nierwinski et al. (2023)
for estimating the specific weight of soils:

Y, = —1.1795+ 3.33G + 2.901logy0 q; + 0.21logiou (7)

The ANN model proposed by Nierwinski ef al. (2023), on the
other hand, incorporated all the variables obtained in the CPTu test
(qs, fs, and u) as well as the G parameter. The authors illustrated
that the developed ANN model was more suitable for estimating
the specific weight, given the input data evaluated. Figure 1 depicts
the ANN model proposed by the authors, applied to the global
database under study.

Nierwinski at al. (2023) also compared the estimates generated
by applying other proposals from the literature, using the same
database employed in the development of their models. Table 1
illustrates the R? values obtained for each of the equations
(previous presented), highlighting the achievement of higher R?
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values through the models developed in their study, utilizing
machine learning tools.
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Figure 1. Soil specific weight estimation using artificial network model
(source: Nierwinski et al. 2023)

Table 1. Reliability comparison between different models for soil specific
weight estimative (source: adapted from Nierwinski ez al. 2023)

Reference Model Soil type considered R?

Equation 1 all soil types 0.39

Equation 2 all soil types 0.52

Equation 3 soft to firm normally consolidated 0.08
clays

Equation 4 soft to firm normally consolidated 0.08
clays

Equation 5 all soil types 0.34

Equation 6 all soil types 0.34

Equation 7 all soil types 0.61

ANN model all soil types 0.82

3 DATASET PRESENTATION AND METHODOLOGY

This section introduces the dataset utilized to develop the model
designed to estimate the specific weight of mining tailings, along
with the methodological procedures employed in its development.
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3.1 Dataset

This paper utilizes data obtained from experimental investigation
campaigns conducted by various companies in Brazil. The dataset
comprises 219 entries containing geotechnical data from four
distinct types of tailings: bauxite, iron, zinc, and gold mining
tailings, distributed according to the depicted in Figure 2. These
campaigns provide data of corrected cone tip resistance (g:), sleeve
friction (fs), and pore pressure (u2) for all materials present in the
database. The soil-specific gravity (G) value was available in 75%
of the test reports, while for the remaining 25%, values were
obtained from literature sources. Although this may bias the model,
removing such values will reduce the model's generalization, as we
rely on a small dataset compared to the current practice for machine
learning purposes. To obtain the reference values for y we analysed
laboratory tests results, for which undisturbed samples were
obtained (e.g. consolidation tests and triaxial tests). Subsequent
items will elucidate the content of the database:

e  Bauxite: The dataset comprises 159 entries (72.6%) of
bauxite mining tailings. These entries are exclusively
sourced from investigation campaigns conducted by a
private company at sites located in the north and
northeast regions of Brazil;

e  Zinc: There are 35 samples of zinc mining tailings in the
dataset, accounting for 15.98% of the total. This data
originates from a field campaign conducted by a private
company at a dam site in Minas Gerais, southeast Brazil;

e Iron: The dataset includes 16 entries (7.31%) of iron
mining tailings collected during experimental campaigns
conducted by a private company in Brazil;

e Gold: Data from a field trial conducted by a private
company in Brazil contribute 9 entries (4.11%) to the
dataset.

150
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Number of occurrences

Figure 2. Distribution of soil types in the dataset

Bauxite
Zinc
Iron
Gold

3.1  Methodology

The database initially underwent pre-processing to formulate
models for predicting the specific weight of mining tailings. A
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clustering analysis was implemented following an investigation
into whether distinct soil types exhibit analogous behaviours,
potentially necessitating tailored models for each category. Given
the prevalent use of statistical regressions in contemporary
methodologies, a statistical analysis was conducted to estimate y:
using a multiple linear regression model. An artificial neural
network was developed to encapsulate the non-linear interrelations
among geotechnical parameters.

The following items present details of the steps followed to
develop the models.

3.1.1  Cluster analysis

A clustering analysis is an unsupervised machine learning method
employed to categorize a dataset, aiming to group similar objects
while distinguishing them from dissimilar ones (Jain et al. 1999).
Following the establishment of the database, our focus shifted to
identifying potential clusters within the data, enabling us to
scrutinize specific correlations within each group, if present. Given
its widespread popularity in the field, we opted for the K-means
algorithm to conduct the clustering analysis. This algorithm
endeavors to partition the dataset into K clusters by minimizing the
sum of squared distances between each data point and the centroid
of its corresponding cluster. We feed the K-means algorithm with
G, q1, f5, and u values, removing the dependent variable y from the
dataset. We experimented with varying values of K, ranging from
two (representing mining tailings and natural soils) to those
indicated by silhouette and elbow techniques (Saputra et al. 2020).
Subsequently, suppose the resulting clusters consist of mining
tailings exhibiting similar characteristics (or behaviors). In that
case, we consider the groupings generated by K-means valid,
indicating the need to develop distinct models for each cluster.

