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ABSTRACT: Helical piles have been widely used as foundations for guyed towers in power transmission lines in Brazil to resist
tensile loads. However, in the Brazilian context, predictions are based on the torque method that often do not provide accurate
predictions for the small diameter multi-helix piles commonly used in that country. At the same time, tensile load capacity prediction
methods based on the Standard Penetration Test (SPT) and Cone Penetration Test (CPT) are rare in the literature and also present
predictions with considerable variability. Given the need for more accurate methods for helical piles design, this paper evaluates the
application of Artificial Intelligence through Machine Learning methods for predicting tensile load-displacement curves and load
capacity. In this study, a database was composed of 33 tensile load tests conducted at different sites in Brazil, including SPT tests
results, installation torque and pile geometry was evaluated. Three ML methods were applied: Cubist, Random Forest and Stochastic
Gradient Boosting Machine. Additionally, the performance of the best method was compared with an analytical method based on the

SPT data.
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1 INTRODUCTION

For pile foundations, Terzaghi (1943) proposed a theoretical
solution for predicting load capacity, and Meyerhof (1951) also
developed a theoretical calculation based on plasticity theory.
Seeking a better fit for predictions for conventional piles,
Meyerhof (1956) suggested a semi-empirical approach based on
the Standard Penetration Test (SPT), where the pile load capacity
is related to the number of blows/300mm obtained in the test.

In this context, several semi-empirical correlations have been
developed over the years based on in situ tests. In the Brazilian
scenario, numerous SPT-based methods have been calibrated
through back-analyses of load tests and are extensively employed
for predicting pile load capacity. However, in the case of helical
piles (or anchors when submitted to tensile loads), equations for
uplift capacity prediction based on the SPT data are rare in the
literature. Tsuha et al. (2024), utilizing a database of helical piles
installed in Brazil, examined the methods proposed by Kanai
(2007) and Perko (2009), both based on SPT data. The authors
concluded that these methods yield unreliable predictions and
exhibit high variability in Brazilian soils, highlighting the
negiessity of a new SPT-based method for helical piles in these
soils.

On the other hand, with the advancement of technology and
the dissemination of Artificial Intelligence (Al), a new horizon of
analysis opens up to improve the accuracy of predictions of
geotechnical variables through Machine Learning (ML)
algorithms. In this sense, predictions based on the observation of
historical data from different variables (or features) combinations
related to the problem have become increasingly attractive.

The purpose of this study is to evaluate the capability of
Machine Learning methods to predict the load-displacement
curves of the load tests on the helical piles of the database and to
compare the measured values of uplift capacity with the predicted
values obtained by the SPT method proposed in Perko (2009).
The tests used in the current paper are part of the database

published by Tsuha et al. (2024).

This study was conducted using a relatively small database,
consisting of 33 tension load tests on 4-helix helical piles carried
out at 20 sites in Brazil. Despite the limited size of the database,
the approach presented in this paper represents an initial point
towards the use of ML techniques in predicting the
load-displacement curves of helical piles.

For this purpose, 28 load tests were subjected to three
supervised ML methods for load-displacement curve prediction,
namely: Cubist, Random Forest (RF), and Stochastic Gradient
Boosting Machine (SGB). The remaining 5 curves, not used in
the Machine Learning analysis, were applied as a case study to
verify the performance of the best-trained model and compare the
predicted tension loads with those measured in the field. The
values of uplift capacity of measured curves were obtained using
the modified Davisson criterion, defined as the applied load that
caused a net deflection of the pile head equal to 10% of the
average helix diameter, and compared with those calculated by
the method of (Perko 2009).

The ML methods were applied using Rstudio software (v.
2023.06.2 Build 561), which includes the R language provided
and freely available by the CRAN Team (v. 4.3.1). The study was
conducted using the Caret package, which offers a wide range of
tools and methods for artificial intelligence and statistical
analysis.
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In the first stage, the main objective was to evaluate the
individual performance (training and testing) of each machine
learning algorithm with different hyperparameters and interpret
them based on the R? (coefficient of determination), MAE (Mean
Absolute Error), and RMSE (Root Mean Squared Error) metrics.
The model with the best overall performance (in both training and
testing) will be the one that presents the lowest sum of RMSEs in
these two phases.

