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ABSTRACT: During their operation, energy piles experience thermal strains and stresses that must be considered in their geotechnical 
and structural design. Although several methods have been developed to study the thermo-mechanical behavior of this type of structure, 
their design process still faces various and significant uncertainties (e.g., thermo-mechanical loads, soil properties, and design model 
errors). Consequently, some reliability-based design methodologies have been proposed in recent years. Most of these methodologies 
assume independent Gaussian variables. However, several studies have shown the presence of cross-correlations between soil 
parameters and that their marginal probability densities differ significantly from Gaussian. Thus, this paper presents a modification of 
the Monte Carlo Simulation-based method to assess the serviceability performance of energy piles considering correlated non-Gaussian 
marginal densities. The proposed probabilistic analysis is based on load-transfer curves and uses a copula model to simulate the joint 
probability distribution of the random variables. To illustrate the proposed framework, the paper studies the reliability of a hypothetical 
energy pile. The results show that the proposed methodology helps to incorporate a higher degree of realism in the thermo-mechanical 
behavior of energy piles. 

KEYWORDS: energy piles, failure probability, Monte Carlo method, Gaussian copula 

1 INTRODUCTION 

Energy piles are a closed Ground-Source Heat Pump (GSHP) 
System in which heat exchange pipes are installed in foundation 
elements to extract or inject thermal energy from/to the ground for 
space conditioning. In winter, the system transfers energy from the 
ground to the building for heating, while in summer, the process is 
reversed. By using a sustainable energy source (shallow 
geothermal energy) and due to its high energy efficiency, this 
technology is an alternative to reduce the environmental impact of 
the growing energy demand for space conditioning (Brandl 2006). 
Energy piles are subjected to long-term cyclic temperature changes 
following the building's thermal loads. Different studies (Bourne-
Webb et al. 2009; Amatya et al. 2012) have shown that these 
temperature changes can influence the thermo-mechanical 
behavior of the piles, causing unexpected tensile stresses or 
excessive settlements. Thus, they should be considered explicitly 
in the geotechnical and structural design of the foundation elements 
(Rotta-Loria et al. 2020). 

Even though energy piles have been in use since the early 
1980s, until recently, there were no guidelines or standards for 
properly accounting the effects of the thermal cycles in their 
geotechnical and structural design (Bourne-Webb et al. 2016). 
Early projects used subjectively high safety factors (usually twice 
the one used for conventional piles, but values as high as 13 have 
been reported) to prevent potential thermally induced damages, 
leading to overly conservative designs. 

In the past 20 years, several methods have been proposed to 
analyze the thermo-mechanical behavior of energy piles (Bourne-
Webb et al. 2016). However, their geotechnical design still faces 
significant challenges due to the uncertainties in soil parameters, 
the variability of the applied loads (mechanical and thermal), and 

model errors, among others. To address these issues, recent works 
(Xiao et al. 2016; Luo & Hu 2019; Hu et al. 2022) have developed 
several probabilistic approaches to evaluate the ultimate (ULS) and 
serviceability limit states (SLS) of individual energy piles.  

Although these new approaches represent a breakthrough in 
developing a more rational approach to addressing uncertainties in 
the design of energy piles, they generally assume independent 
Gaussian variables. In general, these hypotheses are not valid. 
Several studies (Lumb 1970; Griffiths et al. 2009; Dithinde et al. 
2010; Phoon et al. 2010; Wu 2015; Huffman et al. 2015; López-
Acosta et al. 2018; Masoudian et al. 2019; Bilgin et al. 2019; 
López-Acosta et al. 2022; Löfman & Korkiala-Tanttu 2024) have 
demonstrated that many geotechnical parameters are cross-
correlated (e.g., negative correlation between cohesion and friction 
angle) and that their probability densities differ significantly from 
Gaussian. Moreover, because of the high variability of soil 
properties (coefficient of variation, COV, of 20% or above) (Phoon 
& Kulhawy 1999), they are usually modeled using strictly positive 
probability distribution (e.g., lognormal or gamma) to avoid 
sampling negative values (Fenton & Griffiths 2008). 