3.1.2  Multiple linear regression model

Adhering to contemporary methodologies, the first model
evaluated was linear regression. According to Chambers and
Hastie (1992), linear regression models serve as statistical tools
employed to examine the correlation between a dependent variable
and one or more independent variables. When dealing with
multiple regressions, the equation conforms to the formula outlined
in Equation 8.

Yy =Po+ BrXy + B Xy + -+ BrXn (8)

In Equation 8, y represents the forecasted value of the
dependent variable, Bo denotes the y-intercept, $1X1 signifies the
regression coefficient (1) associated with the first independent
variable (X1), and .Xn» denotes the regression coefficient about the
final independent variable.

The initial step involves exploring the relationships between the
dependent variable, y: and the independent geotechnical
parameters. In multiple linear regression, there could be
intercorrelation among some independent variables, necessitating
a thorough examination before model development. If the
correlation coefficient (R?) between two independent variables
exceeds 0.6, only one of them should be included in the regression
model (Bevans 2022). One approach to understanding such
correlations entails analyzing scatter plots of each independent
variable against the dependent variable, y:, and calculating
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Pearson’s correlation coefficient. Following selecting appropriate
independent variables, we employ the I/m function within R
software to determine the coefficients for the multiple linear
regression models. The /m function uses the Ordinary Least
Squares (OLS) algorithm and determines the set of values for the
coefficients of independent variables that minimize the vector of
errors or residuals (Chambers, 1992).

3.1.3  Artificial neural network (ANN) model

Artificial neural networks (ANNs) are computational models
inspired by the architecture and operation of the human brain.
ANNs are comprised of interconnected neurons organized into
layers, with each neuron processing input data and transmitting it
to subsequent layers until generating a final output. At its core, a
neuron executes an activation function that aggregates multiple
inputs and produces an output. The collective results of multiple
neurons within a layer are then propagated to the next layer. For
example, the threshold-based activation function introduced by
McCulloch and Pitts (1943) calculates a weighted sum of input
signals and yields an output of 1 if the sum surpasses a defined
threshold, otherwise 0. The sigmoid-based activation function is
widely adopted due to its smooth, continuous nature (Jain et al.,
1996).

The initial layer receives inputs corresponding to the
independent variables when employing Artificial Neural Networks
(ANN5s) for regression tasks. In contrast, the final layer generates
the estimated value of the dependent variable. Throughout the
training phase of the ANN model, the coefficients of each
activation function within the neurons are adjusted to optimize the
alignment between the output produced by the ANN and the
independent variable. Given that activation functions can exhibit
nonlinear behaviors, ANNs possess significant abstraction
capabilities for conducting estimations. This study leverages the
abstraction capabilities of ANNs by incorporating, as an
independent variable (input for the initial ANN layer), the value
generated by multiple linear regressions. This approach thereby
encompasses potential nonlinearities that traditional linear
regressions fail to capture.

. The structured architecture of the Artificial Neural Network
(ANN) comprises six layers, four hidden layers. In an ANN, a
hidden layer is a neuron layer between the input and output layers.
The term "hidden" refers to the fact that this layer is not directly
exposed to the input or output of the model. We conducted an
iterative search to define such an architecture. With fewer layers,
the ANN has the worst accuracy; with more layers, on the other
hand, it does not improve the R? and increases the inference time.
The initial layer serves to intake inputs for the model,
encompassing parameters such as G, g, fs, and uz Subsequently,
the subsequent four layers remain concealed, with the first layer
housing 32 neurons, the second containing 16, the third comprising
8, and the fourth encompassing 4 neurons. Ultimately, the
computations within the fourth hidden layer yield the model's
output: the estimated value of y.

The activation function employed in every neuron within the
Artificial Neural Network (ANN) is a sigmoid logistic function. As
Anastasiadis et al. (2005) outlined, the algorithm utilized to
calculate the network's weights is resilient back-propagation with
weight backtracking. We randomly split the dataset regarding the
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training process, allocating 70% for training and 30% for testing
purposes.

4 RESULTS AND DISCUSSION

This section covers the results obtained through the modeling
carried out and discusses them.

