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ABSTRACT: We apply machine learning (ML) models to predict subsurface temperature development with optimal hyperparameter 
tuning and less complexity. We use seven years of geothermal temperature data from a cooling-dominated campus-scale, instrumented 
geothermal heat exchange (GHX) field (2596, 152-m-deep boreholes over an area of 280 m by 360 m) in the Midwest region of the 
United States. The field temperatures are monitored using eight temperature monitoring wells, or TMWs, and this study discusses the 
analysis on one of the wells, TMW1. We use linear regression and two tree-based ML models (random forest regression, or RFR, and 
XGBoost) with five input features for training—two from weather data (air temperature and humidity) and three temperature parameters 
relating to the energy exchanged for heating and cooling the campus buildings and the geothermal field. The primary model fitting 
shows root mean square error (RMSE) values varying from 1.00° to 1.15° C. We then created lagged variables for each input variable 
(up to 6 months) and used them to make six-month predictions. The RMSE value was reduced to 0.71° C for an optimized RFR model. 
Findings also showcase a gradual, seasonal rise in subsurface temperature, offering valuable insights for designing more efficient GHX 
systems, conducting improved energy balance assessments, and creating long-term ground temperature change models. 
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1. INTRODUCTION  

Geothermal heat exchange systems (GHXs) are clean, renewable, 
energy-efficient technologies that transfer subsurface thermal 
energy to provide highly efficient heating and cooling for 
residential and commercial buildings by taking advantage of near-
constant, year-round subsurface temperatures. The increasing 
development of GHXs has been portrayed to have significant 
economic and environmental benefits (Tinjum et al., 2023; 
Urcheguia et al. 2008, Michopoulos et al. 2013, Carvalho et al., 
2015). GHXs are more energy efficient than conventional heating 
and cooling systems and have a long-term positive impact on the 
environment and economy (Bloom and Tinjum 2016). Fiber-optic 
Distributed Temperature Sensing (DTS) uses the interaction of 
laser pulses with imperfections in the silica in a fiber to sense the 
temperature in a medium. Distributed temperature data also 
provide insights into the spatial and temporal variations of 
temperature, allowing for qualitative and quantitative analyses of 

the heterogeneous ground’s thermal properties (Herrera et al. 2018, 
Attri et al. 2023). The determination of temperature is based on 
Stokes (Ps) and anti-Stokes (Pas) backscattered signals from 
position (z) along the fiber at the time (t). The instrumental 
equation is conveyed by (Van de Glesen 2012, McDaniel et al. 
2018a, Tombe et al., 2020):  
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where γ represents the energy difference between the incoming and 
backscattered Raman photons, C is a constant that depends on the 
input laser in the interrogator, and Δα is the differential attenuation 
between the anti-stokes and the stokes signals in the fiber.  

Machine Learning (ML) is a rapidly growing field that integrates 
computer science and statistical applications and is at the core of 
artificial intelligence and data science (Jordan and Mitchell 2015). 
The core concept of ML involves constructing models that can 
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make informed predictions about future events or trends. This is 
achieved by training algorithms on historical data to discern 
patterns and relationships, which are then used to anticipate future 
outcomes within the scope and quality of the data provided (Tut 
Haklidir and Haklidir 2020). Fu Jiao Tang et al. (2022) 
successfully predicted the heat exchange capacity of a borehole 
heat exchanger (BHE) by using ML methods such as linear 
regression (LR), polynomial regression (PR), artificial neural work 
(ANN), and random forest (RF) to compute the annual heat 
exchange rates of 400 thermal performance tests (TPT) covering 
12 factors. The results show that the PR approach performs best, 
with root-mean-square error (RMSE) less than 1.74 W-m-1 and a 
Coefficient of Determination (R2) higher than 0.99. Tut Haklidir 
and Haklidir (2020) developed a deep-learning model to predict 
reservoir temperatures based on hydrogeochemical data while 
comparing their results to traditional regression approaches neural 
networks (DNN). The study showed that the DNN algorithm 
generated the lowest errors and provided accurate values close to 
geothermometer calculations. Another related research was 
conducted by Zhang et al. (2022) on the prediction of coefficient 
of performance (COP) models for heat pump units and ground-
source heat pumps (GSHP) using ML methods. Zhang et al. (2022) 
used algorithms such as extreme learning machine (ELM), support 
vector machine (SVM), and back propagation neural network 
(BPNN) to predict the COP for heat pump units and a GSHP 
system. They used ten parameters for a feature-shrinkage and 
selection-operator (LASSO) approach. The results indicate that the 
ELM model has better prediction accuracy than the other models. 
In this paper, we expand the analysis of measured DTS data by 
applying machine learning for both causal and predictive analyses 
of the subsurface temperatures for a campus-scale, low-enthalpy 
GHX field. Predicting temperature variations is crucial for 
optimizing the performance and efficiency of geothermal systems. 
Accurate long-term predictions can reduce the costs in the 
maintenance and planning of geothermal energy extraction, 
making the application of ML techniques valuable. 

