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ABSTRACT

The shakedown of pavements subjected to moving surface loads is investigated in this paper. The pavement is modeled
as a half-space Mohr-Coulomb medium. By approximating the sliding and rolling contact between a roller and the half-
space road surface by a plane strain trapezoidal load distribution, the shakedown limit is calculated using Melan’s static
shakedown theorem. We show that many past studies have neglected either or both of the constraints on the residual
stress field: the self-equilibrium and the yield condition. The shakedown limits so obtained are normally greater than the
true shakedown limit and will be unsafe if used for practical application.

RESUME

Nous étudions ici I'adaptation d’'un pavage sujet a une charge mobile en surface. Le pavage est représenté par un
modeéle en demi-espace de Mohr-Coulomb. En faisant appel a une technique d’approximation du contact roulement-
glissement entre un rouleau et le pavage en demi-espace par une répartition trapézoidale des charges sous des
conditions de déformation en plan, la limite de I'adaptation est calculée en employant la théorie d’adaptation statique de
Melan. Nous montrons que de nombreuses études antérieures ont négligé d’examiner I'une des contraintes sur le champ

de contraintes résiduelles ou les deux :

I'auto-équilibre et la condition d’écoulement. Les limites de I'adaptation ainsi

obtenues sont normalement supérieures a la vraie limite et seront dangereuses en cas d’application pratique.

1 INTRODUCTION

When subjected to cycles of loading, a structure may
undergo plastic deformation during the initial applications
of the load, but thereafter suffer only elastic strains with no
further permanent deformation. This type of behaviour is
known as shakedown, and the maximum cyclical load at
which it occurs is termed as the shakedown limit. The long
term behaviour of cohesive-frictional soils under cyclic
moving surface loads is important to a wide range of
applications in geotechnical and pavement engineering.
The performance of pavement road under moving vehicle
loads, for example, has been most concerned in
pavement design. It is time-consuming and costive,
however, to determine the pavement response to
successive individual load applications by conducting
experiments or by step-by-step calculations as the
processes are usually tedious and expensive. Shakedown
theory, on the other hand, offers a rational and convenient
way to determine the long term load-bearing capacity of
the pavements. In particular, the elastic shakedown
theorem proposed by Melan (1938) has been proved
useful for design purposes in many structural and
geotechnical applications. It has been repeatedly applied
to the shakedown analysis of a cohesive-frictional half
space under moving surface loads (Booker et al., 1985;
Collins and Cliffe, 1987; Yu, 2005).

When Melan’s theorem is applied to cohesive-frictional
materials, however, considerable confusion exists that
may give rise to inaccurate and inconsistent predictions of
the shakedown limit. Specifically, some of the constraints
on the residual stresses that are necessary in deriving
rigorous shakedown limits are often inadvertently
neglected. This always leads to upper bounds to the static

shakedown limit. Two of the commonly found ones include
the yield condition and the equilibrium condition on the
residual stress. We shall show that the two constraints
should be imposed simultaneously with the yield condition
on the total stress field, in order for the true shakedown
limit to be found. Relaxing either of the two or both will
essentially lead to some upper bound (greater) values for
the shakedown limit, which, if used for practical
application, will lead to unsafe design.

2  SHAKEDOWN ANALYSIS OF PAVEMENT UNDER
MOVING SURFACE LOADS

21 Approximation on the Rolling and Sliding Contact
and Failure Criterion

The pavement can be assumed to be a half space, in
which the material is taken isotropic and homogeneous for
simplicity. The soil self-weight is assumed small compared
to the stress gradient being applied so that it can be safely
neglected. It is assumed here the sliding and rolling
contact between a vehicle roller and the pavement surface
can be approximated by a plane strain trapezoidal
contact, as shown below in Figure 1.