4.1  Cluster analysis

The database underwent analysis to ascertain the ideal number of
clusters, employing both the silhouette technique (Figure 3(a)) and
the elbow technique (Figure 3(b)). Silhouette and elbow techniques
are commonly used to evaluate and determine the optimal number
of clusters in clustering algorithms such as K-means. The
Silhouette method measures how similar an object is to its cluster
compared to others. In interpreting the average silhouette plot
(Figure 3(a)), the analyst selects the cluster number that results in
the more significant average. The Elbow method is used to
determine the optimal number of clusters by plotting the explained
variation as a function of the number of clusters and looking for
the "elbow point" where the rate of decrease sharply slows. In
other words, the analyst should select the point stabilizing the WSS
plot's decrease (Figure 3(b)). Both techniques indicate the presence
of two distinct clusters. Figure 4 illustrates a distinct partition
within the dataset concerning the behavior of variables G and yx,
which directly correlate with soil type delineation. Given the
presence of these two distinct groups within the dataset, the
material type was a variable considered for constructing the
regression model.

Table 2 shows the clustering results with the number of soils of
each type classified for each group. As one can see, there is a clear
distinction between the groups, with Cluster 1 comprising bauxite,
zinc, and gold tailings and Cluster 2 with iron tailings.

Table 2. Soil type distribution among clusters

Soil type
Bauxite Zinc Iron Gold
Cluster 1 158 35 1 9
Cluster 2 0 0 15 0

4.2 Multiple linear regression model

This section outlines the procedures for developing a statistical
model using linear regression to estimate soil specific weight based
on the examined database. The model considers two clusters, as
demonstrated in section 4.1. The next step in constructing this
model involves assessing the relationships between the model's
potential parameters and the data's behavior when juxtaposed.
The scatter plot presented in Figure 4 illustrates the correlations
among G, qr, fs, u, and y: (designated as gamma). Correlation
analysis reveals a robust association between g, fs, and G (R? =
0.608). The variable G represents an intrinsic material
characteristic facilitating its identification. Both g and f; stem from
the Cone Penetration Test (CPTu), providing similar explanatory
power within the model. Therefore, considering ¢:'s extensive
historical usage and its strong correlations with parameters in the
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literature, only ¢r will be incorporated into the current model.
Furthermore, examination of Figure 4 data demonstrates the
limited contribution of the variable u in elucidating specific weight
(gamma), warranting its exclusion from the model. Ultimately,
Figure 4 indicates a nonlinear relationship between ¢: (and f5) and
specific weight (gamma), suggesting the potential necessity for
logarithmic transformation before regression analysis.

0.6

average silhouette width
/

0.2

0.0

i 2 3 4 5 6 7 8 9 10
Number of clusters

(a)

750 \

500 \
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250 S
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(b)
Figure 3. Silhouette (a) and elbow (b) techniques results for determining
the number of clusters of dataset



e~ GEO CHILE QOQII. Proceedings of the 17" Pan-American Conference on Soil Mechanics and Geotechnical
//& ITSPAN-AMERICAN CONFERENCE | i Engineering (XVIl PCSMGE), and 2™ Latin-American Regional Conference of the International

ON SOIL MECHANICS AND GEOTECHNICAL ENGINEERING

Association for Engineering Geology and the Environment (IAEG), La Serena Chile, 2024.
G qt fs u gamma
2
31 Corr: Corr: Corr: Corr: o
L 0.608++ 0.568%++* 0.073 0.492%%+
14
bl
12000 -
9000~ -
e . Comr: Corr: Corr: a
e o° 0.6084#% 0.079 0.667*+*
3000 1 ° e %

.

2004 =
1504 : =
| . = OfT: orr: i
-~ I | T 0.231%+ 0,632+ a
501 i '. o Oy o:' LI
ol ol °| |aP=
[] L] []
15004
10004 Corr: -
0.048
5004
I R IRl S
304 [ ° ® ®
o’ ! ° < ': e ® .;..o‘o ° %
254 = s 9 ® [ LA ®q T @

. '*
154e

25 30 35 40 0 3000 6000 9000 12000 50 100 150 200 0 500 1000 1500 15 20 25 30

-

"w.-

e, o
ewweb

Figure 4. Scatter plot for the correlations between G, g, f;, u and y; (gamma)