Epic Systems (Epic) is an electronic health records company 
located in the Midwest of the United States with a corporate 
campus of over 13,000 employees. Epic uses geothermal reservoir 
fields to heat and cool its campus (Özdoğan Dölçek et al. 2017, 
McDaniel et al. 2018b). The system includes four borefields to 
deliver 48.5 MW of cooling power. Figure (1) shows the overview 
of the largest borehole field, borefield 4 (BF4). This field has 2,596 
GHX wells in a volume of 360 m north to south, 280 m east to 
west, and 152 m deep for 15.4·106 m3 of porous media available 
for thermal exchange (Attri et al. 2023). BF4 alone contributes to 
over fifty percent of the ground-based cooling capacity and is one 
of the world's largest, shallow, low-temperature GHX systems 
(Tinjum et al. 2023). It has temperature monitoring wells (TMWs) 
containing fiber-optic cables extending full depth. The fiber-optic 
cables used are OM2 ClearCurve Plenum Orange cables with a 
multi-mode 50/125-μm core, 2-mm outer diameter, and E2000 
APC connectors (McDaniel et al. 2018a). Temperature data has 
been consistently monitored since June 2016. The black solid 
circles indicate the locations of fiber optic loops in the field, which 
are used to detect ground temperature. 
 
2. METHODOLOGY 

 

This study is focused on BF4, which is equipped with temperature 
monitoring wells (TMWs) that include fiber-optic loops extending 
to the base. Figure 1 represents the 2596 GHX boreholes as the 
black rectangles as a frame and the red circles indicate the sentry 
wells or the TMWs, with fiber loops grouted directly in contact 
with the ground. The blue squares represent the piezometric wells 
in the field, which also have fiber-optic loops, as well as 
piezometer screens in both a shallow and a deep aquifer, and 
TMW-1B, or simply TMW1, has been selected for the preliminary 
stage of ML application since it provides the most optimal 
temperature data that reflect the overall geothermal behavior. The 
initial predictive analysis targets the 80-m-deep temperature data 
from TMW1, which will later be expanded to include various 
depths across all wells. Our analysis relies on five principal 
independent variables to forecast the primary variable, 'Well 
Temperature 1’: relative humidity, air temperature, BF4 
temperature differentials, chilled water temperature differentials, 
and hot water temperature differentials. The air temperature 
gauged near BF4 represents dry bulb temperature, and the relative 
humidity denotes the air’s moisture content that affects the transfer 
of heat and moisture in the conditioned space.  

 

Figure 1: Borefield 4 (BF4) map with fiber-optic temperature 

monitoring wells (after McDaniel et al. 2018b). 

The BF4 temperature differentials represent the temperature 
change in the water circulating within BF4 before and after it 
circulates through the field, showcasing the energy exchange 
within the borefield. The terms 'chilled water difference' and 'hot 
water difference' denote the temperature disparities between the 
inflow and outflow of water in one of the campus’s central energy 
plants, illustrating the energy interactions facilitated by the 
building's heat exchangers. We refined the ML algorithms (Linear 
Regression, XGBoost, and Random Forest) to predict our target 
variable using a set of those six independent variables. The dataset 
was compiled with measurements taken at six-hour intervals from 
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June 2016 to December 2022. Recognizing that these variables 
might not immediately affect subsurface temperatures, we 
improved the models, specifically XGBoost and Random Forest, 
by incorporating lagged versions of the original variables. We 
created new predictors by introducing delays of up to six months 
with one-month increments for each variable, resulting in six 
additional lagged variables per original variable to capture their 
delayed influence on the target variable. Finally, we used all 36 
variables to predict up to six months of well temperature. 

