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ABSTRACT: The soil-specific weight is a property of fundamental importance for the determination of stresses in Geotechnical 

Engineering designs and for the interpretation of in situ test results. In many cases obtaining it directly through undisturbed samples is 

not feasible. Therefore, empirical equations are often used to obtain this property. Several correlations in the literature allow estimations 

of the specific weight of natural soils. However, concerns arise regarding materials whose soil-specific gravity (G) is outside the range 

of natural soils for which the correlations were developed, as is the case of mining tailings designs. Therefore, the present paper aims 

to evaluate machine learning techniques for estimating specific weights in mining tailings. To this end, this work relies on a database 

with results of field and laboratory tests carried out in different Brazilian mining tailings deposits to estimate the soil specific-weight 

with an increased precision. A multiple linear regression and an artificial neural network model were proposed, with the latter 

demonstrating greater similarity between the estimated and measured specific weight values (R²=0.91 considering global dataset). 
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1 INTRODUCTION 

Geotechnical investigation is a mandatory practice for the 
development of any geotechnical design. The results obtained from 
the geotechnical investigation allow the definition of the design 
parameters and the prediction of the soil's behavior in the most 
diverse conditions imposed by engineering works (Schnaid & 
Odebrecht 2012). 

Lunne et al. (1997) state that although field and laboratory tests 
complement each other, the vast majority of geotechnical designs 
are supported by field tests. Field tests provide information 
regarding the entire soil stratigraphy more quickly and 
economically. Based on field test results, specific profile layers can 
be selected to collect samples for laboratory tests. Laboratory tests, 
in turn, are only carried out at specific depths, and the information 
they provide often becomes extrapolated to thick adjacent layers. 

A field test widely used in geotechnical campaigns, mainly for 
the characterization of soil deposits of lower resistance and in 
saturated conditions, is the Cone Penetration Test (CPTu) (ASTM 
D5778:20). This test provides records of three soil properties 
simultaneously (cone tip resistance - qt, sleeve friction - fs and pore 
pressure - u), obtained every 2 cm, from electrical sensors installed 
in a metallic conical tip, which is driven into the ground at a 
constant speed. Despite being quite robust, the CPTu test does not 
allow the collection of soil samples and, therefore, some soil 
properties need to be estimated, based on the measured parameters, 
to interpret the test results, or there is dependence on test results 
laboratory tests carried out on samples collected promptly at the 
study site. 

The natural specific weight of the soil (γt) is a fundamental 
parameter for accurately interpreting field tests (such as CPTu), 
comprehending soil behavior, and formulating geotechnical 
designs. For example, the geotechnical engineer must define the 

soil's natural specific weight value to assess the geostatic stresses 
and evaluate material strength parameters. In current practice, the 
specific weight is defined through empirical correlations based on 
field test results or obtained through the characterization of 
samples used in special laboratory tests (e.g., direct shear, triaxial 
tests, consolidation tests). For tests carried out in the laboratory to 
have reliable results, it is necessary to collect an undisturbed 
sample, that is, one that preserves the characteristics of the material 
in the field (Coile 1936, Stewart 1943). However, the procedures 
to obtain an undisturbed sample require time and costs for correct 
execution and provide specific parameters, which will be 
extrapolated to the entire area when the project is developed. 

Additionally, in some types of soils, like mining tailings, that 
are cohesionless, the standard methods to collect undisturbed 
samples need to be revised, and it is crucial to possess modern and 
advanced technological equipment and a well-trained staff. 
However, in South America, particularly in Brazil, there is a 
scarcity of resources necessary for geotechnical research and a 
need for more emphasis on comprehensive geotechnical-
geological studies. As a result, accurately measuring specific 
weight becomes challenging, leading many designs to rely on 
standard values found in the literature for these parameters. 

Using the CPTu test results it is possible to apply empirical or 
statistical formulas to estimate the natural soil-specific weight 
(Mayne 2014). However, most of these techniques encompass 
empirical formulas derived from natural soil datasets, with a 
specific gravity of solids (G) ranging typically from 2.5 to 2.7 
(Mayne 2007). However, particular characteristics in specific type 
of soils hinder the adoption of such formulation with reliability. 
For instance, organic soils (Lengkeek et al. 2018, Straz and 
Borowiec 2020) and mining tailings (Menegaz et al. 2022), have 
non-usual properties that the formulation cannot achieve. 
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In the last years, some researchers introduced statistical 
regressions and machine learning techniques to estimate the soil 
specific weight. Considering soil characteristics and employing 
statistical regressions, Mayne (2014) has developed an equation 
that incorporates variations in qt, fs and, mq (cone resistance-depth 
ratio) to estimate the t. The research demonstrates a satisfactory 
fit, with an R2 value varying around 0.62. Similarly, Robertson and 
Cabal (2010) have employed cone dimensionless parameters of 
resistance (qt/σatm), sleeve friction (Rf = fs/σatm), and the average 
specific gravity (G). They have proposed two different equations; 
however, the original study did not provide an R2 value for 
estimation. Nevertheless, Menegaz et al. (2022) applied the 
formulations to various soils and found R2 values ranging from 0.2 
to 0.79.  