Additionally, these assumptions contradict current building 
standards. Due to its different characteristics, dead and live loads 
are considered separately in conventional design standards. 
Although dead load (𝐿D ) could be modeled using the normal 
distribution, previous investigations (Ellingwood 1980) have 
shown that lognormal, gamma, Type-I, and Type-II Gumbel 
distributions are better choices for the live load (𝐿D). 

Ignoring the above may lead to a biased estimation of the 
system’s probability of failure (Huffman et al. 2015). Thus, to 
perform an accurate reliability analysis, the Joint Probability 
Density Function (PDF) of the random variables should be 
considered (Li et al. 2012). However, in many cases, only the 
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marginal PDFs and their correlation matrix are available. In this 
context, copula models (Sklar 1959; Nelsen 2006; Genest & Favre 
2009) provide a general, versatile, and practical approach to 
simulate correlated non-Gaussian uncertainties. This theory has 
recently been incorporated into several geotechnical reliability 
analyses (Li et al. 2012; Wu 2015; Huffman et al. 2015; Masoudian 
et al. 2019; Tang 2020; Löfman & Korkiala-Tanttu 2024). 

This paper presents a modification of the Monte Carlo 
Simulation-based method to assess the serviceability performance 
of energy piles considering correlated non-Gaussian marginal 
densities for the design variables. The proposed probabilistic 
analysis is based on load-transfer curves and uses a copula model 
to simulate the joint probability distribution of the random 
variables. The paper studies the reliability of a hypothetical energy 
pile. The results show that the proposed methodology helps to 
incorporate a higher degree of realism in the thermo-mechanical 
behavior of energy piles. 
 
2 DETERMINISTIC ANALYSES OF THE THERMO-
MECHANICAL BEHAVIOR OF ENERGY PILES 

Under mechanical loads, conventional piles move downwards into 
the ground, mobilizing positive shaft friction. On the other hand, 
during cooling, an energy pile contracts. The superstructure and the 
surrounding soil restrain part of these deformations, inducing 
tensile stresses. The mobilized shaft friction has the same direction 
as the mechanical load in the upper part of the pile and opposite it 
in the lower section. During heating, the pile tends to expand, 
leading to additional compression stresses with directions opposite 
to that previously described (Amatya et al. 2012). The magnitude 
and distribution of the additional axial stresses and strains along 
the pile depend on the type of soil surrounding it and the restraint 
at the pile ends. 

Among the most used analysis methods to study the thermo-
mechanical behavior of energy piles are synthetic design charts 
(Mroueh et al. 2018), load-transfer methods (Knellwolf et al. 
2011), and numerical modeling (Di Donna & Laloui 2015). The 
load-transfer methods have been particularly successful since it is 
fast, flexible, and computationally low-demanding. The algorithm 
subdivides the piles into rigid elements connected by springs 
(representing the pile stiffness). Independent nonlinear springs are 
distributed along the pile shaft and at the base to characterize the 
soil-pile interactions (Knellwolf et al. 2011) (Fig. 1). 

Several models have been developed to represent the mobilized 
shaft friction (τs) and the base reaction (τb) as functions of the 
element axial displacement (𝑤𝑧,𝑖), such as tri-linear, hyperbolic, 
and point-by-point curves (Luo & Hu 2019). Among these, the tri-
linear curves proposed by Frank and Zhao (Frank & Zhao 1982) 
(FZ model) have widely been used due to their simplicity and the 
few parameters needed. The FZ model requires four parameters: 
the first linear branches of the shaft (𝐾s) and base (𝐾b) of the load-
transfer curve, the ultimate shaft resistance (𝑞s), and the ultimate 
base bearing capacity (𝑞b) (Fig. 1). Both 𝐾s and 𝐾b depend on 
the pile diameter (D) and the pressuremeter modulus ( 𝐸M ), 
obtained from a Pressuremeter Test (PMT). The ultimate bearing 
capacity parameters (𝑞s and 𝑞b) can also be determined from a 
PMT using the limit pressure (pl) (Burlon et al. 2014; Frank 2017). 
This approach, known as the PMT 2012 model, has the advantage 
that the load capacity is estimated directly under actual field 
conditions, avoiding using formulas based on soil strength 

parameters (i.e., cohesion and friction angle) measured in small 
undisturbed samples. 