2 LOAD-DISPLACEMENT CURVES AND DATABASE
CHARACTERISTICS

2.1 Tension load-tests and test sites

The tension load-tests used in this study refer to the 4-helix piles
data published by Tsuha et al. (2024), which achieved a net
displacement (total minus elastic) equal to 10% of the average
helix diameter (AC358 failure criterion). The uplift capacity of
the piles was defined by the modified Davisson method, where
the failure load corresponds to a net displacement of 10%D
(Souissi, 2020):
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Table 1. Churactenistics of the 33 helical piles in 20 different sites
used in the current work
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In the equation above, P corresponds to the load applied at the
top of the pile, L is the total length of the pile shaft, E is the
modulus of elasticity of the material, and A is the net area of the
cross-section of the shaft.

Defining the failure load in terms of net displacement is
important because, typically, Brazilian helical piles are installed
at deep depths (with 15 meters length or more) and small
cross-sectional areas. In these situations, the elongation or
shortening of the shafts becomes crucial in determining the
failure load. Table 1 describes the characteristics of the tests in
the database related to the four-helix piles.

2.2 Brief overview of ML in the Geotechnics

Puri et al (2017) applied the methods of Linear Regression,
Artificial Neural Network, Support Vector Machine, Random
Forest, and M5 Tree to predict geotechnical parameters, and the
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authors showed that the trained models performed well compared
to the measured values.

Recently, Peres (2021) employed machine learning techniques
using a dataset composed of helical piles installed in Brazilian
soils to predict the installation torque along the depth. The study
addressed nine algorithms, of which Cubist, Boosting, and
Random Forest stood out for their effectiveness in analyzing the
dataset.

Li et al. (2022) used a database comprising 2197 data points
from the literature to estimate soil thermal conductivity using six
machine learning algorithms. In their study, the authors noted that
the AdaBoost method exhibited the best prediction performance.

Wang et al. (2022) studied machine learning models to predict
the behavior of helical piles in dense sands for wind energy tower
purposes. The authors applied two methods in their study:
Gradient Boosting Decision Tree (GBDT) and Particle Swarm
Optimization (PSO). The results showed that the GBDT model
accurately predicted the anchor mobilization distance and the
tensile capacity of the piles. They also observed that the
embedment ratio was the most significant variable in the model,
while the relative density of the soil, the helix spacing ratio, and
the number of helices had relatively minor influence. In
particular, it was found that the helix spacing ratio does not
influence the capacity of adjacent helices when S/D > 6.

The lack of studies employing artificial intelligence to predict
the behavior of helical piles is evident. However, existing
research demonstrates that such techniques show promise in this
context, and therefore, this study aims to expand the application
of machine learning to predict the behavior of these piles through
their load-displacement curve.

3 Review oF APPLIED ML ALGORITHMS

3.1 Cubist

Cubist is a hybrid algorithm that combines decision trees with
linear regression, used for regression and classification tasks. The
algorithm creates a series of rules based on decision trees, which
connect various combinations of subsets of predictor variables
with the target variable, based on patterns identified in the data.
From these trained trees, the algorithm extracts rules that, when
satisfied, are capable of predicting the target wvariable.
Additionally, weights are assigned to the rules according to their
predictive accuracy, prioritizing those that provide more accurate
predictions.

Simultaneously, Cubist establishes multi-variate linear
relationships associated with each compartment (or rule) defined
by the regression trees. Finally, the prediction is made by
combining predictions derived from the rules of decision trees
and linear regressions, through weighted averages of individual
predictions.

3.2 Random Forest

The Random Forest, like Cubist, is widely used in regression and
classification tasks. This method is based on the technique of
regression trees, differing from conventional methods by
generating multiple trees with distinct subsets of instances. Using
the Bootstrap technique with replacement, the algorithm
randomly selects data subsets for each tree. This allows the same
instance to appear multiple times in a subset, while others may be
left out. This approach promotes the creation of diverse trees,
reducing the model's sensitivity to the original dataset.

An advantage of Random Forest is the Out of Bag (OOB)
technique, in which the model is evaluated with instances left out
of the training process. This allows them to be used to test the
model without the need for a separate validation set.

Upon completion of the testing process, the model employs
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ensemble aggregation to calculate the result for each instance
based on the results of each tree. For classification tasks, the
mode is used, while for regression cases, the average is used.