More recently, machine-learning techniques were introduced to 
develop models for soil weight estimation. Straz and Borowiec 
(2020) applied an artificial neural network (ANN) model to 
provide estimations of t for organic soils based on laboratory-
determined leading parameters and obtained an R2 value of 0.94. 
Nierwinski et al. (2023) proposed a practical method for 
determining the soil specific weight based on CPTu test results and 
specific gravity (G) (including the G parameter allows the 
differentiation between soil types, representing an intrinsic soil 
characteristic). First, the authors proposed a multiple regression 
model. After uncovering the hidden relationships between CPTu 
parameters and t in different soil types, they also proposed an 
ANN model, obtaining an R² of 0.82. The methods were available 
as an internet-based software tool allowing someone to load a 
dataset and automatically calculate the soil specific weight.  

Acknowledging the necessity of accurately estimating soils' 
specific weight and considering the favorable outcomes of machine 
learning-based models highlighted in existing literature, this article 
endeavors to employ machine-learning techniques to develop a 
model for specific weight estimation in mining tailings. The 
development of the model improved the methodology used in 
Nierwinski et al. (2023) by including the soil type resulting from a 
cluster analysis as input for the estimation models. Distinctly from 
the general model proposed in the former work, this improvement 
makes the model more specific for mining tailings, increasing the 
precision of estimates in such soils. Also, the training phase relies 
on a database composed of CPTu and G test results solely from 
Brazilian mining tailings, encompassing bauxite, iron, zinc, and 
gold mining tailings. 

2 ESTIMATIONS OF SOIL ESPECIFIC WEIGHT USING 
CPTU TEST RESULTS – STATE OF ART 

A proposal for estimating the specific weight from data obtained 
by the CPTu test was initially presented by Robertson and Cabal 
(2010). These authors introduced two dimensionless equations 
aimed at determining t. The first equation (Eq. 1) establishes t as 
dependent on the friction ratio (Rf) and corrected tip resistance (qt). 
The second one (Eq. 2) incorporates the specific gravity of solids 
(G) to estimate the specific weight of soils, particularly those where 
G falls outside the range of 2.5 to 2.7. 

 

𝑡/𝑤 =  0.27 [log 𝑅𝑓] +  0.36 [log(𝑞𝑡𝜎𝑎𝑡𝑚)] +  1.236 (1) 

 

where 𝑞𝑡  = corrected tip resistance and 𝜎𝑎𝑡𝑚  = atmospheric 

pressure (kPa). 

 

𝑡/𝑤 =  
[0.27 [log 𝑅𝑓]+ 0.36 [log( 𝑞𝑡𝜎𝑎𝑡𝑚)] +1.236]G2.65  (2) 

 
In subsequent study, Mayne and Peuchen (2013) explore the 

correlation between the soil specific weight and their plasticity 
index, leading to the development of Equations (3) and (4). Since 
cone tests lack the ability to directly measure soil plasticity, the 
authors utilized a relationship between tip resistance and cone 
depth (mq = qt/z), where z represents the cone depth. 
 

𝑡  =  𝑤 + mq/8   (3) 

 

𝑡  =  0.636 (𝑞𝑡)0.072(10 + mq/8 ) (4) 

 
Another parameter derived from CPTu tests and employed in 

soil specific weight estimation is the sleeve cone friction (fs). 
Mayne (2014) introduces two statistical equations for estimating t 
based on sleeve friction. While Equation (3) demonstrates a close 
fit with a nonlinear relationship, Equation (6) is derived through 
linear regression. 