If the soil in the half surface is assumed to be isotropic
and homogenous, a closed form analytical solution to the
elastic stress field under such a trapezoidal contact as
shown in Figure 1 has been derived by Zhao et al. (2007).
The elastic solution can be used for the shakedown
analysis. The Mohr-Coulomb criterion is used to
characterize the failure of the pavement material under
plain strain conditions:



f= \,(O‘E —o'w)z +4c7i —(O‘u +0'u)sin¢—2c‘cos¢ =0[1]

where ¢ is the cohesion, ¢ is the internal friction angle,

and the soil mechanics convention of compression being
positive applies.
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Figure 1. A trapezoidal contact approximation (b) of the
pavement surface subject to rolling and sliding load by a

vehicle roller (a)

2.2  Application of the Shakedown Theorem and
Constraints on the Residual Stress Field

Residual stress is a tension or compression which exists
in the bulk of a material without application of an external
load, and may be caused by incompatible plastic strains
or non-vanishing displacements. For a stable state, the
residual stresses present in form of a permanent self-
equilibrated stress field that remains in the body after
unloading; e.g., after the removal of all external loads and
the return of all prescribed surface displacements to zero.
In applying Melan’s elastic shakedown theorem, it is of
pivotal importance to consider two key constraints on the
residual stress field: the yielding constraint and the
equilibrium condition. Melan’s shakedown theorem states
that, a sufficient condition for shakedown to occur is that a
time-independent, self-equilibrated, residual stress field
can be found such that, when added to the elastic stress
field, it produces a combined stress field that nowhere and
at no time violates the yield condition. Therefore, in
addition to the requirement that the total stress (elastic
stress plus residual stress) field satisfies the vyield
condition, the residual stress field needs essentially to be
elastic and self-balanced too. The three conditions are
indispensible in order for the Melan's theorem to be
correctly interpreted. Mathematically, we may write the
Melan’s theorem as the following optimization problem:

p,, =0,

i

np, = 0,
4, =max Asts f(p,) <0, 2]

Gp)
f(p” +/10'U) <0.

where 1 is the load factor, p, is a self-equilibrating

residual stress field. o, is an elastic stress field induced

by cyclic external loads. /(L)) is he yield condition. A_ is

the ‘static shakedown limit’. For each stage of loading, the
sum of the elastic stress and the residual stress,

c}” =p,to,, is the total stress or the post transient

stress as termed by some others. In Equation 2, the first
two equations denote the self-equilibrium conditions on
the residual stress field, while the last two inequalities give
the yield conditions on the residual stress fields and total
stress field, respectively.

As important as they are to the shakedown analysis,
relaxing either or both the two constraints on the residual
stress may give rise to some interesting implications. Here
we consider the following two cases of scenario that may
occur with the constraints on residual stress field being
missed out: (I) both the equilibrium and yield constraints
on the residual stresses are neglected; (ll) only the
equilibrium condition on the residual stress is neglected.
The two cases correspond to the following three
optimization problems, respectively:

ilzmaxls,t,f(p,+/1cr)S0 [3]
Cr) / g

(4]

A, =max A s.t.
(A\P‘)

{f(p,, ) <o,

f(p, +40,)<0

We hereafter call the shakedown load factors obtained by
Equations 3 and 4 as type | and type Il shakedown limits,
respectively.

2.3 Solution Procedures

For the rolling and sliding contact problem, the permanent
deformation and residual stress distribution for the plane
strain contact will be independent of x and depend only
on the depth z. The equilibrium of the residual stresses

thus implies that there is only non-zero component p

which is a function of z only. In view of this, the yield
condition on the total stresses for the plane strain half
space is:

f(/lo-ij’pxx) = \/(io-zz - ﬂ'o-xx - pxx )2 + 4220—1

—(xlo'zz + Ao +p“)sin¢—20cos¢ =0

(6]

By setting 6f/6p“ =0, the following optimal residual
stress without any constraint can be obtained:



. 1+sin’ ¢
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and the corresponding load factor is (see, Collins and
Cliffe, 1987; Yu, 2005)

c

A (8]
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If, however, the yield constraint on the residual stress
is imposed by enforcing f(p_)=0, the following two

bounds for p  will be obtained:

N V4
p, =—2ctan|———
2 4
; (9]
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where p° and p are the compressive and tensile

strength limits of the soil, respectively. The two limits will
be used in seeking the shakedown limit below.