 

 
Figure 1. Load transfer method and FZ model (adapted from Knellwolf et 

al 2011). 

3 RELIABILITY ANALYSIS OF ENERGY PILES 

3.1 Reliability assessment 

Reliability analysis involves determining the degree to which the 
capacity of the capacity of an engineering system (C) meets 
specific requirements (R) (Ang & Tang 1984). Usually, this is 
performed by calculating the probability of failure (or 
unsatisfactory performance) 𝑝f = P[𝐶 < 𝑅] (e.g., the probability 
that the induced displacement at the top of a pile is greater than the 
corresponding allowable displacements). In general, the 
probability of failure can be expressed as: 
 𝑝f = P[𝑔(𝒙) ≤ 0] (1) 

 
where 𝒙 is a vector of input random variables required for the 
system design (e.g., loads, material properties, geometry) and 𝑔(⋅) 
is a function that determines the behavior or state of the system. 
Defining the joint PDF of the input random variables as 𝑓𝒙(𝒙), 𝑝f 
can be calculated as: 
 𝑝f = P[𝑔(𝒙) ≤ 0] = ∫ 𝑓𝒙(𝒙)𝑑𝒙{𝑔(𝑥)≤0}  (2) 

 
Eq. (2) can be estimated using the Monte Carlo Simulation 

(MCS) method. In this framework, a large set (size 𝑛 ) of 
simulation of the random parameters are obtained by sampling 
from the joint PDFs. Each simulation is evaluated in the limit state 
function 𝑔(⋅), and the probability of failure is approximated as: 

 𝑝f = ∫ 𝑓𝒙(𝒙)𝑑𝒙{𝑔(𝑥)≤0} ≈ 1𝑛∑𝐼[𝑔(𝒙𝒊)]𝑛
𝑖=1  (3) 
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where 𝐼[⋅] is an indicator function equal to 1 if 𝑔(𝑥𝑖) ≤ 0. As 𝑛 
increases, the MCS estimator tends to the exact value (Fan et al 
2014). 

3.2 Limit state design of energy piles 

Recent studies (Xiao et al. 2016; Luo & Hu 2019; Hu et al. 2022) 
have evaluated the probability of failure (𝑝f) for ultimate (ULS) 
and serviceability limit states (SLS) of energy piles. For ULS, these 
studies have focused on the geotechnical bearing capacity. The 
performance function has been defined as a function of the pile 
ultimate bearing capacity (𝑄ult)  and the maximum mobilized 
friction along the pile-soil interface (𝑄mob). Two different limit 
state equations have been proposed in the literature: 
 [𝑔(𝑥)]ULS = 𝑄ult −𝑄mob (4) [𝑔(𝑥)]ULS = 𝑄ult/𝑄mob (5) 

 
For SLS analysis, the studies have evaluated excessive pile 

settlement (SLSsettlement) and concrete cracking (SLScracking) 
using the following performance equations: 
 [𝑔(𝑥)]SLS,settlement = 𝑠ult −𝑤𝑧,1 (6) [𝑔(𝑥)]SLS,cracking = 𝑓ult − σm (7) 

 
where 𝑠ult is the limiting pile settlement, 𝑤𝑧,1 is the settlement 
at the pile head, 𝑓ult is the concrete axial tensile strength and σm 
is the maximum axial tensile stress in the pile. 