 

𝑡  = 26 −  141 + [0.5𝑙𝑜𝑔(𝑓𝑠+1)]2 (5) 

 

𝑡  =  12 +  1.5ln(𝑓𝑠 + 1) (6) 

 

Taking into account the limitations of regression-based models 
and the promising outcomes demonstrated in estimations using 
machine learning, Nierwinski et al. (2023) have proposed an 
approach supported by machine learning, employing both 
regression and artificial neural network (ANN) models and 
utilizing data extracted from CPTu tests. The dataset analyzed by 
the authors comprises 1862 entries, containing geotechnical data 
from 10 distinct soil types (45% sourced from sites in Brazil). The 
regression model proposed by Nierwinski et al. (2023) is a multiple 
variable model, with the values of qt and u being deemed 
significant for the model. Furthermore, the authors of this study 
found that transforming the variables to a logarithmic scale 
enhanced the accuracy of the estimations. Equation 7 represents the 
multilinear regression model proposed by Nierwinski et al. (2023) 
for estimating the specific weight of soils: 

 

𝑡  =  −1.1795 + 3.33G + 2.90 log10 𝑞𝑡 + 0.21 log10 𝑢 (7) 

 
 
The ANN model proposed by Nierwinski et al. (2023), on the 

other hand, incorporated all the variables obtained in the CPTu test 
(qt, fs, and u) as well as the G parameter. The authors illustrated 
that the developed ANN model was more suitable for estimating 
the specific weight, given the input data evaluated. Figure 1 depicts 
the ANN model proposed by the authors, applied to the global 
database under study. 

Nierwinski at al. (2023) also compared the estimates generated 
by applying other proposals from the literature, using the same 
database employed in the development of their models. Table 1 
illustrates the R² values obtained for each of the equations 
(previous presented), highlighting the achievement of higher R² 



Proceedings of the 17th Pan-American Conference on Soil Mechanics and Geotechnical 

Engineering (XVII PCSMGE), and 2nd Latin-American Regional Conference of the International 

Association for Engineering Geology and the Environment (IAEG), La Serena Chile, 2024. 

3 

 

values through the models developed in their study, utilizing 
machine learning tools. 

 

 
Figure 1. Soil specific weight estimation using artificial network model 
(source: Nierwinski et al. 2023) 

 

Table 1. Reliability comparison between different models for soil specific 
weight estimative (source: adapted from Nierwinski et al. 2023) 

Reference Model Soil type considered R² 

Equation 1 all soil types 0.39 

Equation 2 all soil types 0.52 

Equation 3 soft to firm normally consolidated 

clays 
0.08 

Equation 4 soft to firm normally consolidated 

clays 
0.08 

Equation 5 all soil types 0.34 

Equation 6 all soil types 0.34 

Equation 7 all soil types 0.61 

ANN model all soil types 0.82 

 

3 DATASET PRESENTATION AND METHODOLOGY 

This section introduces the dataset utilized to develop the model 
designed to estimate the specific weight of mining tailings, along 
with the methodological procedures employed in its development. 

3.1 Dataset 

This paper utilizes data obtained from experimental investigation 
campaigns conducted by various companies in Brazil. The dataset 
comprises 219 entries containing geotechnical data from four 
distinct types of tailings: bauxite, iron, zinc, and gold mining 
tailings, distributed according to the depicted in Figure 2. These 
campaigns provide data of corrected cone tip resistance (qt), sleeve 
friction (fs), and pore pressure (u2) for all materials present in the 
database. The soil-specific gravity (G) value was available in 75% 
of the test reports, while for the remaining 25%, values were 
obtained from literature sources. Although this may bias the model, 
removing such values will reduce the model's generalization, as we 
rely on a small dataset compared to the current practice for machine 
learning purposes. To obtain the reference values for γ we analysed 
laboratory tests results, for which undisturbed samples were 
obtained (e.g. consolidation tests and triaxial tests). Subsequent 
items will elucidate the content of the database: 

 Bauxite: The dataset comprises 159 entries (72.6%) of 
bauxite mining tailings. These entries are exclusively 
sourced from investigation campaigns conducted by a 
private company at sites located in the north and 
northeast regions of Brazil; 

 Zinc: There are 35 samples of zinc mining tailings in the 
dataset, accounting for 15.98% of the total. This data 
originates from a field campaign conducted by a private 
company at a dam site in Minas Gerais, southeast Brazil; 

 Iron: The dataset includes 16 entries (7.31%) of iron 
mining tailings collected during experimental campaigns 
conducted by a private company in Brazil; 

 Gold: Data from a field trial conducted by a private 
company in Brazil contribute 9 entries (4.11%) to the 
dataset. 