3.3 Stochastic Gradient Boosting Machine

Stochastic Gradient Boosting Machine (SGB) is a powerful
variant of the Gradient Boosting Machine (GBM) algorithm.
Unlike traditional GBM, which utilizes the entire training dataset
for each iteration, SGB introduces a random sampling technique
similar to Random Forest. In SGB, it selects a subset of the
training data randomly for each iteration, a process known as
stochastic gradient descent.

Moreover, SGB incorporates another form of randomness by
employing random feature sampling. This means that at each
node of the decision tree, SGB randomly selects a subset of
features (columns). This introduces further variability and aids in
preventing overfitting by reducing the correlation between trees.

Furthermore, SGB includes a shrinkage parameter, known as
the learning rate, to control the contribution of each weak learner
to the ensemble. A lower learning rate necessitates more
iterations but can enhance generalization.

Similar to GBM, SGB employs gradient descent optimization
to minimize a loss function. It calculates the gradient of the loss
function concerning the predictions of the current ensemble
model. Then, it adjusts the predictions of the new weak learner
(decision tree) in the direction that minimizes the loss.

The gradient boosting process in SGB involves adding the new
weak learner to the ensemble to reduce the overall error of the
model iteratively. Each new weak learner works on correcting the
errors of the previous ensemble, refining the model with each
iteration.

Similar to GBM, the training process in SGB continues until a
predefined stopping criterion is met. The final prediction of the
SGB model is the sum of the predictions from all the weak
learners, weighted by the learning rate.

4 SPT-BASED METHOD

Perko (2009) proposed an equation using the SPT data for
calculating the tensile capacity of helical piles. In this equation
the author applies the concept of the individual bearing method,
where each helix contributes individually to the total capacity:

Qu =y q,, An + aHeff(nd) (2)

n

In the equation above, An represents the effective area of the
n™ helix, g, is the ultimate resisting pressure of the n helix and
depends on the surrounding soil, a is the coefficient of adhesion
between the shaft and the soil, H,; is the total length of the shaft
above the upper helix, considering the disturbance effect due to
installation and the ground surface, and d is the external diameter
of the shaft.

Table 2 indicates the values of qult as a function of Nspt for
different materials. The method was calibrated for an efficiency
of 70% (N70).

Perko (2009) did not propose a correlation for the contribution

lable 2 Correlations between ultimate bearing pressure and

MEPT value (Perka 2008
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of the shaft resistance to the pile capacity. In the present study, it
was chosen to ignore this portion because it is insignificant for
the total pile capacity, due to the small diameter of the shafts of
Brazilian helical piles, as observed by Tsuha et al. (2024).

5 COMPARISON BETWEEN ML ALGORITHMS AND
SPT-BASED METHOD

The 28 load-displacement curves from the database, a total of 336
instances (points of the load-displacement curves), with 80%
(270) arbitrarily allocated to the model training set and the
remaining 20% (66) designated for the testing phase. For the
analyses, 7 variables to predict the curves were adopted:

o  shaft diameter;

e wing ratio (average diameter of the helices divided by
the diameter of the shaft);

e cmbedment length;

o relative depth (depth of the top helix divided by its
diameter);

e average final installation torque (relative to the final
penetration of the pile over a length of three times the
diameter of the largest helix);

e total displacement (measured in the test); and

e applied load in the test (target variable for predictions).

In this study, the variable 'number of helices' was not used as it
is the same for all observations. The variables Nspt and soil type
were also not adopted because preliminary analyses indicated less
accurate models. In order to ensure the repeatability of the
analyses and enable comparison between the algorithms, a
random seed was pre-fixed.

5.1 Training models

The Cubist, RF, and SGB methods were trained using 10-folds
S-repeats cross-validation, allowing the training of 50 models for
each combination of hyperparameters, resulting in a total of 2500
trained models at the end of the analysis for Cubist, 300 for RF
and 6000 for SGB. The predicted curves are in terms of total
displacements.

Figure 1 illustrates the importance of variables from the
best-trained models of each analyzed method. The variable
importance, ranging from 0 to 100%, indicates the percentage of
cases in which each variable explains the target variable. This
allows an interpretation of which variables are truly necessary in
a Machine Learning model. The results indicate that Cubist has
the highest number of variables explaining the target variable
compared to RF and SGB. This perception given by Cubist
reflects that this algorithm makes better use of the predictor
variables in the database.