In practice, if all conditions as shown in Equation 2 are
imposed, it is difficult to reach an analytical solution for the
shakedown limit. In this case, we have to resort to
numerical solutions. A detailed flow chart for calculating
the shakedown limits as well as its various upper bounds
has been given by Zhao et al. (2007). A suitable domain
around the contact needs to be chosen and be discretized
into a fine mesh. The elastic stresses at each nodal point
of in the mesh are calculated and are then combined with
a critical value of residual stress in the range bounded by
Equation 9 to find the minimum value of load factor to be
the one affiliated to that node. The process is repeated for
all nodal points in the mesh. The static shakedown limit is
the maximum load factor among all nodal points. The
accuracy of such as solution is governed by the
discretisation and additional tolerances. Fine meshes and
tight tolerances have to be used to minimise the overall
solution error. The contact half-length «, and the
cohesion of the soil ¢, will be used to normalise all other

variables. This permits the load factor /1p0' /¢ to be used

to evaluate the shakedown limit and the two upper
bounds. Generally speaking, the critical material point for
the shakedown load factor occurs within a small distance
of the contact area. A domain of width W and depth D
around the contact area for consideration should be large
enough to cover all possible critical points, while at the
same time being as small as possible to reduce the
computational effort when a very fine mesh is used (see

Figure 2 for a sample mesh). A structured mesh is
preferred to an unstructured mesh, as it more convenient
for checking the load factor layer by layer.
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Figure 2. lllustrative mesh used for the shakedown
analysis

In the following analysis, we choose a domain of
x =[-1.25a,1.25a]and z =[0,1.25a] , and further partition
it into a mesh of 800x400 (in the x and z directions
respectively). The number of divisions for checking that
the residual stress n is chosen at a value of 400. The

shape of the trapezoid is fixed at b/a =0.5. The friction
coefficient 4 is assumed to lie in the range of [0, 1]. We

investigate four cases of internal frictional angle, ¢ =0,

157, 30" and 45".

3 RESULTS AND DISCUSSION
3.1 Shakedown limit and its upper bounds

Presented in Figure 3 are the load factors for shakedown
and elastic limit for the chosen four cases of frictional
angle. In Table 1 we further summarize the elastic
shakedown limits for trapezoidal case in terms of its

maximum pressure p; . As is observed from Figure 3, the

shakedown load factors decrease as the roller friction u
increases, and increase with the increase of internal
frictional angle ¢ . If x is small, the critical position for
the shakedown factor is found to be located at subsurface,
whereas for cases of large u, surface failure will be
become critical. There is a non-smooth transitional point
observed in the curve for static shakedown limit in each
case of ¢ which marks the boundary between surface
and subsurface failure mechanism for the critical position
of shakedown to occur. The value of x becomes smaller
when the internal friction angle increases. This indicates
that the surface failure more likely to occur in a frictional
soil than less frictional one (or frictionless one).



By neglecting some of the constraints on the residual
stress field, it is evident that both type | and type Il load
factors constitute upper bounds to the static shakedown
limit as obtained by Equation 2. And a general trend is

observed that 4 <A <A <A . At small roller friction

coefficients when subsurface is critical, the static
shakedown limit is identical with the type | and type Il
upper bounds. When x becomes greater, the static

shakedown limit becomes the smallest of the three and
the type | upper bound is the biggest one. Type | and type
Il upper bounds could be markedly greater than the static
shakedown limit (over 80% in some case). Note that these
upper bounds have been taken as the shakedown limit in
some previous studies. If they are to be used for practical
application, it would lead to unsafe design.

4.5 T T T T T T T
| | | | | | - Elastic Limit
| | | [ | Lo —— Static Shakedown Limit
| | ‘Inlemal fnctlon a(lgle $= p —+— Upper Bound Type 2
e T T T T T T T T T T T T T T T T 7| == UpperBound Type 1

351" - T - L el I L

)
| Trapezoidal

Normalised load factor lpo/c

| Contagt
| |
2 | | |
| | |
| | |
L s | |
| | |
| | |
=== - -1 | I
| | | | |
| | | | | | | | |
05 I I | I | I I I I
0 0.1 0.2 0.3 0.4 0. 0.6 0.7 0.8 0.9 1
Roller friction coefficient p
(@)
7 T T T T T T
| | | | | | ==~ Elastic Limit
| | | | | | —— Static Shakedown Limit
. | | | Internal friction angle ¢\= 15° | —— Upper Bound Type 2
6- X— 4 — — — - — — 4+ — — |- — —}+ — — 44— — _| 5 UpperBound Type 1
N | | | | | | |
R R | | | | | |
F " Herthian ! ! ! !
5 |~ —Confact — ~! - 7
- |
|

Normalised load factor lpolc

! ! ! ! | Trapezoldal !
| | | | | Contact| | | |
| | | | | | |
1 1 1 1 1 1

1
0.5 0.6 0.7 0.8 0.9 1

0 0.1 0.2 0.3 0.4
Roller friction coefficient p.