4 MODELLING CROSS-CORRELATED MULTIVARIATE 
RANDOM VARIABLES USING COPULAS 

A copula 𝐶(⋅) can be interpreted as a function that links (couples) 
the joint cumulative distribution function 𝐻(⋅) with its marginal 
cumulative distribution functions (CDF) (Vásquez-Guillén & 
Auvinet-Guichard 2014). Considering two random variables 𝑋𝑖 
and 𝑋𝑗  with marginal CDFs 𝐹𝑖  and 𝐹𝑗 , their joint CDF can be 
written as (Sklar 1959; Nelsen 2006; Genest & Favre 2017):  
 𝐻(𝑥𝑖 , 𝑥𝑗) = 𝐶(𝐹𝑖(𝑥𝑖), 𝐹𝑗(𝑥𝑗)|θ) = 𝐶(𝑢𝑖 , 𝑢𝑗|θ) (8) 

 
where θ  is the copula parameter describing the dependence 
intensity, and 𝑢𝑖 = 𝐹𝑖(𝑥𝑖) and 𝑢𝑗 = 𝐹𝑗(𝑥𝑗). From the above, it 
follows that 𝑥𝑖 = 𝐹𝑖−1(𝑢𝑖)  and 𝑥𝑗 = 𝐹𝑗−1(𝑢𝑗), where 𝐹𝑖−1  and 𝐹𝑗−1 are the corresponding marginal inverse distribution functions 
(quantile functions). Thus, the basic idea is to divide the modeling 
of the joint PDF into simulating the dependence and the marginal 
distributions separately (Tang et al 2020).  

Several copula types (e.g., Gaussian, Plackett, Clayton, Frank, 
Gumbel) have been proposed in the literature to account for 
specific trends in correlations (e.g., linear or nonlinear correlations, 
elliptical correlations, and tail-dependent correlations) (Nelsen 
2006). Among these, Gaussian copulas are the most frequently 
used since their parameter (θ) can be determined uniquely based 
on the correlation matrix between variables, they can account for 
negative and positive correlations, and their structure can be easily 
extended to multivariate distributions (Li et al 2012). 

For the case of a bivariate distribution with random variables 𝑋𝑖 and 𝑋𝑗  with marginal CDFs 𝐹𝑖 and 𝐹𝑗, the Gaussian copula 
can be expressed as (Nelsen 2006): 

 𝐶(𝑢𝑖 , 𝑢𝑗|𝜃) = Φθ (Φ−1(𝑢𝑖), Φ−1(𝑢𝑗)) (9) 

 
where Φθ(⋅,⋅) is the joint CDF of a standard bivariate normal 
distribution with correlation θ, Φ−1(⋅) is the inverse CDF of a 
standard normal, and 𝑢𝑖 = 𝐹𝑖(𝑥𝑖) and 𝑢𝑗 = 𝐹𝑗(𝑥𝑗).  

There are several methods to estimate the copula parameter θ. 
For the present study, the method based on the Kendall correlation 
coefficient (τ) was used (Li et al. 2012): 

 θ = sin (πτ2 ) (10) 

 
Kendall correlation coefficient (𝜏) is a measure of dependence 

between two measured quantities 𝑊 and 𝑌 based on ranks. It is 
defined as: 
 τ = 𝑃𝑛  −  𝑄𝑛𝑛𝑝  (11) 

 
where 𝑃𝑛  and 𝑄𝑛  are the is the number of concordance pairs, 
respectively, and 𝑛𝑝 is the number of pairs. In this case, two pairs 
(𝑊𝑖 , 𝑌𝑖 ) and (𝑊𝑗 , 𝑌𝑗)  are said to be concordant when (𝑊𝑖 −𝑊𝑗)(𝑌𝑖 − 𝑌𝑗) > 0, and discordant when (𝑊𝑖 −𝑊𝑗)(𝑌𝑖 − 𝑌𝑗) < 0 
(Genest and Favre 2007). 

5 CASE STUDY 

5.1 General description 

For the paper, a reliability analysis of the thermo-mechanical 
behavior of a hypothetical individual energy pile was carried out 
using the load-transfer method with the FZ model. The probability 
of failure (𝑝f ) for different temperature changes was estimated 
using Monte Carlo simulations (MCS) considering only the 
settlement serviceability limit state (Eq. 7). 