The variable importance indicates that the 'diameter of the
shaft' (d) does not explain the target variable in practically any
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observation, possibly due to its small range of occurrence: 73,
88.9, and 101.6 mm. However, considering that the geometry of
the shaft plays a fundamental role in the pile's performance, it
was decided to keep this variable in the models.

Figure 2 illustrates the hyperparameters tested by each of the
algorithms and the resulting RMSEs for the training phase with
the 270 observations. The graphs indicate that the SGB algorithm
demonstrated the best performance in training with an RMSE of
19.9 and hyperparameters: n.trees 600, interaction.depth 5,
shrinkage 0.1, and n.minobsinnode 1. In second place is Cubist
with an RMSE of 20.7 (hyperparameters: 100 committees and 1
neighbor), and in third place is RF with mtry 4 and RMSE 39.7.
In terms of R?, the order remained the same (SGB 0.977, Cubist
0.974, and RF 0.913), but in terms of MAE, Cubist becomes the
best in training with a value of 12.5, followed by SGB (14) and
RF (27.7).

52 Testing trained models

The comparison between the measured and predicted results of
the test compartment regarding the tension loads points on the
piles is indicated in the Figure 3. The figure show that the Cubist
and SGB models exhibit good consistency in predictions across
the entire load range of the test database (0 to 800 kN). In
contrast, the model trained by Random Forest shows greater
dispersion of points (Figure 3b).

During the testing phase, the performance between Cubist and
SGB reverses compared to the training phase, and Cubist now
exhibits the best performance, with an RMSE of 15.1, followed
by SGB and RF, with 20.3 and 51.7, respectively. Figure 4
presents the frequency distribution histograms of the model factor
M for the three tested algorithms. This factor is given by the ratio
between the applied load on the' pile in the field (measured) and
the load predicted by the model. Therefore, when M equals one, it
means that the load measured in the load test is equivalent to the
one predicted.

The histograms of Cubist and SGB in Figure 4 indicate that
most predictions produce values of M between 0.97 and 1.02,
indicating a condition where the predicted load by the model is
very close to the one measured in the load test. However, the
dispersion of points observed in Random Forest (Figure 3b) is
reflected in the distribution histogram (Figure 4b), where it is
observed that the model factor of the test points does not adhere
to a normal distribution curve and results in a COV equal to 0.22.

Cubist exhibited the lowest dispersion around the mean, with a
coefficient of variation (COV) of only 0.06, followed by SGB and
RF, which had COV values of 0.10 and 0.22, respectively.
Therefore, it can be inferred that Cubist was the most consistent
algorithm in test predictions due to the lower RMSEs and COV
observed.

Table 3 summarizes the RMSE, MAE, and R? metrics of the
best models from the tested algorithms and ranks them in terms of
RMSE. Overall, Cubist performied the best, and therefore, it is the
chosen model.
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5.3 Case study

Conforming to the section 1, five load tests not used in training
the machine learning models were reserved for a case study to
evaluate the quality of the curves predicted by artificial
intelligence and compare it with the method of Perko (2009).
Figure 5 illustrates the curves measured in the field, those
predicted by Al (both in terms of total and net displacements),
and the load capacity calculated by the Perko (2009) method for a
net displacement of 10% of the average helices diameters. This
criterion is only applicable to normalized curves in terms of net
displacement (dashed lines). Figure 5 indicates that the Cubist
model performed well in three curves (S5, S9, and S15), where
the predicted points adhere closely to the measured curve, and
therefore, the load capacities predicted by the Al in these cases
are satisfactory. On the other hand, in the two cases where the
model performed poorly, S55 and S64, the predicted curves
showed points with loads considerably lower than those measured
in the field. Table 4 summarizes the RMSE, R?, and MAE of the
predicted curves.

Individually, the three curves in which the model performed
well, namely S5, S9, and S15, resulted in the lowest RMSEs
(29.9, 20.3, and 19.9 kN, respectively) and were very close to the
MAE. This suggests that the predicted values are well adjusted to
the measured ones, and the errors are evenly distributed.