 

 
Figure 2. Distribution of soil types in the dataset 

 

3.1 Methodology 

 
The database initially underwent pre-processing to formulate 
models for predicting the specific weight of mining tailings. A 
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clustering analysis was implemented following an investigation 
into whether distinct soil types exhibit analogous behaviours, 
potentially necessitating tailored models for each category. Given 
the prevalent use of statistical regressions in contemporary 
methodologies, a statistical analysis was conducted to estimate γt 
using a multiple linear regression model. An artificial neural 
network was developed to encapsulate the non-linear interrelations 
among geotechnical parameters. 

The following items present details of the steps followed to 
develop the models. 

3.1.1   Cluster analysis 
A clustering analysis is an unsupervised machine learning method 
employed to categorize a dataset, aiming to group similar objects 
while distinguishing them from dissimilar ones (Jain et al. 1999). 
Following the establishment of the database, our focus shifted to 
identifying potential clusters within the data, enabling us to 
scrutinize specific correlations within each group, if present. Given 
its widespread popularity in the field, we opted for the K-means 
algorithm to conduct the clustering analysis. This algorithm 
endeavors to partition the dataset into 𝐾 clusters by minimizing the 
sum of squared distances between each data point and the centroid 
of its corresponding cluster. We feed the K-means algorithm with 
G, qt, fs, and u values, removing the dependent variable γ from the 
dataset. We experimented with varying values of 𝐾, ranging from 
two (representing mining tailings and natural soils) to those 
indicated by silhouette and elbow techniques (Saputra et al. 2020). 
Subsequently, suppose the resulting clusters consist of mining 
tailings exhibiting similar characteristics (or behaviors). In that 
case, we consider the groupings generated by K-means valid, 
indicating the need to develop distinct models for each cluster. 
 

3.1.2   Multiple linear regression model 
Adhering to contemporary methodologies, the first model 
evaluated was linear regression. According to Chambers and 
Hastie (1992), linear regression models serve as statistical tools 
employed to examine the correlation between a dependent variable 
and one or more independent variables. When dealing with 
multiple regressions, the equation conforms to the formula outlined 
in Equation 8. 
 𝑦 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ + 𝛽𝑛𝑋𝑛 (8) 

 
 
In Equation 8, 𝑦 represents the forecasted value of the 

dependent variable, 𝛽0 denotes the y-intercept, 𝛽1𝑋1 signifies the 
regression coefficient (1) associated with the first independent 
variable (𝑋1), and 𝑛𝑋𝑛 denotes the regression coefficient about the 
final independent variable. 

The initial step involves exploring the relationships between the 
dependent variable, 𝛾𝑡, and the independent geotechnical 
parameters. In multiple linear regression, there could be 
intercorrelation among some independent variables, necessitating 
a thorough examination before model development. If the 
correlation coefficient (𝑅2) between two independent variables 
exceeds 0.6, only one of them should be included in the regression 
model (Bevans 2022). One approach to understanding such 
correlations entails analyzing scatter plots of each independent 
variable against the dependent variable, 𝛾𝑡, and calculating 

Pearson’s correlation coefficient. Following selecting appropriate 
independent variables, we employ the lm function within R 
software to determine the coefficients for the multiple linear 
regression models. The lm function uses the Ordinary Least 
Squares (OLS) algorithm and determines the set of values for the 
coefficients of independent variables that minimize the vector of 
errors or residuals (Chambers, 1992). 

 

3.1.3   Artificial neural network (ANN) model 
Artificial neural networks (ANNs) are computational models 
inspired by the architecture and operation of the human brain. 
ANNs are comprised of interconnected neurons organized into 
layers, with each neuron processing input data and transmitting it 
to subsequent layers until generating a final output. At its core, a 
neuron executes an activation function that aggregates multiple 
inputs and produces an output. The collective results of multiple 
neurons within a layer are then propagated to the next layer. For 
example, the threshold-based activation function introduced by 
McCulloch and Pitts (1943) calculates a weighted sum of input 
signals and yields an output of 1 if the sum surpasses a defined 
threshold, otherwise 0. The sigmoid-based activation function is 
widely adopted due to its smooth, continuous nature (Jain et al., 
1996). 