T T
| | |
| | | —— Static Shakedown Limit

Internal friction angle ¢ = 30° | —— Upper Bound Type 2

—<— Upper Bound Type 1

-==Elastic Limit

Hertzian |
—cgntact- | — — —

Normalised load factor lpolc
o
T

b
I
I
1

0 03 04 0. 0.6
Roller friction coefficient p
(c)
T T T T
o ol __ v ___\___ 1 __1__ [~ ElasticLimit
| | 1 | i i —— Static Shakedown Limit
! ! | Intern4l frictiorl angle ¢ = 45° |~ Upper Bound Type 2
181" 4 - — -l ——4 - — = — —F — — 4 — — —| =5 Upper Bound Type 1
|
|

Normalised load factor lpo/c

1 1 -
0.5 0.6 0.7 0.8 0.9 1

0 0.1 0.2 0.3 0.4
Roller friction coefficient p
. (d) . . .
Figure 3. Load factors for shakedown and elastic limit for

an internal frictional angle of (a)¢g=0; (b)g=15;

()¢ =30 and (d) ¢ =45".

Table 1. Shakedown limit for

distribution with b/a=0.5.

a trapezoidal load

4 w=00 02 0.4 0.6 0.8 1.0

0 3.789° 3.022° 2.133" 1422 1.067° 0.853"
15  6.164  4.690° 3.420° 2.123" 1478° 1.110"
30° 10.588" 7.523° 3.968" 2.576" 1.862° 1421
45 20193 9.872" 4.901" 3.210" 2.330° 1.792"

*Surface failure; Subsurface failure.

We notice similar transitional points in the curves for
type | and type Il shakedown limits as well. The points
occur at a larger value of the roller friction than in the
static shakedown limit case. This indicates that a physical
realistic residual stress field may cause significant



deformation in the proximity of the surface soil. When
combined with an external load that causes larger shear
stresses, surface failure will easily be triggered. However,
for the cases of type | and type I, relaxing the equilibrium
condition and/or the yield constraint on the residual stress
may lead to unrealistic soil deformation, e.g., the soil
element deforms as a rigid body, such that major portion
of the surface load it transmitted to deeper soil elements.
This explains why subsurface failure is more often found
in the cases of type | and type Il at relatively high roller
friction. It is this difference in failure mechanism that leads
to the difference in the static shakedown limit and the two
upper bounds.

3.2 Comparison of the Trapezoidal Case with the
Hertzian Contact Approximation

Presented in Figure 3 are also results for Hertzian contact
approximation (see Krabbenhgft et al., 2007) for the
convenience of comparison with the trapezoidal contact
case. To ensure the two cases are comparable, all load
factors for the trapezoidal case has been normalised by

the maximum pressure p, for the Hertzian contact with

b/a=0.5. If the trapezoidal maximum pressure p; is

used for the normalisation, a multiplier of 7z/3 ~1.047
needs to be applied to the corresponding load factors for
the trapezoidal contact case.

At the same contact length and total applied pressure,
the static shakedown limit obtained for the trapezoidal
contact is found to be smaller than for the Hertzian case
for frictionless soils. When the frictional angle of the soil is
increased, this trend remains when the roller friction
coefficient is small and while subsurface failure is critical.
When x becomes large and surface failure is critical, the

trend is reversed. The static shakedown limit for
trapezoidal contact case becomes greater. For frictionless
soils, the trapezoidal surface pressure distribution under
rolling and sliding contact results in a stress field with
greater degree of stress concentration. The shakedown
limit so derived is thus more conservative. However, for
frictional soils, the trapezoidal shakedown limit is less than
the Hertzian shakedown limit for cases with small roller
friction  coefficients, but becomes greater and
unconservative when the roller friction coefficient is large.
Meanwhile, we observe that the transitional point that
separates the subsurface and surface failure types occurs
at smaller x for Hertzian contact as the internal friction
angle is increased. It is not always so in the trapezoidal
case. We find for the latter case the transitional point

corresponds to = 0.32, 0.35, 0.22 and 0.13 for ¢ =0,
157, 30" and 45, respectively. When the soil is

frictionless, the transitional value of uis smaller for the

trapezoidal contact case as compared to the Hertzian
case, bur larger when the soil is frictional.