On the other hand, the predictions for S55 and S64 resulted in
more significant errors with RMSEs of 252.8 and 79.3 kN,
respectively, but close to the MAE of the prediction. This
indicates that the model exhibits evenly distributed errors and
considerably discrepant predicted loads compared to the
measurements in these cases.

Analyzing the data from the five Cubist curves together, the
model seems to present some considerable errors and discrepant
predicted loads from the measurements. This is corroborated by
the fact that the RMSE is significantly higher than the MAE. The

Table 4. Meircs BMSE. R, and MAE between predicted and
mieasured curves

Predicted Corves  RMSE (RN) R MAE (N)

Cubist 8 curves 1301 11,20 LN
SE10) H-4H-T3 049 10,58 5.4
S0 000 6-41-T3 70,1 01,64 19.6
SIS 100.64H-T3 1949 {3, 0 18.0
SEE10L64H-TSH 2528 R 240.0
SH4-EK 94H-12 79.3 1, 6 fit. 4

R? value also resulted very low (0.26).

Table 5 summarizes the RMSE and MAE of each predicted
load by both Perko (2009) and the Cubist algorithm. The RMSE
and 1MAE are the same in each prediction because they refer to a
single

L displacement predicied by Perko (20095 and by artificial intelligence through the Cubist
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point of each test and, at the same time, are equivalent in
inagnitude to the difference between the predicted and measured
oad.

Perko (2009) method showed good accuracy in only one case
out of the five evaluated (test S15) with a Model Factor of 0.97
and an RMSE of only 5.9 kN. In the remaining cases, the
calculated loads differed significantly from the measured ones,
with an M of 0.69 for test S55 and varying in a range of 2 to 2.37
for tests S5, S9, and S64.

Cubist, on the other hand, was more accurate in predicting the
rupture loads. The estimates were satisfactory, with RMSE of
36.7, 22.4, and 20.1 kN for tests S5, S9, and S15, respectively.
These results resulted in M's ranging from 0.85 to 1.12. However,
the performance in predicting the rupture load of tests S55 and
S64 was unsatisfactory, with substantial RMSEs of 387.1 and 126
kN and M equal to 2.85 and 1.81, respectively.

) . )] cl

Measured curve

Measured curve - net displacement
Cubgt curve

Cubist curve - net displacement
10D

Perko (2009)

E':jgug{ 5 Compunson of ulumate load for [0% of the mean dinmeter of the helices: measured curves, Cubist-predicted. and load capacity by Petko
{2008,
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6 CONCLUSIONS

This paper used data from 33 tensile load tests on helical piles
to assess the applicability of Artificial Intelligence using machine
learning in predicting load-displacement curves. Additionally,
five load tests were reserved for evaluation as a case study, where
the prediction of pile capacity using a method based on SPT data
was compared with the pile uplift capacity values predicted by
artificial intelligence. From this study, it was concluded that:

e the algorithms applied to the database proved to be
efficient in predicting some load-displacement curves,
albeit each with certain limitations. On the other hand,
the database used in this study is small (only 336
instances), and the Cubist model was trained with a
limited variety of variables combinations;

e cven with the implementation of cross-validation,
which helps prevent overfitting, the model showed
errors in the predictions that were evidenced in the
Figure 5d and Figure S5e. This indicates that
cross-validation is not sufficient to mitigate the
limitation of the database size and the best alternative is
to expand the database;

e the results from the testing phase and case studies
showed that the models are inaccurate in certain cases,
and an error analysis can be conducted in future
research. For example, by checking the confidence
interval of the predictions and identifying through
sensitivity analysis which variables have the greatest
impact on the results;

o machine learning prediction results indicate the need
for a larger database containing a greater variety of
cases. Introducing greater diversity of instances can
enhance the trained model’s ability to predict
unobserved cases, especially in case studies. Currently,
the database published by Tsuha et al. (2024) is being
expanded by Oliveira (2024) with new data that will
allow for the inclusion of a greater diversity of
observations and, consequently, improve the predictive
capacity of the models trained in this paper;

e new algorithms can be applied to the database, such as
Bayesian methods, Support Vector Machine, and
Boosting. These methods, among others, have been
regularly applied in the geotechnical field according to
a study conducted by Phoon and Zhang (2023);

o  Perko (2009) method proved to be poorly adherent to
the Brazilian cases of helical piles. This indicates that
the applicability of this method is limited for Brazilian
soils and requires the calibration of the parameters
proposed by the author.