 Linear regression, random forest regression (RFR), and 
XGBoost were selected for this analysis because of their 
demonstrated effectiveness in modeling the complex relationships 
found in the data, subsurface temperature variations in our case. 
Linear regression serves as a baseline model with straightforward 
interpretation, aiding in understanding fundamental trends and 
relationships within the data. Random forest regression was chosen 
for its ability to mitigate overfitting and manage high-dimensional 
data, making it ideal for capturing intricate patterns in the 
geothermal temperature dataset. XGBoost, known for its 
scalability and efficiency, was selected for its exceptional 
predictive performance and ability to process large datasets with 
numerous features, including lagged variables. Together, these 
methods provide a robust framework for modeling and predicting 
subsurface temperature dynamics. 
 

2.1 Linear Regression  
 
Linear Regression is one of the most common ML approaches 
(Tang et al. 2022). Linear regression analysis allows us to predict 
the future by discerning linear relationships between the dependent 
and independent variables (Ansari and Nassif 2022). The most 
straightforward format of linear regression, univariate linear 
regression, involves one independent variable and one dependent 
variable: 
  
 𝑦.	 =	𝑏" 	+ 𝑎.𝑥.		 (2)                                                                        

 
This equation represents a simple linear regression where 𝑦. is 
the dependent variable, 𝑏" is the constant term intercepting the y-
axis, x is the independent variable, and 𝑎. is the coefficient for 
the predictor variable. Linear regressions involving more than one 
independent and dependent variable are called multiple linear 
regressions. The function is defined as:  
 

 𝑦/ = 𝑏" + [𝑎.	𝑎0	. . . 	𝑎1'.	𝑎1] ∗ 2
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where	𝑦/ is the regressed, m represents the number of the variables, 
and e is the regression model error. 

The main objective of linear regression modeling is to determine 
the optimal line that minimizes the difference between predicted 
and observed values. This line's slope represents the rate at which 
the dependent variable changes in response to changes in the 
independent features. Model evaluation is necessary to determine 
whether the linear regression model has the best-fit line. The most 
common approach is R2: 
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which is defined as a ratio of variation to the total variation. The 
closer R2 is to 1, the more accurate the regression is. Root Mean 
Squared Error (RMSE) is another evaluation criterion to 
determine our linear regression model's fit. It indicates the 
average difference between predicted and actual values and 
describes how well the data points match the expected values. 
We aim to minimize the RMSE value, and for a perfect model, 
where the predicted values are identical to the actual values for 
all instances in the dataset, the RMSE would be 0. 
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2.2 XGBOOST  
 
Decision trees are binary trees where each internal node represents 
a test on an attribute, each branch represents the outcome of the 
test, and each leaf node represents a class label (Navada et al., 
2011). Decision trees have transformed into versatile tools 
applicable across various disciplines, including artificial 
intelligence, machine learning, knowledge discovery, and data 
mining (de Ville, 2013). They are now considered highly cross-
disciplinary, general-purpose methods that are computationally 
intensive and used for prediction and classification (de Ville 2013). 
Different decision trees are available depending on the specific 
situation and desired outcome; these trees include Classification, 
Regression, Decision Forests, and Classification and Regression; 
(Navada et al. 2011). The general idea of a decision tree is that it 
repeatedly divides the data into smaller groups based on the values 
of input features, creating branches that contain similar data within 
them but different data between them at each tree level (de Ville 
2013). 