The foundation element had a diameter of 0.8 m and a length of 
20 m. The pile was subjected to mechanical load (dead and live) 
and a monotonic temperature change (ΔT) varying from -20 to 0 °C 
(Fig. 2). Previous studies (Xiao et al. 2016; Luo & Hu 2019) have 
shown that the SLS design of energy piles is controlled by cooling 
cycles. Thus, no positive temperature change (heating) was 
considered. A concrete pile was assumed with Young’s modulus 
(E) of 20 GPa. The pile-structure stiffness was modeled 
considering a linear spring with 2 GPa/m constant. The PMT 2012 
approach was adopted to determine ultimate bearing capacity 
parameters (𝑞s and 𝑞b) from PMT limit pressure (𝑝l).  

The uncertainties of the following parameters were evaluated: 
pressuremeter modulus (𝐸M), limit pressure (𝑝l), dead load (𝐿D), 
live load (𝐿L), and concrete coefficient of thermal expansion (α). 
Mechanical loads were defined using building and bridge design 
codes criteria (Ellingwood 1980). The soil parameters (𝐸M and 𝑝l) 
were determined using a database of 40 PMT published by 
Narimani et al. (2018). An exploratory analysis was performed to 
obtained to identify possible patterns in the data and estimate the 
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correlation between the parameters. Goodness-of-fit tests were 
used to fit reasonable marginal probability distributions. 

For the load-transfer method, a total of 200 segments were 
considered (i.e., a thickness of 0.1 m), and 105 simulations for 
each temperature change (-20, -10, and 0 °C) were obtained using 
a Gaussian copula. 

 

 
Figure 2. Schematic representation of the study case. 

5.2 Exploratory analysis and goodness-of-fit evaluation 

Table 1 reports the summary statistics of the pressuremeter 
modulus (𝐸M) and the limit pressure (𝑝l) obtained from the 40 
PMT. In general, the parameters exhibited high dispersion, with a 
coefficient of variations of about 45%. Their histogram (Fig. 3 and 
4) showed that the soil parameters have asymmetrical distributions 
with longer right tails. Thus, the lognormal distribution was chosen 
as a plausible probability density function. 
 
Table 1. Summary statistics of PMT results. 

Parameter Units n Min Max m s COV (%) 

Menard modulus MPa 40 10.6 57.5 23.9 10.9 45.6 

Limit pressure MPa 40 1.1 9.0 3.3 1.5 45.4 

Note: 𝑛 = sample size, Min = minimum, Max = maximum, 𝑚 = sa
mple mean, 𝑠 = sample standard deviation, COV = coefficient of v
ariation. 
 

 
Figure 3. Histogram of Menard modulus (𝐸M). 

The model parameters were estimated according to the 
Maximum Likelihood Method (Ang & Tang 2007). The goodness-
of-fit of the theoretical PDFs was assessed via graphical methods 
(comparing the theoretical and empirical cumulative distribution 
functions) and using the Lilliefors-corrected Kolmogorov–

Smirnov test (LcKS test) (Lilliefors 1967) at a 5% level of 
significance. Lilliefors correction was used because the lognormal 
model parameters were estimated from the sample. 
 

 
Figure 4. Histogram of limit pressure (𝑝l). 

The LcKS tests did not reject the null hypothesis that the 
samples derived from a lognormal distribution for any of the soil 
properties studied (Table 2), suggesting that this provides a 
reasonable approximation for both parameters. The above was 
supported by the comparison of the theoretical and the empirical 
CDFs (Fig. 5 and 6), which did not show any significant deviation. 

 
Table 2. Summary of goodness-of-fit tests. 

Parameter 
n 

Fitted parameter  LcKS Test 

(𝑋𝑖) μln𝑋𝑖 σln𝑋𝑖  Statistic C.V. Result 

Menard modulus 40 3.08 0.43  0.098 0.140 NR 

Limit pressure 40 1.1 0.45  0.084 0.140 NR 

Note: n = sample size, μln𝑋𝑖  = mean of the natural logarithm, σln𝑋𝑖 = standard deviation of the natural logarithm, C.V. = critical 
 value, NR = non-rejection of null hypothesis. 
 