The initial layer receives inputs corresponding to the 
independent variables when employing Artificial Neural Networks 
(ANNs) for regression tasks. In contrast, the final layer generates 
the estimated value of the dependent variable. Throughout the 
training phase of the ANN model, the coefficients of each 
activation function within the neurons are adjusted to optimize the 
alignment between the output produced by the ANN and the 
independent variable. Given that activation functions can exhibit 
nonlinear behaviors, ANNs possess significant abstraction 
capabilities for conducting estimations. This study leverages the 
abstraction capabilities of ANNs by incorporating, as an 
independent variable (input for the initial ANN layer), the value 
generated by multiple linear regressions. This approach thereby 
encompasses potential nonlinearities that traditional linear 
regressions fail to capture. 

. The structured architecture of the Artificial Neural Network 
(ANN) comprises six layers, four hidden layers. In an ANN, a 
hidden layer is a neuron layer between the input and output layers. 
The term "hidden" refers to the fact that this layer is not directly 
exposed to the input or output of the model. We conducted an 
iterative search to define such an architecture. With fewer layers, 
the ANN has the worst accuracy; with more layers, on the other 
hand, it does not improve the R² and increases the inference time. 
The initial layer serves to intake inputs for the model, 
encompassing parameters such as G, qt, fs, and u2. Subsequently, 
the subsequent four layers remain concealed, with the first layer 
housing 32 neurons, the second containing 16, the third comprising 
8, and the fourth encompassing 4 neurons. Ultimately, the 
computations within the fourth hidden layer yield the model's 
output: the estimated value of t. 

The activation function employed in every neuron within the 
Artificial Neural Network (ANN) is a sigmoid logistic function. As 
Anastasiadis et al. (2005) outlined, the algorithm utilized to 
calculate the network's weights is resilient back-propagation with 
weight backtracking. We randomly split the dataset regarding the 
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training process, allocating 70% for training and 30% for testing 
purposes. 

4 RESULTS AND DISCUSSION 

This section covers the results obtained through the modeling 
carried out and discusses them. 

4.1 Cluster analysis 

The database underwent analysis to ascertain the ideal number of 
clusters, employing both the silhouette technique (Figure 3(a)) and 
the elbow technique (Figure 3(b)). Silhouette and elbow techniques 
are commonly used to evaluate and determine the optimal number 
of clusters in clustering algorithms such as K-means. The 
Silhouette method measures how similar an object is to its cluster 
compared to others. In interpreting the average silhouette plot 
(Figure 3(a)), the analyst selects the cluster number that results in 
the more significant average. The Elbow method is used to 
determine the optimal number of clusters by plotting the explained 
variation as a function of the number of clusters and looking for 
the "elbow point" where the rate of decrease sharply slows.  In 
other words, the analyst should select the point stabilizing the WSS 
plot's decrease (Figure 3(b)). Both techniques indicate the presence 
of two distinct clusters. Figure 4 illustrates a distinct partition 
within the dataset concerning the behavior of variables G and 𝛾t, 
which directly correlate with soil type delineation. Given the 
presence of these two distinct groups within the dataset, the 
material type was a variable considered for constructing the 
regression model. 

Table 2 shows the clustering results with the number of soils of 
each type classified for each group. As one can see, there is a clear 
distinction between the groups, with Cluster 1 comprising bauxite, 
zinc, and gold tailings and Cluster 2 with iron tailings. 
 
Table 2. Soil type distribution among clusters 

 Soil type 

 Bauxite Zinc Iron Gold 

Cluster 1 158 35 1 9 

Cluster 2 0 0 15 0 

4.2 Multiple linear regression model 

This section outlines the procedures for developing a statistical 
model using linear regression to estimate soil specific weight based 
on the examined database. The model considers two clusters, as 
demonstrated in section 4.1. The next step in constructing this 
model involves assessing the relationships between the model's 
potential parameters and the data's behavior when juxtaposed. 

The scatter plot presented in Figure 4 illustrates the correlations 
among G, qt, fs, u, and γt (designated as gamma). Correlation 
analysis reveals a robust association between qt, fs, and G (R² = 
0.608). The variable G represents an intrinsic material 
characteristic facilitating its identification. Both qt and fs stem from 
the Cone Penetration Test (CPTu), providing similar explanatory 
power within the model. Therefore, considering qt's extensive 
historical usage and its strong correlations with parameters in the 

literature, only qt will be incorporated into the current model. 
Furthermore, examination of Figure 4 data demonstrates the 
limited contribution of the variable u in elucidating specific weight 
(gamma), warranting its exclusion from the model. Ultimately, 
Figure 4 indicates a nonlinear relationship between qt (and fs) and 
specific weight (gamma), suggesting the potential necessity for 
logarithmic transformation before regression analysis. 
 