XGBOOST is a scalable ensemble method based on gradient 
boosting and built based on decision trees; it creates a forest of by 
sequentially optimizing decision trees with respect to the loss 
function. (Chen and Guestrin 2016). Gradient boosting 
sequentially adds new trees to an ensemble, with each sequential 
tree reducing the errors of the previous ensemble (Natekin and 
Knolls 2013). It aims to construct new base-learner models highly 
correlated with the negative gradient of the loss function associated 
with the ensemble, leading to improved accuracy in predicting the 
response variable (Natekin and Knolls, 2013). Since XGBoost 
exclusively utilizes decision trees as base classifiers, it employs a 
modified loss function to manage the trees' complexity (Bentéjac 
et al. 2021). Equation (6) is the loss function:  
 

 𝐿2;< =	∑ 𝐿?𝑦/ , 𝐹(𝑋/)B + ∑ Ω(ℎ1)=
1>.

?
/>. 	 (6)	

 
which is the sum of the individual losses and regularization terms. 
It measures the discrepancy between the predicted and actual 
values (Chen and Guestrin 2016). In the equation, N is the total 
number of data points,	 𝐿?𝑦/ , 𝐹(𝑋/)B 	 is the loss function that 
measures the difference between the predicted value	 𝐹(𝑋/) and 
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the actual value 𝑦/. M is the total leaves in all trees, and Ω(ℎ𝑚) 
is the regularization term for the m-th tree that can be defined using 
equation (7) (Chen and Guestrin 2016): 

 Ω(ℎ1) 	= 	𝛾𝑇	 + .

0
𝜆‖𝑤‖0		 	 (7)	

 
Here, γ is the regularization parameter that controls the complexity 
of the trees, 𝑇	is the number of the tree leaves, λ controls the 
magnitude of the leaf weights, and w is the output score of the 
leaves in tree m, which are influenced by the modified loss function 
(Chen and Guestrin 2016). Higher values of gamma (γ) lead to the 
creation of simpler trees by setting the threshold for the minimum 
loss reduction required to split an internal node, and tree 
complexity can be controlled by limiting the depth of the trees, 
which additionally speeds up model training and reduces the 
storage space needed (Bentéjac et al. 2021). 
 
2.3 Random Forest 
 
Random Forest (RF) analysis is a common ensemble-based method 
in ML (Breiman, 2001). Unlike XGBoost, RF is a bootstrap 
aggregating algorithm that builds many decision trees on various 
sub-samples of the dataset and averages the results to improve the 
predictive accuracy and control over-fitting (Breiman, 2001). 
Bootstrap aggregating enhances the stability and accuracy of ML 
algorithms used for regression and classification tasks (Breiman, 
1996). RF approach decision forests can adapt to non-linear 
solutions, predicting better than LR models (Schonau and Zou, 
2020). The algorithm builds individual decision trees on bootstrap 
samples and averages their predictions. The algorithms can be used 
for classification and regression models (Schonau and Zou, 2020). 
Decision trees are models constructed from training data by 
making a series of binary splits at each tree node. Each split divides 
the data into two child nodes based on an inequality query on one 
of the variables. The tree grows until each leaf node contains 
exactly one data point or until a stopping condition is met. A new 
data point is passed through the tree to make predictions, following 
the queries at each node. The predicted output is the data point's 
value in the leaf node where the new point ends up or the average 
value of the data points in that leaf. The key to the algorithm is the 
optimization process at each node, which selects a variable and a 
threshold to create the split (Breiman, 2001). 
 
3. RESULTS AND DISCUSSION 

 
3.1 Data Collection and Analysis 
 
Our approach employs Fiber-Optic Distributed Temperature 
Sensing (FO-DTS) with dynamic, double-ended calibration for 
ongoing field monitoring. As shown in Figure (2), the temperature 
distribution for TMW-1 is depicted on a depth-time plot alongside 
the site's geological strata. Interruptions in data collection during 
the COVID-19 pandemic were due to malfunctions and operational 
disruptions. We have also shown our work on imputing this 2-year 
gap in the data using time series models like ARIMA and Holt 
Winters’ Exponential Smoothing (Attri et al. 2024). The data 
demonstrate the relative stability of subsurface temperatures 
compared to surface temperatures, which fluctuate with 

atmospheric conditions. Predominantly a cooling system, our 
Borefield 4 network stores more heat during the cooling season 
than it extracts during the annual heating season, leading to a 
general ground temperature increase over seven-plus years. A 
notable cooler area at approximately 30 m depth corresponds to 
groundwater flow within a karstic dolomite formation. 