3.3 Comparison with Past Results

Figure 4 presents a further comparison of the new
shakedown limits obtained in this paper with some

previous results. For all four internal friction angles, the
new shakedown results for the trapezoidal contact case
appear to be close to those obtained by Sharp and Booker
(1984), but vary significantly from those given by Collins
and Cliffe (1987). The shakedown loads predicted by
Collins and Cliffe (1987) are generally smaller than our
new results and have no obvious (non-smooth) transition
points at all. In addition, the shakedown limits obtained by
Yu (2005) clearly are the upper bound type | results in the
Hertzian contact case and are generally greater than the
true shakedown limits.
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Figure 4. A comparison of the new elastic shakedown
limits with those of Sharp and Booker (1984) and Collins
and Cliffe (1987).

3.4 Effect of Variable trapezoidal Shape

We have also investigated the effect of the shape of the
trapezoidal pressure distribution, governed by the ratio of
b/a , on the shakedown load factor. Five values of b/a
are selected for this purpose: b/a =0,0.3,0.5,0.8,0.99.

The maximum pressure po' and the contact half-length a

for the distribution are assumed to be the same for all
cases. The computed results, shown in Figure 5, are for a
normalised load factor that is scaled for trapezoidal

contact by /lpo’/c (not by the maximum Hertzian contact

pressure p ). Note that the case of b/a =0 corresponds

to a triangular pressure distribution, while the case of
b/a=0.99 approximates the rectangular distribution. The
exact rectangular case, where b/a=1.0, cannot be
modelled due to the occurrence of a stress singularity at
the edge of the contact area due to the tangential traction
(see, also, Johnson, 1985).

Figure 5 shows that as b/a is reduced, the
shakedown limit increases and the ftransition from
subsurface to surface failure occurs at larger values of u

for the frictional soils considered. Fixing p; and a, while
varying b/a, corresponds to a roller with a different



overall load. Larger values of b/a generally simulate
better the effects of a tyre under higher load ratio. From
Figure 5 we also see that when b/a approaches 1.0, the
shakedown curve becomes smooth and no obvious
transition (non-smooth) point identifying the change from
subsurface to surface failure is observed.
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Figure 5. Variation of static shakedown limit with
trapezoidal shape (b/a ) at an internal frictional angle of

(@)p=0"; (b)p=15"; (c)¢=30" and (d) ¢=45. The
various cases have the same a and the same maximum
pressure po'. All load factors are normalised by this
maximum pressure.

Normalised load factor A,p'nlc

0 0.1

Figure 6. Variation of static shakedown limits to the
trapezoidal shape (b/a) for soils with internal friction

angle ¢ =30". In this figure, the various b/a with the
same a and the same overall load, all the load factors are

scaled and normalised by the maximum pressure po' for
thecase b/a=0.5.

Alternatively, we can fix the contact half-length and
assume the overall force applied to different trapezoidal
distributions is the same. By doing this, we can investigate
the cyclic bearing capacity for various contact shapes
under the same total load. In this case, the maximum
pressure for each case will vary according to b/a. To
make the various static shakedown limits for all cases

. r
comparable, we use the maximum pressure p for the



case of b/a =0.5 as a benchmark, and normalise all load
factors with respect to this pressure and the sail
cohesionc. The resulting static shakedown limits are
shown in Figure 6. For the same contact length and
overall load, the ratio b/a affects the transition from
subsurface to surface failure. The larger the ratio b/a is,
the earlier this transition occurs in terms of x .

4  CONCLUSION

Melan’s theorem in application to the predictiction of the
shakedown limit of a cohesive-frictional half space under
moving surface load has been re-examined. It is shown
that, other than the yield constraints on the total stresses,
the self-equilibrium and yield constraints on the residual
stresses are equally indispensable in deriving rigorous
lower bound shakedown limit. Otherwise, it will lead to
unsafe upper bounds to the true shakedown limits.
Comparison of shakedown limits obtained by two
approximations for the surface contact loads, the Hertzian
contact and trapezoidal contact has been made, as well
as with some past studies. The new shakedown limit
results derived here will be useful in pavement design as
well as in benchmarking shakedown solutions obtained
from other numerical methods.
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