7 ACKNOWLEDGEMENTS

The first author would like to thank CAPES for funding the
research. The authors would like to thank Vértice Engenharia and
the project PD-07284-0002/2020 of the P&D ANEEL program of
the Neoenergia group for the data used in this work.

8 REFERENCES

Kanai, S. (2007). A seismic retrofitting application by means of

multi-helix micropiles. In Proceedings of the 23rd US-Japan Bridge
. _Engineering Workshop, Tsukuba, Japan (pp. 5-7). o

Li, K. Q., Liu, Y., and Kang, Q. 2022. Estimating the thermal conductivity
of soils using six machine learning algorithms. International
Communications in Heat and Mass Transfer, 136, 106139, )

Meyerhof, G. G. 1951. The ultimate bearing capacity of foundations.
Geotechnique, 2(4&, 301-332. ) .

Meyerhof, G. G. (11 56). Penetration tests and bearing capacity of
cohesionless soils. Journal of the Soil Mechanics and Foundations
Division, 82(1), 866-1.

Proceedings of the 17" Pan-American Conference on Soil Mechanics and Geotechnical
Engineering (XVIl PCSMGE), and 2" Latin-American Regional Conference of the International
Association for Engineering Geology and the Environment (IAEG), La Serena Chile, 2024.

Oliveira, C. C. S. (2024). Analysis of pile load tests data to enhance the
prediction of multi-helix” piles performance based on in situ
Eeas_lllrements. Master thesis (not finished). University of Sdo Paulo,

razil.

Peres M. S. 2021. Apredizado de maquina — previsdo de torque para
estacas helicoidais. Master thesis, Aeronautics Institute of
Technology, Brazil

Perko, H. AT 2009. Helical piles: a practical guide to design and
installation. /st ed. Hoboken, NJ: John Wiley & Sons, Inc. o

Phoon, K. K., & Zhang, W. (2023). Future of machine learning in

eotechnics. Georisk: Assessment and Manazgement of Risk for

. ﬁ;l’neered Systems and Geohazards, 17(1%), 7-22. .

Puri, N., Prasad, H. D., and Jain, A. 2018. Prediction of geotechnical

arameters using machine learning techniques. Procedia Computer
cience, 125, 509-517.

Souissi M. 2020. Helical Pile Capacity-to-torque correlation: a more
reliable capacity-to-torque factor based on full scale load tests. DFI
Journal-The Journal of the Deep Foundations Institute, 14(2), 1-11

Terzaghi, K. 1943. Theoretical soil mechanics.

Tsuha, C.H.C., Oliveira, C.C.S., Silva, B.O., dos Santos Filho, JM.S.M.,
Schiavon, J.A. and Tang, C. 2024. Development and use of tensile
loading test databases for analysis and design of helical piles.
Databases for Data-Centric Geotechnics

Vesic, A. B. 1963. Bearing capacity of deep foundations in sand. Highway
research record, &?9). ) . )

Wanﬁ/,I L., Wu, M., Chen, H., Hao, D., Tian, Y., & Qi, C. &_2[02.2)‘ Efficient

achine Learning Models for the Upllfzt Behavior of Helical Anchors
in Dense Sand for Wind Energy Harvesting. Applied Sciences,
12(20), 10397



INTERNATIONAL SOCIETY FOR
SOIL MECHANICS AND
GEOTECHNICAL ENGINEERING

SIMSG [} ISSMGE

Y=

This paper was downloaded from the Online Library of
the |International Society for Soil Mechanics and
Geotechnical Engineering (ISSMGE). The library is
available here:

https:/ /www.issmge.org/publications/online-library

This is an open-access database that archives thousands
of papers published under the Auspices of the ISSMGE and
maintained by the Innovation and Development
Committee of ISSMGE.

The paper was published in the proceedings of the 17th
Pan-American Conference on Soil Mechanics and
Geotechnical Engineering (XVII PCSMGE) and was edited
by Gonzalo Montalva, Daniel Pollak, Claudio Roman and
Luis Valenzuela. The conference was held from
November 12t to November 16" 2024 in Chile.



https://www.issmge.org/publications/online-library
https://issmge.org/files/ECPMG2024-Prologue.pdf