Figure (3) shows the temperature changes at an 80-m depth 
within the TMW-1. The analysis indicates a slight temperature 
decrease leading up to 2019, followed by an increase from 2021 
onwards. Before 2016, the data were more variable, likely due to 
the initial stages of field startup and calibration of the FO-DTS 
technology. Data before 2016 was excluded from the analyses to 
ensure a more accurate analysis.  
 

 
Figure 2: Borehole temperature variation for TMW-1 with depth from 

2015-2022. 

 

Figure 3: Borehole temperature variation at 80 m depth for TMW-1 

from 2015-2022. 

 

3.2 Linear Regression 
 
Linear Regression (described in Section 2.1) is a simple and 
commonly used algorithm in ML. It fits a linear equation between 
dependent (target) and independent (features) variables. A 
correlation analysis was conducted before our ML data training, 
which helped extract the highly correlated features and select the 
six features we used for our study. The next step was to clean data 
for any outliers and null values. It is to be noted that we did not use 
the values for the period 2019 and 2020 to train our models since 
the data were missing due to system failures and restrictions due to 
COVID-19 pandemic. Our dataset was then divided into training 
and testing sets, with the training set comprising data from early 
2016 to June 2022, as shown by the blue points in Figure (4), while 
the test set included data from June 2022 to the end of 2022, 
represented by the orange points. The black dashed line in Figure 
(4) separates the training and test sets. We trained the multivariate 
linear regression model using the testing set subsequently to make 
predictions for the period of the last six months of 2022.  

Figure (5) compares the model's forecasted values and the actual 
'Well Temperature 1' measurements from the test dataset. The 
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model's predictions, presented in Figure (5), show a mismatch to 
the observed data, evidenced by an RMSE of 1.13. Such mismatch 
highlights the intricacies of the modeled system and underscores 
the constraints inherent in using linear regression. Linear 
regression assumes a linear relationship, constant unit change, 
between the dependent and independent variables, thus is not 
applicable to nonlinear temperature profile observed over time. 
Additionally, the model's vulnerability to outliers is notable; such 
data points can impact the regression coefficients and the model's 
overall predictive accuracy. This led us to use more complex 
models for predictions. 
 

 

Figure 4: The dataset is divided into training and testing sets. 

 

 

Figure 5: Measured temperature data at 80-m depth for TMW1 and 

predicted temperatures for the test set using Linear Regression. 

 

3.3 XGBoost 
 
The linear regression model, often considered a fundamental 
benchmark, yielded underwhelming results, leading to the 
exploration of more complex, tree-based models. These models are 
celebrated for their adeptness in handling multiple features and 
complex interactions within the data. Initially, our focus was on a 
model incorporating six primary features. This model underwent a 
rigorous full-factorial hyperparameter optimization to determine 
the optimal model parameters. The optimal XGBoost model 
performance on a six-month forecast resulted in an RMSE of 1.16, 
which fell short of the benchmarks set by the linear regression 
model. XGBoost generally performs better than the linear 
regression models, but this slightly decreased accuracy on the test 
set might be due to the increasing trend not being captured by the 
XGBoost model.The low R-squared value of 0.03 from the training 
set further corroborated that the select features did not explain the 
variance in the measured borehole temperatures. 

To enhance the model's predictive capabilities, we expanded the 
feature set by incorporating lagged variables, taking the total count 
to 36 while maintaining the original target variable. Figure (6) 

depicts the feature importance of the XGBoost model with lagged 
variables, elaborating the impact of each independent variable on 
the model’s predictions. Meanwhile, Figure (7) showcases the 
predictions of the XGBoost model with the lagged predictor 
variables. The RMSE for these predictions dropped to 0.80, a 
marked improvement over all previously attempted models. This 
notable advancement can be credited to the synergistic effect of a 
more intricate modeling technique coupled with a substantial and 
strategically selected set of input variables that more accurately 
reflected the target variable's variations. R2 = 0.84 for the training 
set supports the view that the model could account for a significant 
portion of the temperature variance with the extended set of 
features. 