 

(a) 

 

 

(b) 

Figure 3. Silhouette (a) and elbow (b) techniques results for determining 
the number of clusters of dataset 
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Figure 4. Scatter plot for the correlations between G, qt, fs, u and t (gamma) 

Thus, the variables G and qt were utilized in constructing the 
multiple linear regression model, with the value of qt varying 
logarithmically in correlation with specific weight. Additionally, 
the model considered the soil type from each of the two pre-defined 
clusters. Equation 9 presents the statistical model derived from a 
multiple linear regression encompassing the complete dataset, 
yielding an adjusted 𝑅² of 0.73 for estimations, as shown in Figure 
5. 

 

𝑡  =  26.7 + 2.43 log10 𝑞𝑡 − 5.24G + 12.8𝑠𝑜𝑖𝑙𝑇𝑦𝑝𝑒 (9) 

 
where soilType refers to the cluster considered, assuming 0 for 
cluster 1 and 1 for cluster 2. 

The data points on the scatter plot in Figure 5 appear to follow 
a linear trend, indicating a robust correlation between the estimated 
and measured values of soil specific weight within the model. 
Moreover, the proposed model yielded a higher R² value compared 
to other linear regression models discussed in section 2 of this 
study. 

4.3 Artificial Neural Network (ANN) model 

To try to improve specific weight estimative, we employed an 
Artificial Neural Network (ANN) model to predict the mining 
tailing specific weight utilizing the geotechnical parameters from 
the dataset as inputs. Given the enhanced abstraction capabilities 
of neural network models, we incorporated all variables (G, qt, fs, 

and u) without applying log transformation, as considered for 
multiple linear regression models. 

 

 
Figure 5. Scatter plot for the comparison between estimated values of γt 

using the linear model and the measured values 
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Figure 6(a) illustrates the scaled values of t estimated by the 
ANN model for the test dataset (30%) compared to the actual 
values. The model tested with 30% of the data yielded an R² = 0.86, 
surpassing those estimated by Equation (9). However, upon 
examining the model tested with the entire dataset (Figure 6(b)), it 
becomes evident that it provides the best fit, with an 𝑅² = 0.91. This 
outcome underscores that an ANN model trained with in-situ 
parameters is the most suitable approach for estimating the specific 
weight of mining tailings. 
 

 

(a) 

 

(b) 

Figure 6. Specific weight estimations using ANN models: predictions for 
the test data (a) and all data (b) 

4.4 Results summary 

To compare our research findings to the state-of-the-art, we 
summarize in Table 3 the R² values obtained through the models 
presented in this paper and the obtained with the literature 
equations discussed in Section 3. The results show an improvement 
in all models' precision when used to estimate the specific weight 
of mining tailings and that the proposed models that use the 
clustering identification offer the best values of R² (0.73 for the 
regression model and 0.91 for the ANN model). 
 
Table 3. Comparison of the results with the state-of-art estimations applied 
to the mining tailings dataset 

Reference Model R² 

Equation 1 0.47 

Equation 2 0.50 

Equation 3 0.39 

Equation 4 0.41 

Equation 5 0.54 

Equation 6 0.53 

Regression model (this research) 0.73 

ANN model (this research) 0.91 

 

5 CONCLUSIONS 

In contemporary practice, soil specific weight determination 
typically relies on empirical correlations derived from field test 
results or characterization of undisturbed samples via laboratory 
tests such as simple direct shear, triaxial tests, and consolidation 
tests. Recent advancements in the field have embraced statistical 
equations tailored to individual soil characteristics to overcome the 
limitations of laboratory tests. While these statistical-based 
methods yield accurate estimations for soils incorporated in the 
regressions, they struggle to estimate t for distinct soil types. This 
study explores the application of machine learning as a pragmatic 
approach to estimating mining tailings specific weight (t) based 
on parameters gathered from CPTu tests. 
Considering the results and analysis of this research, the 
conclusions can be summarized as the following points:  

 clustering analysis revealed that the dataset could be 
divided into two distinct groups, which was considered 
in the multiple regression model development;  

 it is found that to estimate 𝛾𝑡 using a multiple linear 
regression model, G, qt, and, the soilType (clusters) 
were considered significant variables and the qt variable 
must be logarithmically transformed. The multiple 
linear model achieves an R² of 0.73;  

 an Artificial Neural Network (ANN) model was 
determined, enabling estimates within the database 
evaluated with R² of 0.91, considering global data and 
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promising applications for specific weight estimates in 
mining tailings. 
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