 
Figure 5. Theoretical vs Empirical Cumulative Density Functions for 
Menard modulus (𝐸M). 

Based on the 40 measurements, a Kendall correlation 
coefficient (𝜏) of 0.701 was obtained. The above suggests that the 
parameters exhibit a significant positive correlation, and the 
common assumption of statistical independence may not capture 
the actual behavior of the soil parameters. 

5.3 Simulations using Gaussian Copula 

The MCS was performed considering the distributions and 
statistical properties of Table 3. The PDF and the coefficient of 
variance (COV) of the mechanical loads (dead and live) were 
specified following the recommendations of Ellingwood (1980). 
The soil parameters were assigned according to the results of the 
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exploratory analysis in section 5.2. Note that, due to non-linearity 
in the lognormal transformation, 𝜇ln 𝑋 is not equal to ln 𝜇𝑋 (i.e., 
the mean of the logarithm is not the logarithm of the mean). In this 
case: 
 ln 𝜇𝑋 = 𝜇ln𝑋 + 𝜎ln𝑋22  (12) 

 

 
Figure 6. Theoretical vs Empirical Cumulative Density Functions for limit 
pressure (𝑝l). 

Although in previous studies the coefficient of thermal 
expansion of concrete (α) was assumed to be constant and equal to 
10x10-6/°C, Oesterle et al. (2007) point out that its value can vary 
between 5 to 12x10-6/°C. Considering that this parameter is rarely 
measured in practice, it was decided to include its uncertainty in 
the reliability analysis. A four-parameter beta distribution was 
assigned for its versatility and ability to incorporate the information 
on minimum and maximum parameter values. The COV was 
defined using the database published by Effings et al. (2012). 
 
Table 3. Statistical properties of random variables. 

Parameter 
Model  

distribution 
Units μ 

COV 
(%) 

Min Max 

Dead load Normal kN 3500 10 - - 

Live load Gamma kN 1500 25 - - 

Menard modulus Lognormal MPa 23.9 45 - - 

Limit pressure Lognormal MPa 3.3 45 - - 

Coefficient of  
thermal expansion 

Beta x10-6/°C 10 5 12 5 

Note: μ = mean, COV = coefficient of variation, Min = minimum, 
Max = maximum. 
 

The dependency structure between the soil parameters was 
modeled using a Gaussian copula, while the mechanical loads (live 
and dead) and the coefficient of thermal expansion were considered 
independent. The Gaussian copula parameter θ was calculated by 
Eq. 10 using a Kendall correlation coefficient of 0.7. 

The simulations were generated following the algorithm 
proposed by Li et al. (2013). Fig. 7 shows the measured data (40 
samples) and the simulations of 𝐸𝑀 and 𝑝𝑙 (105 samples) based 
on the fitted Gaussian copula (with their respective marginals). The 
proposed methodology can adequately model the relationship 
between the soil parameters. For comparison, another 105 
simulations were generated considering independent variables. 
The results (Fig. 8) show that, although the marginal PDFs are 
similar, ignoring the cross-correlation among variables produces 
unrealistic parameter combinations (e.g., simulations with high 

𝐸𝑀 and low 𝑝𝑙 or vice versa) that could bias the estimation of the 
probability of failure of the system. 

Despite its simplicity, the proposed methodology needs a proper 
definition of the non-Gaussian marginal PDFs and a reasonably 
accurate estimation cross-correlation between the soil properties. 
The previous recommendations require considerably more data 
than assuming independent Gaussian variables (Fenton and 
Griffiths, 2008) and may be a limitation for projects with restrained 
budgets. A suggestion given this limitation is to use case studies or 
previously published databases to reduce the uncertainty in 
defining these parameters. 

 

 
 
Figure 7. Scatter plot of measured and simulated data considering Gaussian 
copula. 

 
Figure 8. Scatter plot of measured and simulated data considering 
independent variables. 