Upon a detailed analysis of Figure (6), the feature importance 
plot sheds light on the predictors that significantly drive borehole 
temperatures. The leading indicator was the temperature 
differential of the inlet and outlet waters from the borefield 
measured three months prior, implying a delayed influence of 
energy transfer on the temperature. This was closely followed by 
the energy exchange metrics within the borefield and the cooling 
loop of a campus building, both from two months earlier. The 
strong influence of these features likely stems from the cooling-
dominant nature of the borefield system, which exerts a 
pronounced effect on the thermal dynamics within the field. 
Remarkably, the top seven determinants for temperature variability 
were linked to the energy transactions within the borefield and the 
cooling loads from the buildings, highlighting the intricate 
interplay between these factors in shaping the borefield's thermal 
profile. 

 
3.4 Random Forest 
 
Since XGBoost performed better for our dataset with more featur
es, we also decided to use the RF method since it is a simpler mo
del and can perform better on datasets where the relationship bet
ween features is more complex and nonlinear. It is also less sensit
ive to the scale of features and can handle unnormalized or unstan
dardized features. We performed hyperparameter optimization to 
define the optimal random forest model, and our primary model 
with only five features gave an RMSE value of 1.08, which is bett
er than both LR and XGBoost with these five features. Next, we t
ook the same steps for the lagged features as we did with XGBoo
st, and the RMSE obtained using RF was 0.71, the best RMSE we
 have achieved with our data. Figure (8) shows the relative featur
e importance of the features using RF, and again, the top six facto
rs affecting temperature fluctuations were associated with the ene
rgy exchanges occurring in the borefield and the thermal demands
 from the buildings, with five of them with lags. Figure (9) shows
 a scatter plot of the measured temperature values and the RF mo
del's predictions.  
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Figure 6: Feature importance of independent variables using XGBoost. 

 

Figure 7: Measured temperature data at 80-m depth for TMW1 and 

predicted temperatures for the test set using XGBoost with lagged 

variables. 

 

Figure 8: Feature importance of independent variables using Random 

Forest. 

 

Figure 9: Measured temperature data at 80-m depth for TMW1 and 

predicted temperatures for the test set using Random Forest with 

lagged variables. 

 

4. CONCLUSIONS AND FUTURE SCOPE 

 
The research explores applying ML strategies for predicting 
subsurface temperatures within a low-enthalpy geothermal 
exchange field. It evaluates three distinct models, noting that their 
effectiveness varied according to the data structure and the 
relationships between predictors and the target variable. Despite its 
simplicity, linear regression prompted the consideration of more 
complex models to improve prediction accuracy. Random Forest 
model performed best with both non-lagged and lagged features. It 
explains the delayed impact of the energy interaction with the field 
on the temperatures below the ground, which agrees with the basic 
scientific understanding of how heat transfer and storage works 
sub-surface. The results are satisfactory but also far from what can 
be achieved. The outcomes, while promising, also highlight a 
consistent trend of underestimating temperature values across all 
models. A possible reason for this could be the limited scope of 
input data, which currently includes only the energy consumption 
from one borefield and a portion of the campus. This limitation 
likely contributes to the models' tendency to predict less 
temperature variation, particularly as temperatures have risen. 

Other improvements could incorporate additional ML 
techniques more suited to the dataset's characteristics. The study 
aims to extend its analysis to encompass the full depth of TMW 1 
and across all such wells to deepen our comprehension of how 
various factors influence ground temperatures. Efforts to amass 
more comprehensive data, such as flow rates and energy 
consumption from other campus buildings, are expected to 
enhance the robustness and dependability of the predictions. 

The ultimate objective is to fine-tune the performance of ML 
models across all monitoring wells and depths, capturing the full 
spectrum of temperature variation indicators. Success in this area 
could significantly contribute to optimizing system utilization and 
fostering sustainable operational design. 
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