Thus, the variables G and g: were utilized in constructing the and u) without applying log transformation, as considered for
multiple linear regression model, with the value of ¢: varying multiple linear regression models.
logarithmically in correlation with specific weight. Additionally,

the model considered the soil type from each of the two pre-defined 30
clusters. Equation 9 presents the statistical model derived from a . //
multiple linear regression encompassing the complete dataset, 5 A
yielding an adjusted R? of 0.73 for estimations, as shown in Figure E . ,/
5. ‘E ///. _Ey ®
. = 267+ 2.43logyg q; — 5.24G + 12.8s0ilType ) %25 ,/ i
= /
(]
where soilType refers to the cluster considered, assuming O for 2 //
cluster 1 and 1 for cluster 2. = //
The data points on the scatter plot in Figure 5 appear to follow 320 rd .
alinear trend, indicating a robust correlation between the estimated & . Vs ]
and measured values of soil specific weight within the model. 5 o o tem X A 3o
Moreover, the proposed model yielded a higher R? value compared _Lé’ : ','.:1?}_ -
to other linear regression models discussed in section 2 of this o ,4’ iy L 0%
study. £15 bl ke W
= . X0 7 fe
4.3  Artificial Neural Network (ANN) model i .'// g
To try to improve specific weight estimative, we employed an //
Artificial Neural Network (ANN) model to predict the mining B2 2 AT 5. 2A G2 BT, (078
tailing specific weight utilizing the geotechnical parameters from 15 20 25 30
the dataset as inputs. Given the enhanced abstraction capabilities Soil specific weight (kN/m?)
of neural network models, we incorporated all variables (G, qu, fi, Figure 5. Scatter plot for the comparison between estimated values of y,

using the linear model and the measured values
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Figure 6(a) illustrates the scaled values of y estimated by the
ANN model for the test dataset (30%) compared to the actual
values. The model tested with 30% of the data yielded an R?=0.86,
surpassing those estimated by Equation (9). However, upon
examining the model tested with the entire dataset (Figure 6(b)), it
becomes evident that it provides the best fit, with an R2=0.91. This
outcome underscores that an ANN model trained with in-situ
parameters is the most suitable approach for estimating the specific
weight of mining tailings.

0.9;
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Estimated soil specific weight (scaled)

0.0- J : Hidden layers  4(32-16-8-4), H__=c,ss .
0.25 0.50 0.75 1.C
Soil specific weight (scaled)
(@

) N W
o (8] o

—
w

Estimated soil specific weight (kN/m?)

Hidden layers: 4(32-16-8-4), r*=0.91

15 ) 20 25 30
Soil specific weight {kN/m?3)
(b)

Figure 6. Specific weight estimations using ANN models: predictions for
the test data (a) and all data (b)
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4.4 Results summary

To compare our research findings to the state-of-the-art, we
summarize in Table 3 the R? values obtained through the models
presented in this paper and the obtained with the literature
equations discussed in Section 3. The results show an improvement
in all models' precision when used to estimate the specific weight
of mining tailings and that the proposed models that use the
clustering identification offer the best values of R? (0.73 for the
regression model and 0.91 for the ANN model).

Table 3. Comparison of the results with the state-of-art estimations applied
to the mining tailings dataset

Reference Model R?
Equation 1 047
Equation 2 0.50
Equation 3 0.39
Equation 4 041
Equation 5 0.54
Equation 6 0.53
Regression model (this research) 0.73
ANN model (this research) 091

5 CONCLUSIONS

In contemporary practice, soil specific weight determination
typically relies on empirical correlations derived from field test
results or characterization of undisturbed samples via laboratory
tests such as simple direct shear, triaxial tests, and consolidation
tests. Recent advancements in the field have embraced statistical
equations tailored to individual soil characteristics to overcome the
limitations of laboratory tests. While these statistical-based
methods yield accurate estimations for soils incorporated in the
regressions, they struggle to estimate y: for distinct soil types. This
study explores the application of machine learning as a pragmatic
approach to estimating mining tailings specific weight () based
on parameters gathered from CPTu tests.

Considering the results and analysis of this research, the
conclusions can be summarized as the following points:

e clustering analysis revealed that the dataset could be
divided into two distinct groups, which was considered
in the multiple regression model development;

e it is found that to estimate yt using a multiple linear
regression model, G, ¢:, and, the soilType (clusters)
were considered significant variables and the g variable
must be logarithmically transformed. The multiple
linear model achieves an R? of 0.73;

e an Artificial Neural Network (ANN) model was
determined, enabling estimates within the database
evaluated with R? of 0.91, considering global data and
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promising applications for specific weight estimates in
mining tailings.
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