5.4 Probabilistic analysis 

For all the Gaussian copula simulations described in section 5.3, 
load transfer analyses were performed considering different 
temperature changes (-20, -10, and 0 °C), and the pile head 
displacement ( 𝑤𝑧,1 ) was recorded. The resulting histograms 
indicate that the settlement distribution is asymmetric, with longer 
right tails in all cases (Fig. 9). The mean settlement for only 
mechanical load (𝛥𝑇 = 0 °C) was 5.3 mm with a COV of 45%. As 
the temperature change was increased, the mean settlement rises to 
6.0 and 6.3 mm for -10 and -20 °C, respectively. 
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Fig. 10 shows the variation of the probability of failure (𝑝f) 
estimates with the number of simulations for the three temperature 
changes (-20, -10 and 0 °C) and a limiting pile settlement (𝑠𝑢𝑙𝑡) of 
10 mm. In all cases, 𝑝f  converges after approximately 60,000 
iterations. The estimated probabilities of failure were 0.0765, 
0.0689 and 0.0498 for temperature changes of -20, -10 and 0 °C, 
respectively. This shows the important effect that temperature 
changes have on the SLS of energy piles. 
 

 
Figure 9. Histogram of computed immediate pile settlement for the 
different temperature changes. 

 

 
Figure 10. Convergence of the estimates of the probability of failure for a 
limiting pile settlement of 10 mm. 

Fig. 11 shows the probability of failure (𝑝f ) estimated for 
different limiting settlement. In general, 𝑝f decreases as limiting 
settlement increases for all the temperature change evaluated. At 
the same limiting settlement, a higher temperature decrease leads 
to a higher 𝑝f. 

 

 
Figure 11. Probability of failure for several limiting pile settlements. 

5 CONCLUSIONS 

This paper described a methodology to assess the serviceability 
performance of energy piles considering correlated non-Gaussian 
uncertainties. The proposed probabilistic analysis used Gaussian 
copulas to model the joint probability distribution of geotechnical 
parameters (Menard modulus and limit pressure) with user-
specified marginal densities and correlation structures via the 
Kendall correlation coefficient. From a hypothetical case study, it 
was shown that the copula theory helps to incorporate a higher 
degree of realism in the analysis of the thermo-mechanical 
behavior of energy piles, avoiding possible bias in its probability 
of failure estimation due to unrealistic combinations of the design 
parameters.  

The proposed probabilistic methodology represents an advance 
toward a more rational approach to address uncertainties in energy 
pile analyses, leading to more optimized designs in real-case 
scenarios. In this regard, further attention should focus on 
incorporating other sources of uncertainty not previously evaluated 
in the design process, exploring new methodologies to reduce the 
calculation times to estimate the probabilities of failure and 
developing more realistic models to simulate soil properties. 

In the present study, the effects of potential degradation of the 
pile-soil interface parameter due to cyclic thermal loading were 
neglected. Heating-cooling cycles may lead to cumulative 
irreversible deformations in the pile head, which may increase the 
system probability of failure under settlement serviceability limit 
state. Furthermore, up to now, no study has yet directly addressed 
the characterization of the thermal loads. The selection of the 
temperature change is crucial to perform a representative thermo-
mechanical analysis of energy piles. The above involves applying 
analytical or semi-empirical transient heat transfer models that 
require soil thermal properties and building heating requirements 
as input parameters. 

Despite the Monte Carlo method is a useful technique for 
reliability analysis, it requires a large number of simulations (105 
to 106) to assess small failure probabilities. This results in long 
calculation times that hinder its applicability in professional 
engineering practice. Variance reduction techniques, such as 
important sampling, must be explored to develop more efficient 
and robust approaches. 

Finally, most of the probabilistic methods developed for the 
analysis of energy piles do not account the spatial variability of soil 
properties. Using Single Random Variable (SRV) analysis may be 
conservative. A more realistic approach is to model a soil profile 
as a random field. The Copula Theory could be expanded to 
simulate random fields with non multi-Gaussian dependence. 
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